MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gausslemma2dlem0i Structured version   Visualization version   Unicode version

Theorem gausslemma2dlem0i 25089
Description: Auxiliary lemma 9 for gausslemma2d 25099. (Contributed by AV, 14-Jul-2021.)
Hypotheses
Ref Expression
gausslemma2dlem0.p  |-  ( ph  ->  P  e.  ( Prime  \  { 2 } ) )
gausslemma2dlem0.m  |-  M  =  ( |_ `  ( P  /  4 ) )
gausslemma2dlem0.h  |-  H  =  ( ( P  - 
1 )  /  2
)
gausslemma2dlem0.n  |-  N  =  ( H  -  M
)
Assertion
Ref Expression
gausslemma2dlem0i  |-  ( ph  ->  ( ( ( 2  /L P )  mod  P )  =  ( ( -u 1 ^ N )  mod  P
)  ->  ( 2  /L P )  =  ( -u 1 ^ N ) ) )

Proof of Theorem gausslemma2dlem0i
StepHypRef Expression
1 2z 11409 . . 3  |-  2  e.  ZZ
2 gausslemma2dlem0.p . . . 4  |-  ( ph  ->  P  e.  ( Prime  \  { 2 } ) )
3 id 22 . . . . . 6  |-  ( P  e.  ( Prime  \  {
2 } )  ->  P  e.  ( Prime  \  { 2 } ) )
43gausslemma2dlem0a 25081 . . . . 5  |-  ( P  e.  ( Prime  \  {
2 } )  ->  P  e.  NN )
54nnzd 11481 . . . 4  |-  ( P  e.  ( Prime  \  {
2 } )  ->  P  e.  ZZ )
62, 5syl 17 . . 3  |-  ( ph  ->  P  e.  ZZ )
7 lgscl1 25045 . . 3  |-  ( ( 2  e.  ZZ  /\  P  e.  ZZ )  ->  ( 2  /L
P )  e.  { -u 1 ,  0 ,  1 } )
81, 6, 7sylancr 695 . 2  |-  ( ph  ->  ( 2  /L
P )  e.  { -u 1 ,  0 ,  1 } )
9 ovex 6678 . . . 4  |-  ( 2  /L P )  e.  _V
109eltp 4230 . . 3  |-  ( ( 2  /L P )  e.  { -u
1 ,  0 ,  1 }  <->  ( (
2  /L P )  =  -u 1  \/  ( 2  /L
P )  =  0  \/  ( 2  /L P )  =  1 ) )
11 gausslemma2dlem0.m . . . . . . . . 9  |-  M  =  ( |_ `  ( P  /  4 ) )
12 gausslemma2dlem0.h . . . . . . . . 9  |-  H  =  ( ( P  - 
1 )  /  2
)
13 gausslemma2dlem0.n . . . . . . . . 9  |-  N  =  ( H  -  M
)
142, 11, 12, 13gausslemma2dlem0h 25088 . . . . . . . 8  |-  ( ph  ->  N  e.  NN0 )
1514nn0zd 11480 . . . . . . 7  |-  ( ph  ->  N  e.  ZZ )
16 m1expcl2 12882 . . . . . . 7  |-  ( N  e.  ZZ  ->  ( -u 1 ^ N )  e.  { -u 1 ,  1 } )
1715, 16syl 17 . . . . . 6  |-  ( ph  ->  ( -u 1 ^ N )  e.  { -u 1 ,  1 } )
18 ovex 6678 . . . . . . . 8  |-  ( -u
1 ^ N )  e.  _V
1918elpr 4198 . . . . . . 7  |-  ( (
-u 1 ^ N
)  e.  { -u
1 ,  1 }  <-> 
( ( -u 1 ^ N )  =  -u
1  \/  ( -u
1 ^ N )  =  1 ) )
20 eqcom 2629 . . . . . . . . . 10  |-  ( (
