MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  climcndslem1 Structured version   Visualization version   Unicode version

Theorem climcndslem1 14581
Description: Lemma for climcnds 14583: bound the original series by the condensed series. (Contributed by Mario Carneiro, 18-Jul-2014.)
Hypotheses
Ref Expression
climcnds.1  |-  ( (
ph  /\  k  e.  NN )  ->  ( F `
 k )  e.  RR )
climcnds.2  |-  ( (
ph  /\  k  e.  NN )  ->  0  <_ 
( F `  k
) )
climcnds.3  |-  ( (
ph  /\  k  e.  NN )  ->  ( F `
 ( k  +  1 ) )  <_ 
( F `  k
) )
climcnds.4  |-  ( (
ph  /\  n  e.  NN0 )  ->  ( G `  n )  =  ( ( 2 ^ n
)  x.  ( F `
 ( 2 ^ n ) ) ) )
Assertion
Ref Expression
climcndslem1  |-  ( (
ph  /\  N  e.  NN0 )  ->  (  seq 1 (  +  ,  F ) `  (
( 2 ^ ( N  +  1 ) )  -  1 ) )  <_  (  seq 0 (  +  ,  G ) `  N
) )
Distinct variable groups:    k, n, F    k, G, n    ph, k, n
Allowed substitution hints:    N( k, n)

Proof of Theorem climcndslem1
Dummy variables  j  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq1 6657 . . . . . . . . . . 11  |-  ( x  =  0  ->  (
x  +  1 )  =  ( 0  +  1 ) )
2 0p1e1 11132 . . . . . . . . . . 11  |-  ( 0  +  1 )  =  1
31, 2syl6eq 2672 . . . . . . . . . 10  |-  ( x  =  0  ->  (
x  +  1 )  =  1 )
43oveq2d 6666 . . . . . . . . 9  |-  ( x  =  0  ->  (
2 ^ ( x  +  1 ) )  =  ( 2 ^ 1 ) )
5 2cn 11091 . . . . . . . . . . 11  |-  2  e.  CC
6 exp1 12866 . . . . . . . . . . 11  |-  ( 2  e.  CC  ->  (
2 ^ 1 )  =  2 )
75, 6ax-mp 5 . . . . . . . . . 10  |-  ( 2 ^ 1 )  =  2
8 df-2 11079 . . . . . . . . . 10  |-  2  =  ( 1  +  1 )
97, 8eqtri 2644 . . . . . . . . 9  |-  ( 2 ^ 1 )  =  ( 1  +  1 )
104, 9syl6eq 2672 . . . . . . . 8  |-  ( x  =  0  ->  (
2 ^ ( x  +  1 ) )  =  ( 1  +  1 ) )
1110oveq1d 6665 . . . . . . 7  |-  ( x  =  0  ->  (
( 2 ^ (
x  +  1 ) )  -  1 )  =  ( ( 1  +  1 )  - 
1 ) )
12 ax-1cn 9994 . . . . . . . 8  |-  1  e.  CC
1312, 12pncan3oi 10297 . . . . . . 7  |-  ( ( 1  +  1 )  -  1 )  =  1
1411, 13syl6eq 2672 . . . . . 6  |-  ( x  =  0  ->  (
( 2 ^ (
x  +  1 ) )  -  1 )  =  1 )
1514fveq2d 6195 . . . . 5  |-  ( x  =  0  ->  (  seq 1 (  +  ,  F ) `  (
( 2 ^ (
x  +  1 ) )  -  1 ) )  =  (  seq 1 (  +  ,  F ) `  1
) )
16 fveq2 6191 . . . . 5  |-  ( x  =  0  ->  (  seq 0 (  +  ,  G ) `  x
)  =  (  seq 0 (  +  ,  G ) `  0
) )
1715, 16breq12d 4666 . . . 4  |-  ( x  =  0  ->  (
