MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  modmuladd Structured version   Visualization version   Unicode version

Theorem modmuladd 12712
Description: Decomposition of an integer into a multiple of a modulus and a remainder. (Contributed by AV, 14-Jul-2021.)
Assertion
Ref Expression
modmuladd  |-  ( ( A  e.  ZZ  /\  B  e.  ( 0 [,) M )  /\  M  e.  RR+ )  -> 
( ( A  mod  M )  =  B  <->  E. k  e.  ZZ  A  =  ( ( k  x.  M
)  +  B ) ) )
Distinct variable groups:    A, k    B, k    k, M

Proof of Theorem modmuladd
StepHypRef Expression
1 zre 11381 . . . . . . . 8  |-  ( A  e.  ZZ  ->  A  e.  RR )
21adantr 481 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  M  e.  RR+ )  ->  A  e.  RR )
3 rpre 11839 . . . . . . . 8  |-  ( M  e.  RR+  ->  M  e.  RR )
43adantl 482 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  M  e.  RR+ )  ->  M  e.  RR )
5 rpne0 11848 . . . . . . . 8  |-  ( M  e.  RR+  ->  M  =/=  0 )
65adantl 482 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  M  e.  RR+ )  ->  M  =/=  0 )
72, 4, 6redivcld 10853 . . . . . 6  |-  ( ( A  e.  ZZ  /\  M  e.  RR+ )  -> 
( A  /  M
)  e.  RR )
87flcld 12599 . . . . 5  |-  ( ( A  e.  ZZ  /\  M  e.  RR+ )  -> 
( |_ `  ( A  /  M ) )  e.  ZZ )
983adant2 1080 . . . 4  |-  ( ( A  e.  ZZ  /\  B  e.  ( 0 [,) M )  /\  M  e.  RR+ )  -> 
( |_ `  ( A  /  M ) )  e.  ZZ )
10 oveq1 6657 . . . . . . 7  |-  ( k  =  ( |_ `  ( A  /  M
) )  ->  (
k  x.  M )  =  ( ( |_
`  ( A  /  M ) )  x.  M ) )
1110oveq1d 6665 . . . . . 6  |-  ( k  =  ( |_ `  ( A  /  M
) )  ->  (
( k  x.  M
)  +  ( A  mod  M ) )  =  ( ( ( |_ `  ( A  /  M ) )  x.  M )  +  ( A  mod  M
) ) )
1211eqeq2d 2632 . . . . 5  |-  ( k  =  ( |_ `  ( A  /  M
) )  ->  ( A  =  ( (
k  x.  M )  +  ( A  mod  M ) )  <->  A  =  ( ( ( |_
`  ( A  /  M ) )  x.  M )  +  ( A  mod  M ) ) ) )
1312adantl 482 . . . 4  |-  ( ( ( A  e.  ZZ  /\  B  e.  ( 0 [,) M )  /\  M  e.  RR+ )  /\  k  =  ( |_ `  ( A  /  M
) ) )  -> 
( A  =  ( ( k  x.  M
)  +  ( A  mod  M ) )  <-> 
A  =  ( ( ( |_ `  ( A  /  M ) )  x.  M )  +  ( A  mod  M
) ) ) )
141anim1i 592 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  M  e.  RR+ )  -> 
( A  e.  RR  /\  M  e.  RR+ )
)
15143adant2 1080 . . . . . 6  |-  ( ( A  e.  ZZ  /\  B  e.  ( 0 [,) M )  /\  M  e.  RR+ )  -> 
( A  e.  RR  /\  M  e.  RR+ )
)
16 flpmodeq 12673 . . . . . 6  |-  ( ( A  e.  RR  /\  M  e.  RR+ )  -> 
( ( ( |_
`  ( A  /  M ) )  x.  M )  +  ( A  mod  M ) )  =  A )
1715, 16syl 17 . . . . 5  |-  ( ( A  e.  ZZ  /\  B  e.  ( 0 [,) M )  /\  M  e.  RR+ )  -> 
( ( ( |_
`  ( A  /  M ) )  x.  M )  +  ( A  mod  M ) )  =  A )
1817eqcomd 2628 . . . 4  |-  ( ( A  e.  ZZ  /\  B  e.  ( 0 [,) M )  /\  M  e.  RR+ )  ->  A  =  ( (
( |_ `  ( A  /  M ) )  x.  M )  +  ( A  mod  M
) ) )