-u 1 ^ N
)  =  -u 1  <->  -u 1  =  ( -u
1 ^ N ) )
2120biimpi 206 . . . . . . . . 9  |-  ( (
-u 1 ^ N
)  =  -u 1  -> 
-u 1  =  (
-u 1 ^ N
) )
22212a1d 26 . . . . . . . 8  |-  ( (
-u 1 ^ N
)  =  -u 1  ->  ( ph  ->  (
( -u 1  mod  P
)  =  ( (
-u 1 ^ N
)  mod  P )  -> 
-u 1  =  (
-u 1 ^ N
) ) ) )
23 eldifi 3732 . . . . . . . . . . . . 13  |-  ( P  e.  ( Prime  \  {
2 } )  ->  P  e.  Prime )
24 prmnn 15388 . . . . . . . . . . . . . . 15  |-  ( P  e.  Prime  ->  P  e.  NN )
2524nnred 11035 . . . . . . . . . . . . . 14  |-  ( P  e.  Prime  ->  P  e.  RR )
26 prmgt1 15409 . . . . . . . . . . . . . 14  |-  ( P  e.  Prime  ->  1  < 
P )
2725, 26jca 554 . . . . . . . . . . . . 13  |-  ( P  e.  Prime  ->  ( P  e.  RR  /\  1  <  P ) )
2823, 27syl 17 . . . . . . . . . . . 12  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
( P  e.  RR  /\  1  <  P ) )
29 1mod 12702 . . . . . . . . . . . 12  |-  ( ( P  e.  RR  /\  1  <  P )  -> 
( 1  mod  P
)  =  1 )
302, 28, 293syl 18 . . . . . . . . . . 11  |-  ( ph  ->  ( 1  mod  P
)  =  1 )
3130eqeq2d 2632 . . . . . . . . . 10  |-  ( ph  ->  ( ( -u 1  mod  P )  =  ( 1  mod  P )  <-> 
( -u 1  mod  P
)  =  1 ) )
32 oddprmge3 15412 . . . . . . . . . . 11  |-  ( P  e.  ( Prime  \  {
2 } )  ->  P  e.  ( ZZ>= ` 
3 ) )
33 m1modge3gt1 12717 . . . . . . . . . . . 12  |-  ( P  e.  ( ZZ>= `  3
)  ->  1  <  (
-u 1  mod  P
) )
34 breq2 4657 . . . . . . . . . . . . . 14  |-  ( (
-u 1  mod  P
)  =  1  -> 
( 1  <  ( -u 1  mod  P )  <->  1  <  1 ) )
35 1re 10039 . . . . . . . . . . . . . . . 16  |-  1  e.  RR
3635ltnri 10146 . . . . . . . . . . . . . . 15  |-  -.  1  <  1
3736pm2.21i 116 . . . . . . . . . . . . . 14  |-  ( 1  <  1  ->  -u 1  =  1 )
3834, 37syl6bi 243 . . . . . . . . . . . . 13  |-  ( (
-u 1  mod  P
)  =  1  -> 
( 1  <  ( -u 1  mod  P )  ->  -u 1  =  1 ) )
3938com12 32 . . . . . . . . . . . 12  |-  ( 1  <  ( -u 1  mod  P )  ->  (
( -u 1  mod  P
)  =  1  ->  -u 1  =  1 ) )
4033, 39syl 17 . . . . . . . . . . 11  |-  ( P  e.  ( ZZ>= `  3
)  ->  ( ( -u 1  mod  P )  =  1  ->  -u 1  =  1 ) )
412, 32, 403syl 18 . . . . . . . . . 10  |-  ( ph  ->  ( ( -u 1  mod  P )  =  1  ->  -u 1  =  1 ) )