(  seq 1 (  +  ,  F ) `  ( ( 2 ^ ( x  +  1 ) )  -  1 ) )  <_  (  seq 0 (  +  ,  G ) `  x
)  <->  (  seq 1
(  +  ,  F
) `  1 )  <_  (  seq 0 (  +  ,  G ) `
 0 ) ) )
1817imbi2d 330 . . 3  |-  ( x  =  0  ->  (
( ph  ->  (  seq 1 (  +  ,  F ) `  (
( 2 ^ (
x  +  1 ) )  -  1 ) )  <_  (  seq 0 (  +  ,  G ) `  x
) )  <->  ( ph  ->  (  seq 1 (  +  ,  F ) `
 1 )  <_ 
(  seq 0 (  +  ,  G ) ` 
0 ) ) ) )
19 oveq1 6657 . . . . . . . 8  |-  ( x  =  j  ->  (
x  +  1 )  =  ( j  +  1 ) )
2019oveq2d 6666 . . . . . . 7  |-  ( x  =  j  ->  (
2 ^ ( x  +  1 ) )  =  ( 2 ^ ( j  +  1 ) ) )
2120oveq1d 6665 . . . . . 6  |-  ( x  =  j  ->  (
( 2 ^ (
x  +  1 ) )  -  1 )  =  ( ( 2 ^ ( j  +  1 ) )  - 
1 ) )
2221fveq2d 6195 . . . . 5  |-  ( x  =  j  ->  (  seq 1 (  +  ,  F ) `  (
( 2 ^ (
x  +  1 ) )  -  1 ) )  =  (  seq 1 (  +  ,  F ) `  (
( 2 ^ (
j  +  1 ) )  -  1 ) ) )
23 fveq2 6191 . . . . 5  |-  ( x  =  j  ->  (  seq 0 (  +  ,  G ) `  x
)  =  (  seq 0 (  +  ,  G ) `  j
) )
2422, 23breq12d 4666 . . . 4  |-  ( x  =  j  ->  (
(  seq 1 (  +  ,  F ) `  ( ( 2 ^ ( x  +  1 ) )  -  1 ) )  <_  (  seq 0 (  +  ,  G ) `  x
)  <->  (  seq 1
(  +  ,  F
) `  ( (
2 ^ ( j  +  1 ) )  -  1 ) )  <_  (  seq 0
(  +  ,  G
) `  j )
) )
2524imbi2d 330 . . 3  |-  ( x  =  j  ->  (
( ph  ->  (  seq 1 (  +  ,  F ) `  (
( 2 ^ (
x  +  1 ) )  -  1 ) )  <_  (  seq 0 (  +  ,  G ) `  x
) )  <->  ( ph  ->  (  seq 1 (  +  ,  F ) `
 ( ( 2 ^ ( j  +  1 ) )  - 
1 ) )  <_ 
(  seq 0 (  +  ,  G ) `  j ) ) ) )
26 oveq1 6657 . . . . . . . 8  |-  ( x  =  ( j  +  1 )  ->  (
x  +  1 )  =  ( ( j  +  1 )  +  1 ) )
2726oveq2d 6666 . . . . . . 7  |-  ( x  =  ( j  +  1 )  ->  (
2 ^ ( x  +  1 ) )  =  ( 2 ^ ( ( j  +  1 )  +  1 ) ) )
2827oveq1d 6665 . . . . . 6  |-  ( x  =  ( j  +  1 )  ->  (
( 2 ^ (
x  +  1 ) )  -  1 )  =  ( ( 2 ^ ( ( j  +  1 )  +  1 ) )  - 
1 ) )
2928fveq2d 6195 . . . . 5  |-  ( x  =  ( j  +  1 )  ->  (  seq 1 (  +  ,  F ) `  (
( 2 ^ (
x  +  1 ) )  -  1 ) )  =  (  seq 1 (  +  ,  F ) `  (
( 2 ^ (
( j  +  1 )  +  1 ) )  -  1 ) ) )
30 fveq2 6191 . . . . 5  |-  ( x  =  ( j  +  1 )  ->  (  seq 0 (  +  ,  G ) `  x
)  =  (  seq 0 (  +  ,  G ) `  (
j  +  1 ) ) )
3129, 30breq12d 4666 . . . 4  |-  ( x  =  ( j  +  1 )  ->  (
(  seq 1 (  +  ,  F ) `  ( ( 2 ^ ( x  +  1 ) )  -  1 ) )  <_  (  seq 0 (  +  ,  G ) `  x
)  <->  (  seq 1
(  +  ,  F
) `  ( (