199, 13, 18rspcedvd 3317 . . 3  |-  ( ( A  e.  ZZ  /\  B  e.  ( 0 [,) M )  /\  M  e.  RR+ )  ->  E. k  e.  ZZ  A  =  ( (
k  x.  M )  +  ( A  mod  M ) ) )
20 oveq2 6658 . . . . . 6  |-  ( B  =  ( A  mod  M )  ->  ( (
k  x.  M )  +  B )  =  ( ( k  x.  M )  +  ( A  mod  M ) ) )
2120eqeq2d 2632 . . . . 5  |-  ( B  =  ( A  mod  M )  ->  ( A  =  ( ( k  x.  M )  +  B )  <->  A  =  ( ( k  x.  M )  +  ( A  mod  M ) ) ) )
2221eqcoms 2630 . . . 4  |-  ( ( A  mod  M )  =  B  ->  ( A  =  ( (
k  x.  M )  +  B )  <->  A  =  ( ( k  x.  M )  +  ( A  mod  M ) ) ) )
2322rexbidv 3052 . . 3  |-  ( ( A  mod  M )  =  B  ->  ( E. k  e.  ZZ  A  =  ( (
k  x.  M )  +  B )  <->  E. k  e.  ZZ  A  =  ( ( k  x.  M
)  +  ( A  mod  M ) ) ) )
2419, 23syl5ibrcom 237 . 2  |-  ( ( A  e.  ZZ  /\  B  e.  ( 0 [,) M )  /\  M  e.  RR+ )  -> 
( ( A  mod  M )  =  B  ->  E. k  e.  ZZ  A  =  ( (
k  x.  M )  +  B ) ) )
25 oveq1 6657 . . . . 5  |-  ( A  =  ( ( k  x.  M )  +  B )  ->  ( A  mod  M )  =  ( ( ( k  x.  M )  +  B )  mod  M
) )
26 simpr 477 . . . . . 6  |-  ( ( ( A  e.  ZZ  /\  B  e.  ( 0 [,) M )  /\  M  e.  RR+ )  /\  k  e.  ZZ )  ->  k  e.  ZZ )
27 simpl3 1066 . . . . . 6  |-  ( ( ( A  e.  ZZ  /\  B  e.  ( 0 [,) M )  /\  M  e.  RR+ )  /\  k  e.  ZZ )  ->  M  e.  RR+ )
28 simpl2 1065 . . . . . 6  |-  ( ( ( A  e.  ZZ  /\  B  e.  ( 0 [,) M )  /\  M  e.  RR+ )  /\  k  e.  ZZ )  ->  B  e.  ( 0 [,) M ) )
29 muladdmodid 12710 . . . . . 6  |-  ( ( k  e.  ZZ  /\  M  e.  RR+  /\  B  e.  ( 0 [,) M
) )  ->  (
( ( k  x.  M )  +  B
)  mod  M )  =  B )
3026, 27, 28, 29syl3anc 1326 . . . . 5  |-  ( ( ( A  e.  ZZ  /\  B  e.  ( 0 [,) M )  /\  M  e.  RR+ )  /\  k  e.  ZZ )  ->  ( ( ( k  x.  M )  +  B )  mod  M
)  =  B )
3125, 30sylan9eqr 2678 . . . 4  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ( 0 [,) M
)  /\  M  e.  RR+ )  /\  k  e.  ZZ )  /\  A  =  ( ( k  x.  M )  +  B ) )  -> 
( A  mod  M
)  =  B )
3231ex 450 . . 3  |-  ( ( ( A  e.  ZZ  /\  B  e.  ( 0 [,) M )  /\  M  e.  RR+ )  /\  k  e.  ZZ )  ->  ( A  =  ( ( k  x.  M
)  +  B )  ->  ( A  mod  M )  =  B ) )
3332rexlimdva 3031 . 2  |-  ( ( A  e.  ZZ  /\  B  e.  ( 0 [,) M )  /\  M  e.  RR+ )  -> 
( E. k  e.  ZZ  A  =  ( ( k  x.  M
)  +  B )  ->  ( A  mod  M )  =  B ) )
3424, 33impbid 202 1  |-  ( ( A  e.  ZZ  /\  B  e.  ( 0 [,) M )  /\  M  e.  RR+ )  -> 
( ( A  mod  M )  =  B  <->  E. k  e.  ZZ  A  =  ( ( k  x.  M
)  +  B ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   E.wrex 2913   ` cfv 5888  (class class class)co 6650   RRcr 9935   0cc0 9936    + caddc 9939    x. cmul 9941    / cdiv 10684   ZZcz 11377   RR+crp 11832   [,)cico 12177   |_cfl 12591    mod cmo 12668
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-ico 12181  df-fl 12593  df-mod 12669
This theorem is referenced by:  modmuladdim  12713
  Copyright terms: Public domain W3C validator