4231, 41sylbid 230 . . . . . . . . 9  |-  ( ph  ->  ( ( -u 1  mod  P )  =  ( 1  mod  P )  ->  -u 1  =  1 ) )
43 oveq1 6657 . . . . . . . . . . 11  |-  ( (
-u 1 ^ N
)  =  1  -> 
( ( -u 1 ^ N )  mod  P
)  =  ( 1  mod  P ) )
4443eqeq2d 2632 . . . . . . . . . 10  |-  ( (
-u 1 ^ N
)  =  1  -> 
( ( -u 1  mod  P )  =  ( ( -u 1 ^ N )  mod  P
)  <->  ( -u 1  mod  P )  =  ( 1  mod  P ) ) )
45 eqeq2 2633 . . . . . . . . . 10  |-  ( (
-u 1 ^ N
)  =  1  -> 
( -u 1  =  (
-u 1 ^ N
)  <->  -u 1  =  1 ) )
4644, 45imbi12d 334 . . . . . . . . 9  |-  ( (
-u 1 ^ N
)  =  1  -> 
( ( ( -u
1  mod  P )  =  ( ( -u
1 ^ N )  mod  P )  ->  -u 1  =  ( -u
1 ^ N ) )  <->  ( ( -u
1  mod  P )  =  ( 1  mod 
P )  ->  -u 1  =  1 ) ) )
4742, 46syl5ibr 236 . . . . . . . 8  |-  ( (
-u 1 ^ N
)  =  1  -> 
( ph  ->  ( (
-u 1  mod  P
)  =  ( (
-u 1 ^ N
)  mod  P )  -> 
-u 1  =  (
-u 1 ^ N
) ) ) )
4822, 47jaoi 394 . . . . . . 7  |-  ( ( ( -u 1 ^ N )  =  -u
1  \/  ( -u
1 ^ N )  =  1 )  -> 
( ph  ->  ( (
-u 1  mod  P
)  =  ( (
-u 1 ^ N
)  mod  P )  -> 
-u 1  =  (
-u 1 ^ N
) ) ) )
4919, 48sylbi 207 . . . . . 6  |-  ( (
-u 1 ^ N
)  e.  { -u
1 ,  1 }  ->  ( ph  ->  ( ( -u 1  mod 
P )  =  ( ( -u 1 ^ N )  mod  P
)  ->  -u 1  =  ( -u 1 ^ N ) ) ) )
5017, 49mpcom 38 . . . . 5  |-  ( ph  ->  ( ( -u 1  mod  P )  =  ( ( -u 1 ^ N )  mod  P
)  ->  -u 1  =  ( -u 1 ^ N ) ) )
51 oveq1 6657 . . . . . . 7  |-  ( ( 2  /L P )  =  -u 1  ->  ( ( 2  /L P )  mod 
P )  =  (
-u 1  mod  P
) )
5251eqeq1d 2624 . . . . . 6  |-  ( ( 2  /L P )  =  -u 1  ->  ( ( ( 2  /L P )  mod  P )  =  ( ( -u 1 ^ N )  mod  P
)  <->  ( -u 1  mod  P )  =  ( ( -u 1 ^ N )  mod  P
) ) )
53 eqeq1 2626 . . . . . 6  |-  ( ( 2  /L P )  =  -u 1  ->  ( ( 2  /L P )  =  ( -u 1 ^ N )  <->  -u 1  =  ( -u 1 ^ N ) ) )
5452, 53imbi12d 334 . . . . 5  |-  ( ( 2  /L P )  =  -u 1  ->  ( ( ( ( 2  /L P )  mod  P )  =  ( ( -u
1 ^ N )  mod  P )  -> 
( 2  /L
P )  =  (
-u 1 ^ N
) )  <->  ( ( -u 1  mod  P )  =  ( ( -u
1 ^ N )  mod  P )  ->  -u 1  =  ( -u
1 ^ N ) ) ) )
5550, 54syl5ibr 236 . . . 4  |-  ( ( 2  /L P )  =  -u 1  ->  ( ph  ->  (
( ( 2  /L P )  mod 
P )  =  ( ( -u 1 ^ N )  mod  P
)  ->  ( 2  /L P )  =  ( -u 1 ^ N ) ) ) )
562gausslemma2dlem0a 25081 . . . . . . . . 9  |-  ( ph  ->  P  e.  NN )