2 ^ ( ( j  +  1 )  +  1 ) )  -  1 ) )  <_  (  seq 0
(  +  ,  G
) `  ( j  +  1 ) ) ) )
3231imbi2d 330 . . 3  |-  ( x  =  ( j  +  1 )  ->  (
( ph  ->  (  seq 1 (  +  ,  F ) `  (
( 2 ^ (
x  +  1 ) )  -  1 ) )  <_  (  seq 0 (  +  ,  G ) `  x
) )  <->  ( ph  ->  (  seq 1 (  +  ,  F ) `
 ( ( 2 ^ ( ( j  +  1 )  +  1 ) )  - 
1 ) )  <_ 
(  seq 0 (  +  ,  G ) `  ( j  +  1 ) ) ) ) )
33 oveq1 6657 . . . . . . . 8  |-  ( x  =  N  ->  (
x  +  1 )  =  ( N  + 
1 ) )
3433oveq2d 6666 . . . . . . 7  |-  ( x  =  N  ->  (
2 ^ ( x  +  1 ) )  =  ( 2 ^ ( N  +  1 ) ) )
3534oveq1d 6665 . . . . . 6  |-  ( x  =  N  ->  (
( 2 ^ (
x  +  1 ) )  -  1 )  =  ( ( 2 ^ ( N  + 
1 ) )  - 
1 ) )
3635fveq2d 6195 . . . . 5  |-  ( x  =  N  ->  (  seq 1 (  +  ,  F ) `  (
( 2 ^ (
x  +  1 ) )  -  1 ) )  =  (  seq 1 (  +  ,  F ) `  (
( 2 ^ ( N  +  1 ) )  -  1 ) ) )
37 fveq2 6191 . . . . 5  |-  ( x  =  N  ->  (  seq 0 (  +  ,  G ) `  x
)  =  (  seq 0 (  +  ,  G ) `  N
) )
3836, 37breq12d 4666 . . . 4  |-  ( x  =  N  ->  (
(  seq 1 (  +  ,  F ) `  ( ( 2 ^ ( x  +  1 ) )  -  1 ) )  <_  (  seq 0 (  +  ,  G ) `  x
)  <->  (  seq 1
(  +  ,  F
) `  ( (
2 ^ ( N  +  1 ) )  -  1 ) )  <_  (  seq 0
(  +  ,  G
) `  N )
) )
3938imbi2d 330 . . 3  |-  ( x  =  N  ->  (
( ph  ->  (  seq 1 (  +  ,  F ) `  (
( 2 ^ (
x  +  1 ) )  -  1 ) )  <_  (  seq 0 (  +  ,  G ) `  x
) )  <->  ( ph  ->  (  seq 1 (  +  ,  F ) `
 ( ( 2 ^ ( N  + 
1 ) )  - 
1 ) )  <_ 
(  seq 0 (  +  ,  G ) `  N ) ) ) )
40 1nn 11031 . . . . . . 7  |-  1  e.  NN
41 climcnds.1 . . . . . . . 8  |-  ( (
ph  /\  k  e.  NN )  ->  ( F `
 k )  e.  RR )
4241ralrimiva 2966 . . . . . . 7  |-  ( ph  ->  A. k  e.  NN  ( F `  k )  e.  RR )
43 fveq2 6191 . . . . . . . . 9  |-  ( k  =  1  ->  ( F `  k )  =  ( F ` 
1 ) )
4443eleq1d 2686 . . . . . . . 8  |-  ( k  =  1  ->  (
( F `  k
)  e.  RR  <->  ( F `  1 )  e.  RR ) )
4544rspcv 3305 . . . . . . 7  |-  ( 1  e.  NN  ->  ( A. k  e.  NN  ( F `  k )  e.  RR  ->  ( F `  1 )  e.  RR ) )
4640, 42, 45mpsyl 68 . . . . . 6  |-  ( ph  ->  ( F `  1
)  e.  RR )
4746leidd 10594 . . . . 5  |-  ( ph  ->  ( F `  1
)  <_  ( F `  1 ) )
4846recnd 10068 . . . . . 6  |-  ( ph  ->  ( F `  1
)  e.  CC )
4948mulid2d 10058 . . . . 5  |-  ( ph  ->  ( 1  x.  ( F `  1 )
)  =  ( F `
 1 ) )
5047, 49breqtrrd 4681 . . . 4  |-  ( ph  ->  ( F `  1
)  <_  ( 1  x.  ( F ` 
1 ) ) )
51 1z 11407 . . . . 5  |-  1  e.  ZZ
