MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  m1modge3gt1 Structured version   Visualization version   Unicode version

Theorem m1modge3gt1 12717
Description: Minus one modulo an integer greater than two is greater than one. (Contributed by AV, 14-Jul-2021.)
Assertion
Ref Expression
m1modge3gt1  |-  ( M  e.  ( ZZ>= `  3
)  ->  1  <  (
-u 1  mod  M
) )

Proof of Theorem m1modge3gt1
StepHypRef Expression
1 1p1e2 11134 . . . 4  |-  ( 1  +  1 )  =  2
2 2p1e3 11151 . . . . . 6  |-  ( 2  +  1 )  =  3
3 eluzle 11700 . . . . . 6  |-  ( M  e.  ( ZZ>= `  3
)  ->  3  <_  M )
42, 3syl5eqbr 4688 . . . . 5  |-  ( M  e.  ( ZZ>= `  3
)  ->  ( 2  +  1 )  <_  M )
5 2z 11409 . . . . . 6  |-  2  e.  ZZ
6 eluzelz 11697 . . . . . 6  |-  ( M  e.  ( ZZ>= `  3
)  ->  M  e.  ZZ )
7 zltp1le 11427 . . . . . 6  |-  ( ( 2  e.  ZZ  /\  M  e.  ZZ )  ->  ( 2  <  M  <->  ( 2  +  1 )  <_  M ) )
85, 6, 7sylancr 695 . . . . 5  |-  ( M  e.  ( ZZ>= `  3
)  ->  ( 2  <  M  <->  ( 2  +  1 )  <_  M ) )
94, 8mpbird 247 . . . 4  |-  ( M  e.  ( ZZ>= `  3
)  ->  2  <  M )
101, 9syl5eqbr 4688 . . 3  |-  ( M  e.  ( ZZ>= `  3
)  ->  ( 1  +  1 )  < 
M )
11 1red 10055 . . . 4  |-  ( M  e.  ( ZZ>= `  3
)  ->  1  e.  RR )
12 eluzelre 11698 . . . 4  |-  ( M  e.  ( ZZ>= `  3
)  ->  M  e.  RR )
1311, 11, 12ltaddsub2d 10628 . . 3  |-  ( M  e.  ( ZZ>= `  3
)  ->  ( (
1  +  1 )  <  M  <->  1  <  ( M  -  1 ) ) )
1410, 13mpbid 222 . 2  |-  ( M  e.  ( ZZ>= `  3
)  ->  1  <  ( M  -  1 ) )
15 eluzge3nn 11730 . . 3  |-  ( M  e.  ( ZZ>= `  3
)  ->  M  e.  NN )
16 m1modnnsub1 12716 . . 3  |-  ( M  e.  NN  ->  ( -u 1  mod  M )  =  ( M  - 
1 ) )
1715, 16syl 17 . 2  |-  ( M  e.  ( ZZ>= `  3
)  ->  ( -u 1  mod  M )  =  ( M  -  1 ) )
1814, 17breqtrrd 4681 1  |-  ( M  e.  ( ZZ>= `  3
)  ->  1  <  (
-u 1  mod  M
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    = wceq 1483    e. wcel 1990   class class class wbr 4653   ` cfv 5888  (class class class)co 6650   1c1 9937    + caddc 9939    < clt 10074    <_ cle 10075    - cmin 10266   -ucneg 10267   NNcn 11020   2c2 11070   3c3 11071   ZZcz 11377   ZZ>=cuz 11687    mod cmo 12668
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-fl 12593  df-mod 12669
This theorem is referenced by:  gausslemma2dlem0i  25089
  Copyright terms: Public domain W3C validator