5756nnrpd 11870 . . . . . . . 8  |-  ( ph  ->  P  e.  RR+ )
58 0mod 12701 . . . . . . . 8  |-  ( P  e.  RR+  ->  ( 0  mod  P )  =  0 )
5957, 58syl 17 . . . . . . 7  |-  ( ph  ->  ( 0  mod  P
)  =  0 )
6059eqeq1d 2624 . . . . . 6  |-  ( ph  ->  ( ( 0  mod 
P )  =  ( ( -u 1 ^ N )  mod  P
)  <->  0  =  ( ( -u 1 ^ N )  mod  P
) ) )
61 oveq1 6657 . . . . . . . . . . . . 13  |-  ( (
-u 1 ^ N
)  =  -u 1  ->  ( ( -u 1 ^ N )  mod  P
)  =  ( -u
1  mod  P )
)
6261eqeq2d 2632 . . . . . . . . . . . 12  |-  ( (
-u 1 ^ N
)  =  -u 1  ->  ( 0  =  ( ( -u 1 ^ N )  mod  P
)  <->  0  =  (
-u 1  mod  P
) ) )
6362adantr 481 . . . . . . . . . . 11  |-  ( ( ( -u 1 ^ N )  =  -u
1  /\  ph )  -> 
( 0  =  ( ( -u 1 ^ N )  mod  P
)  <->  0  =  (
-u 1  mod  P
) ) )
64 negmod0 12677 . . . . . . . . . . . . . . 15  |-  ( ( 1  e.  RR  /\  P  e.  RR+ )  -> 
( ( 1  mod 
P )  =  0  <-> 
( -u 1  mod  P
)  =  0 ) )
65 eqcom 2629 . . . . . . . . . . . . . . 15  |-  ( (
-u 1  mod  P
)  =  0  <->  0  =  ( -u 1  mod  P ) )
6664, 65syl6bb 276 . . . . . . . . . . . . . 14  |-  ( ( 1  e.  RR  /\  P  e.  RR+ )  -> 
( ( 1  mod 
P )  =  0  <->  0  =  ( -u
1  mod  P )
) )
6735, 57, 66sylancr 695 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( 1  mod 
P )  =  0  <->  0  =  ( -u
1  mod  P )
) )
6830eqeq1d 2624 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( 1  mod 
P )  =  0  <->  1  =  0 ) )
69 ax-1ne0 10005 . . . . . . . . . . . . . . 15  |-  1  =/=  0
70 eqneqall 2805 . . . . . . . . . . . . . . 15  |-  ( 1  =  0  ->  (
1  =/=  0  -> 
0  =  ( -u
1 ^ N ) ) )
7169, 70mpi 20 . . . . . . . . . . . . . 14  |-  ( 1  =  0  ->  0  =  ( -u 1 ^ N ) )
7268, 71syl6bi 243 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( 1  mod 
P )  =  0  ->  0  =  (
-u 1 ^ N
) ) )
7367, 72sylbird 250 . . . . . . . . . . . 12  |-  ( ph  ->  ( 0  =  (
-u 1  mod  P
)  ->  0  =  ( -u 1 ^ N
) ) )
7473adantl 482 . . . . . . . . . . 11  |-  ( ( ( -u 1 ^ N )  =  -u
1  /\  ph )  -> 
( 0  =  (
-u 1  mod  P
)  ->  0  =  ( -u 1 ^ N
) ) )
7563, 74sylbid 230 . . . . . . . . . 10  |-  ( ( ( -u 1 ^ N )  =  -u
1  /\  ph )  -> 
( 0  =  ( ( -u 1 ^ N )  mod  P
)  ->  0  =  ( -u 1 ^ N
) ) )