52 eqidd 2623 . . . . 5  |-  ( ph  ->  ( F `  1
)  =  ( F `
 1 ) )
5351, 52seq1i 12815 . . . 4  |-  ( ph  ->  (  seq 1 (  +  ,  F ) `
 1 )  =  ( F `  1
) )
54 0z 11388 . . . . 5  |-  0  e.  ZZ
55 0nn0 11307 . . . . . 6  |-  0  e.  NN0
56 climcnds.4 . . . . . . 7  |-  ( (
ph  /\  n  e.  NN0 )  ->  ( G `  n )  =  ( ( 2 ^ n
)  x.  ( F `
 ( 2 ^ n ) ) ) )
5756ralrimiva 2966 . . . . . 6  |-  ( ph  ->  A. n  e.  NN0  ( G `  n )  =  ( ( 2 ^ n )  x.  ( F `  (
2 ^ n ) ) ) )
58 fveq2 6191 . . . . . . . 8  |-  ( n  =  0  ->  ( G `  n )  =  ( G ` 
0 ) )
59 oveq2 6658 . . . . . . . . . 10  |-  ( n  =  0  ->  (
2 ^ n )  =  ( 2 ^ 0 ) )
60 exp0 12864 . . . . . . . . . . 11  |-  ( 2  e.  CC  ->  (
2 ^ 0 )  =  1 )
615, 60ax-mp 5 . . . . . . . . . 10  |-  ( 2 ^ 0 )  =  1
6259, 61syl6eq 2672 . . . . . . . . 9  |-  ( n  =  0  ->  (
2 ^ n )  =  1 )
6362fveq2d 6195 . . . . . . . . 9  |-  ( n  =  0  ->  ( F `  ( 2 ^ n ) )  =  ( F ` 
1 ) )
6462, 63oveq12d 6668 . . . . . . . 8  |-  ( n  =  0  ->  (
( 2 ^ n
)  x.  ( F `
 ( 2 ^ n ) ) )  =  ( 1  x.  ( F `  1
) ) )
6558, 64eqeq12d 2637 . . . . . . 7  |-  ( n  =  0  ->  (
( G `  n
)  =  ( ( 2 ^ n )  x.  ( F `  ( 2 ^ n
) ) )  <->  ( G `  0 )  =  ( 1  x.  ( F `  1 )
) ) )
6665rspcv 3305 . . . . . 6  |-  ( 0  e.  NN0  ->  ( A. n  e.  NN0  ( G `
 n )  =  ( ( 2 ^ n )  x.  ( F `  ( 2 ^ n ) ) )  ->  ( G `  0 )  =  ( 1  x.  ( F `  1 )
) ) )
6755, 57, 66mpsyl 68 . . . . 5  |-  ( ph  ->  ( G `  0
)  =  ( 1  x.  ( F ` 
1 ) ) )
6854, 67seq1i 12815 . . . 4  |-  ( ph  ->  (  seq 0 (  +  ,  G ) `
 0 )  =  ( 1  x.  ( F `  1 )
) )
6950, 53, 683brtr4d 4685 . . 3  |-  ( ph  ->  (  seq 1 (  +  ,  F ) `
 1 )  <_ 
(  seq 0 (  +  ,  G ) ` 
0 ) )
70 fzfid 12772 . . . . . . . . 9  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( (
2 ^ ( j  +  1 ) ) ... ( ( 2 ^ ( ( j  +  1 )  +  1 ) )  - 
1 ) )  e. 
Fin )
71 simpl 473 . . . . . . . . . . 11  |-  ( (
ph  /\  j  e.  NN0 )  ->  ph )
7271adantr 481 . . . . . . . . . 10  |-  ( ( ( ph  /\  j  e.  NN0 )  /\  k  e.  ( ( 2 ^ ( j  +  1 ) ) ... (
( 2 ^ (
( j  +  1 )  +  1 ) )  -  1 ) ) )  ->  ph )
73 2nn 11185 . . . . . . . . . . . 12  |-  2  e.  NN
74 peano2nn0 11333 . . . . . . . . . . . . 13  |-  ( j  e.  NN0  ->  ( j  +  1 )  e. 
NN0 )
7574adantl 482 . . . . . . . . . . . 12  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( j  +  1 )  e. 