7675ex 450 . . . . . . . . 9  |-  ( (
-u 1 ^ N
)  =  -u 1  ->  ( ph  ->  (
0  =  ( (
-u 1 ^ N
)  mod  P )  ->  0  =  ( -u
1 ^ N ) ) ) )
7743eqeq2d 2632 . . . . . . . . . . . 12  |-  ( (
-u 1 ^ N
)  =  1  -> 
( 0  =  ( ( -u 1 ^ N )  mod  P
)  <->  0  =  ( 1  mod  P ) ) )
7877adantr 481 . . . . . . . . . . 11  |-  ( ( ( -u 1 ^ N )  =  1  /\  ph )  -> 
( 0  =  ( ( -u 1 ^ N )  mod  P
)  <->  0  =  ( 1  mod  P ) ) )
79 eqcom 2629 . . . . . . . . . . . . . 14  |-  ( 0  =  ( 1  mod 
P )  <->  ( 1  mod  P )  =  0 )
8079, 68syl5bb 272 . . . . . . . . . . . . 13  |-  ( ph  ->  ( 0  =  ( 1  mod  P )  <->  1  =  0 ) )
8180, 71syl6bi 243 . . . . . . . . . . . 12  |-  ( ph  ->  ( 0  =  ( 1  mod  P )  ->  0  =  (
-u 1 ^ N
) ) )
8281adantl 482 . . . . . . . . . . 11  |-  ( ( ( -u 1 ^ N )  =  1  /\  ph )  -> 
( 0  =  ( 1  mod  P )  ->  0  =  (
-u 1 ^ N
) ) )
8378, 82sylbid 230 . . . . . . . . . 10  |-  ( ( ( -u 1 ^ N )  =  1  /\  ph )  -> 
( 0  =  ( ( -u 1 ^ N )  mod  P
)  ->  0  =  ( -u 1 ^ N
) ) )
8483ex 450 . . . . . . . . 9  |-  ( (
-u 1 ^ N
)  =  1  -> 
( ph  ->  ( 0  =  ( ( -u
1 ^ N )  mod  P )  -> 
0  =  ( -u
1 ^ N ) ) ) )
8576, 84jaoi 394 . . . . . . . 8  |-  ( ( ( -u 1 ^ N )  =  -u
1  \/  ( -u
1 ^ N )  =  1 )  -> 
( ph  ->  ( 0  =  ( ( -u
1 ^ N )  mod  P )  -> 
0  =  ( -u
1 ^ N ) ) ) )
8619, 85sylbi 207 . . . . . . 7  |-  ( (
-u 1 ^ N
)  e.  { -u
1 ,  1 }  ->  ( ph  ->  ( 0  =  ( (
-u 1 ^ N
)  mod  P )  ->  0  =  ( -u
1 ^ N ) ) ) )
8717, 86mpcom 38 . . . . . 6  |-  ( ph  ->  ( 0  =  ( ( -u 1 ^ N )  mod  P
)  ->  0  =  ( -u 1 ^ N
) ) )
8860, 87sylbid 230 . . . . 5  |-  ( ph  ->  ( ( 0  mod 
P )  =  ( ( -u 1 ^ N )  mod  P
)  ->  0  =  ( -u 1 ^ N
) ) )
89 oveq1 6657 . . . . . . 7  |-  ( ( 2  /L P )  =  0  -> 
( ( 2  /L P )  mod 
P )  =  ( 0  mod  P ) )
9089eqeq1d 2624 . . . . . 6  |-  ( ( 2  /L P )  =  0  -> 
( ( ( 2  /L P )  mod  P )  =  ( ( -u 1 ^ N )  mod  P
)  <->  ( 0  mod 
P )  =  ( ( -u 1 ^ N )  mod  P
) ) )
91 eqeq1 2626 . . . . . 6  |-  ( ( 2  /L P )  =  0  -> 
( ( 2  /L P )  =  ( -u 1 ^ N )  <->  0  =  ( -u 1 ^ N
) ) )
9290, 91imbi12d 334 . . . . 5  |-  ( ( 2  /L P )  =  0  -> 
( ( ( ( 2  /L P )  mod  P )  =  ( ( -u
1 ^ N )  mod  P )  -> 
( 2  /L
P )  =  (
-u 1 ^ N
) )  <->  ( (
0  mod  P )  =  ( ( -u
1 ^ N )  mod  P )  -> 
0  =  ( -u
1 ^ N ) ) ) )
9388, 92syl5ibr 236 . . . 4  |-  ( ( 2  /L P )  =  0  -> 
( ph  ->  ( ( ( 2  /L
P )  mod  P
)  =  ( (
-u 1 ^ N
)  mod  P )  ->  ( 2  /L
P )  =  (
-u 1 ^ N
) ) ) )
9430eqeq1d 2624 . . . . . 6  |-  ( ph  ->  ( ( 1  mod 
P )  =  ( ( -u 1 ^ N )  mod  P
)  <->  1  =  ( ( -u 1 ^ N )  mod  P
) ) )
95 eqcom 2629 . . . . . . . . . . 11  |-  ( 1  =  ( -u 1  mod  P )  <->  ( -u 1  mod  P )  =  1 )
96 eqcom 2629 . . . . . . . . . . 11  |-  ( 1  =  -u 1  <->  -u 1  =  1 )
9741, 95, 963imtr4g 285 . . . . . . . . . 10  |-  ( ph  ->  ( 1  =  (
-u 1  mod  P
)  ->  1  =  -u 1 ) )
9861eqeq2d 2632 . . . . . . . . . . 11  |-  ( (
-u 1 ^ N
)  =  -u 1  ->  ( 1  =  ( ( -u 1 ^ N )  mod  P
)  <->  1  =  (
-u 1  mod  P
) ) )
99 eqeq2 2633 . . . . . . . . . . 11  |-  ( (
-u 1 ^ N
)  =  -u 1  ->  ( 1  =  (
-u 1 ^ N
)  <->  1  =  -u
1 ) )
10098, 99imbi12d 334 . . . . . . . . . 10  |-  ( (
-u 1 ^ N
)  =  -u 1  ->  ( ( 1  =  ( ( -u 1 ^ N )  mod  P
)  ->  1  =  ( -u 1 ^ N
) )  <->  ( 1  =  ( -u 1  mod  P )  ->  1  =  -u 1 ) ) )
10197, 100syl5ibr 236 . . . . . . . . 9  |-  ( (
-u 1 ^ N
)  =  -u 1  ->  ( ph  ->  (
1  =  ( (
-u 1 ^ N
)  mod  P )  ->  1  =  ( -u
1 ^ N ) ) ) )
102 eqcom 2629 . . . . . . . . . . 11  |-  ( (
-u 1 ^ N
)  =  1  <->  1  =  ( -u 1 ^ N ) )
103102biimpi 206 . . . . . . . . . 10  |-  ( (
-u 1 ^ N
)  =  1  -> 
1  =  ( -u
1 ^ N ) )
1041032a1d 26 . . . . . . . . 9  |-  ( (
-u 1 ^ N
)  =  1  -> 
( ph  ->  ( 1  =  ( ( -u
1 ^ N )  mod  P )  -> 
1  =  ( -u
1 ^ N ) ) ) )
105101, 104jaoi 394 . . . . . . . 8  |-  ( ( ( -u 1 ^ N )  =  -u
1  \/  ( -u
1 ^ N )  =  1 )  -> 
( ph  ->  ( 1  =  ( ( -u
1 ^ N )  mod  P )  -> 
1  =  ( -u
1 ^ N ) ) ) )
10619, 105sylbi 207 . . . . . . 7  |-  ( (
-u 1 ^ N
)  e.  { -u
1 ,  1 }  ->  ( ph  ->  ( 1  =  ( (
-u 1 ^ N
)  mod  P )  ->  1  =  ( -u
1 ^ N ) ) ) )
10717, 106mpcom 38 . . . . . 6  |-  ( ph  ->  ( 1  =  ( ( -u 1 ^ N )  mod  P
)  ->  1  =  ( -u 1 ^ N
) ) )
10894, 107sylbid 230 . . . . 5  |-  ( ph  ->  ( ( 1  mod 
P )  =  ( ( -u 1 ^ N )  mod  P
)  ->  1  =  ( -u 1 ^ N
) ) )
109 oveq1 6657 . . . . . . 7  |-  ( ( 2  /L P )  =  1  -> 