NN0 )
76 nnexpcl 12873 . . . . . . . . . . . 12  |-  ( ( 2  e.  NN  /\  ( j  +  1 )  e.  NN0 )  ->  ( 2 ^ (
j  +  1 ) )  e.  NN )
7773, 75, 76sylancr 695 . . . . . . . . . . 11  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( 2 ^ ( j  +  1 ) )  e.  NN )
78 elfzuz 12338 . . . . . . . . . . 11  |-  ( k  e.  ( ( 2 ^ ( j  +  1 ) ) ... ( ( 2 ^ ( ( j  +  1 )  +  1 ) )  -  1 ) )  ->  k  e.  ( ZZ>= `  ( 2 ^ ( j  +  1 ) ) ) )
79 eluznn 11758 . . . . . . . . . . 11  |-  ( ( ( 2 ^ (
j  +  1 ) )  e.  NN  /\  k  e.  ( ZZ>= `  ( 2 ^ (
j  +  1 ) ) ) )  -> 
k  e.  NN )
8077, 78, 79syl2an 494 . . . . . . . . . 10  |-  ( ( ( ph  /\  j  e.  NN0 )  /\  k  e.  ( ( 2 ^ ( j  +  1 ) ) ... (
( 2 ^ (
( j  +  1 )  +  1 ) )  -  1 ) ) )  ->  k  e.  NN )
8172, 80, 41syl2anc 693 . . . . . . . . 9  |-  ( ( ( ph  /\  j  e.  NN0 )  /\  k  e.  ( ( 2 ^ ( j  +  1 ) ) ... (
( 2 ^ (
( j  +  1 )  +  1 ) )  -  1 ) ) )  ->  ( F `  k )  e.  RR )
8242adantr 481 . . . . . . . . . . 11  |-  ( (
ph  /\  j  e.  NN0 )  ->  A. k  e.  NN  ( F `  k )  e.  RR )
83 fveq2 6191 . . . . . . . . . . . . 13  |-  ( k  =  ( 2 ^ ( j  +  1 ) )  ->  ( F `  k )  =  ( F `  ( 2 ^ (
j  +  1 ) ) ) )
8483eleq1d 2686 . . . . . . . . . . . 12  |-  ( k  =  ( 2 ^ ( j  +  1 ) )  ->  (
( F `  k
)  e.  RR  <->  ( F `  ( 2 ^ (
j  +  1 ) ) )  e.  RR ) )
8584rspcv 3305 . . . . . . . . . . 11  |-  ( ( 2 ^ ( j  +  1 ) )  e.  NN  ->  ( A. k  e.  NN  ( F `  k )  e.  RR  ->  ( F `  ( 2 ^ ( j  +  1 ) ) )  e.  RR ) )
8677, 82, 85sylc 65 . . . . . . . . . 10  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( F `  ( 2 ^ (
j  +  1 ) ) )  e.  RR )
8786adantr 481 . . . . . . . . 9  |-  ( ( ( ph  /\  j  e.  NN0 )  /\  k  e.  ( ( 2 ^ ( j  +  1 ) ) ... (
( 2 ^ (
( j  +  1 )  +  1 ) )  -  1 ) ) )  ->  ( F `  ( 2 ^ ( j  +  1 ) ) )  e.  RR )
88 simpr 477 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  j  e.  NN0 )  /\  n  e.  ( ZZ>= `  ( 2 ^ ( j  +  1 ) ) ) )  ->  n  e.  ( ZZ>= `  ( 2 ^ ( j  +  1 ) ) ) )
89 simplll 798 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  j  e.  NN0 )  /\  n  e.  ( ZZ>= `  ( 2 ^ (
j  +  1 ) ) ) )  /\  k  e.  ( (
2 ^ ( j  +  1 ) ) ... n ) )  ->  ph )
9077adantr 481 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  j  e.  NN0 )  /\  n  e.  ( ZZ>= `  ( 2 ^ ( j  +  1 ) ) ) )  ->  ( 2 ^ ( j  +  1 ) )  e.  NN )
91 elfzuz 12338 . . . . . . . . . . . . . 14  |-  ( k  e.  ( ( 2 ^ ( j  +  1 ) ) ... n )  ->  k  e.  ( ZZ>= `  ( 2 ^ ( j  +  1 ) ) ) )
9290, 91, 79syl2an 494 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  j  e.  NN0 )  /\  n  e.  ( ZZ>= `  ( 2 ^ (
j  +  1 ) ) ) )  /\  k  e.  ( (
2 ^ ( j  +  1 ) ) ... n ) )  ->  k  e.  NN )
9389, 92, 41syl2anc 693 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  j  e.  NN0 )  /\  n  e.  ( ZZ>= `  ( 2 ^ (
j  +  1 ) ) ) )  /\  k  e.  ( (
2 ^ ( j  +  1 ) ) ... n ) )  ->  ( F `  k )  e.  RR )
94 simplll 798 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  j  e.  NN0 )  /\  n  e.  ( ZZ>= `  ( 2 ^ (
j  +  1 ) ) ) )  /\  k  e.  ( (
2 ^ ( j  +  1 ) ) ... ( n  - 
1 ) ) )  ->  ph )
95 elfzuz 12338 . . . . . . . . . . . . . 14  |-  ( k  e.  ( ( 2 ^ ( j  +  1 ) ) ... ( n  -  1 ) )  ->  k  e.  ( ZZ>= `  ( 2 ^ ( j  +  1 ) ) ) )
9690, 95, 79syl2an 494 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  j  e.  NN0 )  /\  n  e.  ( ZZ>= `  ( 2 ^ (
j  +  1 ) ) ) )  /\  k  e.  ( (
2 ^ ( j  +  1 ) ) ... ( n  - 
1 ) ) )  ->  k  e.  NN )
97 climcnds.3 . . . . . . . . . . . . 13  |-  ( (
ph  /\  k  e.  NN )  ->  ( F `
 ( k  +  1 ) )  <_ 
( F `  k
) )
9894, 96, 97syl2anc 693 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  j  e.  NN0 )  /\  n  e.  ( ZZ>= `  ( 2 ^ (
j  +  1 ) ) ) )  /\  k  e.  ( (
2 ^ ( j  +  1 ) ) ... ( n  - 
1 ) ) )  ->  ( F `  ( k  +  1 ) )  <_  ( F `  k )
)
9988, 93, 98monoord2 12832 . . . . . . . . . . 11  |-  ( ( ( ph  /\  j  e.  NN0 )  /\  n  e.  ( ZZ>= `  ( 2 ^ ( j  +  1 ) ) ) )  ->  ( F `  n )  <_  ( F `  ( 2 ^ ( j  +  1 ) ) ) )
10099ralrimiva 2966 . . . . . . . . . 10  |-  ( (
ph  /\  j  e.  NN0 )  ->  A. n  e.  ( ZZ>= `  ( 2 ^ ( j  +  1 ) ) ) ( F `  n
)  <_  ( F `  ( 2 ^ (
j  +  1 ) ) ) )
101 fveq2 6191 . . . . . . . . . . . 12  |-  ( n  =  k  ->  ( F `  n )  =  ( F `  k ) )
102101breq1d 4663 . . . . . . . . . . 11  |-  ( n  =  k  ->  (
( F `  n
)  <_  ( F `  ( 2 ^ (
j  +  1 ) ) )  <->  ( F `  k )  <_  ( F `  ( 2 ^ ( j  +  1 ) ) ) ) )
103102rspccva 3308 . . . . . . . . . 10  |-  ( ( A. n  e.  (
ZZ>= `  ( 2 ^ ( j  +  1 ) ) ) ( F `  n )  <_  ( F `  ( 2 ^ (
j  +  1 ) ) )  /\  k  e.  ( ZZ>= `  ( 2 ^ ( j  +  1 ) ) ) )  ->  ( F `  k )  <_  ( F `  ( 2 ^ ( j  +  1 ) ) ) )
104100, 78, 103syl2an 494 . . . . . . . . 9  |-  ( ( ( ph  /\  j  e.  NN0 )  /\  k  e.  ( ( 2 ^ ( j  +  1 ) ) ... (
( 2 ^ (
( j  +  1 )  +  1 ) )  -  1 ) ) )  ->  ( F `  k )  <_  ( F `  (
2 ^ ( j  +  1 ) ) ) )
10570, 81, 87, 104fsumle 14531 . . . . . . . 8  |-  ( (
ph  /\  j  e.  NN0 )  ->  sum_ k  e.  ( ( 2 ^ ( j  +  1 ) ) ... (
( 2 ^ (
( j  +  1 )  +  1 ) )  -  1 ) ) ( F `  k )  <_  sum_ k  e.  ( ( 2 ^ ( j  +  1 ) ) ... (
( 2 ^ (
( j  +  1 )  +  1 ) )  -  1 ) ) ( F `  ( 2 ^ (
j  +  1 ) ) ) )
106 fzfid 12772 . . . . . . . . . . . . 13  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( 1 ... ( ( 2 ^ ( j  +  1 ) )  - 
1 ) )  e. 
Fin )
107 hashcl 13147 . . . . . . . . . . . . 13  |-  ( ( 1 ... ( ( 2 ^ ( j  +  1 ) )  -  1 ) )  e.  Fin  ->  ( # `
 ( 1 ... ( ( 2 ^ ( j  +  1 ) )  -  1 ) ) )  e. 
NN0 )
108106, 107syl 17 . . . . . . . . . . . 12  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( # `  (
1 ... ( ( 2 ^ ( j  +  1 ) )  - 
1 ) ) )  e.  NN0 )
109108nn0cnd 11353 . . . . . . . . . . 11  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( # `  (
1 ... ( ( 2 ^ ( j  +  1 ) )  - 
1 ) ) )  e.  CC )
11077nnred 11035 . . . . . . . . . . . 12  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( 2 ^ ( j  +  1 ) )  e.  RR )
111110recnd 10068 . . . . . . . . . . 11  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( 2 ^ ( j  +  1 ) )  e.  CC )
112 hashcl 13147 . . . . . . . . . . . . 13  |-  ( ( ( 2 ^ (
j  +  1 ) ) ... ( ( 2 ^ ( ( j  +  1 )  +  1 ) )  -  1 ) )  e.  Fin  ->  ( # `
 ( ( 2 ^ ( j  +  1 ) ) ... ( ( 2 ^ ( ( j  +  1 )  +  1 ) )  -  1 ) ) )  e. 