( ( 2  /L P )  mod 
P )  =  ( 1  mod  P ) )
110109eqeq1d 2624 . . . . . 6  |-  ( ( 2  /L P )  =  1  -> 
( ( ( 2  /L P )  mod  P )  =  ( ( -u 1 ^ N )  mod  P
)  <->  ( 1  mod 
P )  =  ( ( -u 1 ^ N )  mod  P
) ) )
111 eqeq1 2626 . . . . . 6  |-  ( ( 2  /L P )  =  1  -> 
( ( 2  /L P )  =  ( -u 1 ^ N )  <->  1  =  ( -u 1 ^ N
) ) )
112110, 111imbi12d 334 . . . . 5  |-  ( ( 2  /L P )  =  1  -> 
( ( ( ( 2  /L P )  mod  P )  =  ( ( -u
1 ^ N )  mod  P )  -> 
( 2  /L
P )  =  (
-u 1 ^ N
) )  <->  ( (
1  mod  P )  =  ( ( -u
1 ^ N )  mod  P )  -> 
1  =  ( -u
1 ^ N ) ) ) )
113108, 112syl5ibr 236 . . . 4  |-  ( ( 2  /L P )  =  1  -> 
( ph  ->  ( ( ( 2  /L
P )  mod  P
)  =  ( (
-u 1 ^ N
)  mod  P )  ->  ( 2  /L
P )  =  (
-u 1 ^ N
) ) ) )
11455, 93, 1133jaoi 1391 . . 3  |-  ( ( ( 2  /L
P )  =  -u
1  \/  ( 2  /L P )  =  0  \/  (
2  /L P )  =  1 )  ->  ( ph  ->  ( ( ( 2  /L P )  mod 
P )  =  ( ( -u 1 ^ N )  mod  P
)  ->  ( 2  /L P )  =  ( -u 1 ^ N ) ) ) )
11510, 114sylbi 207 . 2  |-  ( ( 2  /L P )  e.  { -u
1 ,  0 ,  1 }  ->  ( ph  ->  ( ( ( 2  /L P )  mod  P )  =  ( ( -u
1 ^ N )  mod  P )  -> 
( 2  /L
P )  =  (
-u 1 ^ N
) ) ) )
1168, 115mpcom 38 1  |-  ( ph  ->  ( ( ( 2  /L P )  mod  P )  =  ( ( -u 1 ^ N )  mod  P
)  ->  ( 2  /L P )  =  ( -u 1 ^ N ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    \/ wo 383    /\ wa 384    \/ w3o 1036    = wceq 1483    e. wcel 1990    =/= wne 2794    \ cdif 3571   {csn 4177   {cpr 4179   {ctp 4181   class class class wbr 4653   ` cfv 5888  (class class class)co 6650   RRcr 9935   0cc0 9936   1c1 9937    < clt 10074    - cmin 10266   -ucneg 10267    / cdiv 10684   2c2 11070   3c3 11071   4c4 11072   ZZcz 11377   ZZ>=cuz 11687   RR+crp 11832   |_cfl 12591    mod cmo 12668   ^cexp 12860   Primecprime 15385    /Lclgs 25019
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-n0 11293  df-xnn0 11364  df-z 11378  df-uz 11688  df-q 11789  df-rp 11833  df-fz 12327  df-fzo 12466  df-fl 12593  df-mod 12669  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-dvds 14984  df-gcd 15217  df-prm 15386  df-phi 15471  df-pc 15542  df-lgs 25020
This theorem is referenced by:  gausslemma2d  25099
  Copyright terms: Public domain W3C validator