NN0 )
11370, 112syl 17 . . . . . . . . . . . 12  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( # `  (
( 2 ^ (
j  +  1 ) ) ... ( ( 2 ^ ( ( j  +  1 )  +  1 ) )  -  1 ) ) )  e.  NN0 )
114113nn0cnd 11353 . . . . . . . . . . 11  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( # `  (
( 2 ^ (
j  +  1 ) ) ... ( ( 2 ^ ( ( j  +  1 )  +  1 ) )  -  1 ) ) )  e.  CC )
115 2z 11409 . . . . . . . . . . . . . . . . . . . 20  |-  2  e.  ZZ
116 zexpcl 12875 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( 2  e.  ZZ  /\  ( j  +  1 )  e.  NN0 )  ->  ( 2 ^ (
j  +  1 ) )  e.  ZZ )
117115, 75, 116sylancr 695 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( 2 ^ ( j  +  1 ) )  e.  ZZ )
118 nn0p1nn 11332 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( j  e.  NN0  ->  ( j  +  1 )  e.  NN )
119118adantl 482 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( j  +  1 )  e.  NN )
120 nnuz 11723 . . . . . . . . . . . . . . . . . . . . . 22  |-  NN  =  ( ZZ>= `  1 )
121119, 120syl6eleq 2711 . . . . . . . . . . . . . . . . . . . . 21  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( j  +  1 )  e.  ( ZZ>= `  1 )
)
122 2re 11090 . . . . . . . . . . . . . . . . . . . . . 22  |-  2  e.  RR
123 1le2 11241 . . . . . . . . . . . . . . . . . . . . . 22  |-  1  <_  2
124 leexp2a 12916 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( 2  e.  RR  /\  1  <_  2  /\  (
j  +  1 )  e.  ( ZZ>= `  1
) )  ->  (
2 ^ 1 )  <_  ( 2 ^ ( j  +  1 ) ) )
125122, 123, 124mp3an12 1414 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( j  +  1 )  e.  ( ZZ>= `  1
)  ->  ( 2 ^ 1 )  <_ 
( 2 ^ (
j  +  1 ) ) )
126121, 125syl 17 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( 2 ^ 1 )  <_ 
( 2 ^ (
j  +  1 ) ) )
1277, 126syl5eqbrr 4689 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  j  e.  NN0 )  ->  2  <_  ( 2 ^ ( j  +  1 ) ) )
128115eluz1i 11695 . . . . . . . . . . . . . . . . . . 19  |-  ( ( 2 ^ ( j  +  1 ) )  e.  ( ZZ>= `  2
)  <->  ( ( 2 ^ ( j  +  1 ) )  e.  ZZ  /\  2  <_ 
( 2 ^ (
j  +  1 ) ) ) )
129117, 127, 128sylanbrc 698 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( 2 ^ ( j  +  1 ) )  e.  ( ZZ>= `  2 )
)
130 uz2m1nn 11763 . . . . . . . . . . . . . . . . . 18  |-  ( ( 2 ^ ( j  +  1 ) )  e.  ( ZZ>= `  2
)  ->  ( (
2 ^ ( j  +  1 ) )  -  1 )  e.  NN )
131129, 130syl 17 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( (
2 ^ ( j  +  1 ) )  -  1 )  e.  NN )
132131, 120syl6eleq 2711 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( (
2 ^ ( j  +  1 ) )  -  1 )  e.  ( ZZ>= `  1 )
)
133 peano2zm 11420 . . . . . . . . . . . . . . . . . 18  |-  ( ( 2 ^ ( j  +  1 ) )  e.  ZZ  ->  (
( 2 ^ (
j  +  1 ) )  -  1 )  e.  ZZ )
134117, 133syl 17 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( (
2 ^ ( j  +  1 ) )  -  1 )  e.  ZZ )
135 peano2nn0 11333 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( j  +  1 )  e.  NN0  ->  ( ( j  +  1 )  +  1 )  e. 
NN0 )
13675, 135syl 17 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( (
j  +  1 )  +  1 )  e. 
NN0 )
137 zexpcl 12875 . . . . . . . . . . . . . . . . . . 19  |-  ( ( 2  e.  ZZ  /\  ( ( j  +  1 )  +  1 )  e.  NN0 )  ->  ( 2 ^ (
( j  +  1 )  +  1 ) )  e.  ZZ )
138115, 136, 137sylancr 695 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( 2 ^ ( ( j  +  1 )  +  1 ) )  e.  ZZ )
139 peano2zm 11420 . . . . . . . . . . . . . . . . . 18  |-  ( ( 2 ^ ( ( j  +  1 )  +  1 ) )  e.  ZZ  ->  (
( 2 ^ (
( j  +  1 )  +  1 ) )  -  1 )  e.  ZZ )
140138, 139syl 17 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( (
2 ^ ( ( j  +  1 )  +  1 ) )  -  1 )  e.  ZZ )
141117zred 11482 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( 2 ^ ( j  +  1 ) )  e.  RR )
142138zred 11482 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( 2 ^ ( ( j  +  1 )  +  1 ) )  e.  RR )
143 1red 10055 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  j  e.  NN0 )  ->  1  e.  RR )
14475nn0zd 11480 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( j  +  1 )  e.  ZZ )
145 uzid 11702 . . . . . . . . . . . . . . . . . . 19  |-  ( ( j  +  1 )  e.  ZZ  ->  (
j  +  1 )  e.  ( ZZ>= `  (
j  +  1 ) ) )
146 peano2uz 11741 . . . . . . . . . . . . . . . . . . 19  |-  ( ( j  +  1 )  e.  ( ZZ>= `  (
j  +  1 ) )  ->  ( (
j  +  1 )  +  1 )  e.  ( ZZ>= `  ( j  +  1 ) ) )
147 leexp2a 12916 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( 2  e.  RR  /\  1  <_  2  /\  (
( j  +  1 )  +  1 )  e.  ( ZZ>= `  (
j  +  1 ) ) )  ->  (
2 ^ ( j  +  1 ) )  <_  ( 2 ^ ( ( j  +  1 )  +  1 ) ) )
148122, 123, 147mp3an12 1414 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( j  +  1 )  +  1 )  e.  ( ZZ>= `  (
j  +  1 ) )  ->  ( 2 ^ ( j  +  1 ) )  <_ 
( 2 ^ (
( j  +  1 )  +  1 ) ) )
149144, 145, 146, 1484syl 19 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( 2 ^ ( j  +  1 ) )  <_ 
( 2 ^ (
( j  +  1 )  +  1 ) ) )
150141, 142, 143, 149lesub1dd 10643 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( (
2 ^ ( j  +  1 ) )  -  1 )  <_ 
( ( 2 ^ ( ( j  +  1 )  +  1 ) )  -  1 ) )
151 eluz2 11693 . . . . . . . . . . . . . . . . 17  |-  ( ( ( 2 ^ (
( j  +  1 )  +  1 ) )  -  1 )  e.  ( ZZ>= `  (
( 2 ^ (
j  +  1 ) )  -  1 ) )  <->  ( ( ( 2 ^ ( j  +  1 ) )  -  1 )  e.  ZZ  /\  ( ( 2 ^ ( ( j  +  1 )  +  1 ) )  -  1 )  e.  ZZ  /\  ( ( 2 ^ ( j  +  1 ) )  -  1 )  <_ 
( ( 2 ^ ( ( j  +  1 )  +  1 ) )  -  1 ) ) )
152134, 140, 150, 151syl3anbrc 1246 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( (
2 ^ ( ( j  +  1 )  +  1 ) )  -  1 )  e.  ( ZZ>= `  ( (
2 ^ ( j  +  1 ) )  -  1 ) ) )
153 elfzuzb 12336 . . . . . . . . . . . . . . . 16  |-  ( ( ( 2 ^ (
j  +  1 ) )  -  1 )  e.  ( 1 ... ( ( 2 ^ ( ( j  +  1 )  +  1 ) )  -  1 ) )  <->  ( (
( 2 ^ (
j  +  1 ) )  -  1 )  e.  ( ZZ>= `  1
)  /\  ( (
2 ^ ( ( j  +  1 )  +  1 ) )  -  1 )  e.  ( ZZ>= `  ( (
2 ^ ( j  +  1 ) )  -  1 ) ) ) )
154132, 152, 153sylanbrc 698 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( (
2 ^ ( j  +  1 ) )  -  1 )  e.  ( 1 ... (
( 2 ^ (
( j  +  1 )  +  1 ) )  -  1 ) ) )
155 fzsplit 12367 . . . . . . . . . . . . . . 15  |-  ( ( ( 2 ^ (
j  +  1 ) )  -  1 )  e.  ( 1 ... ( ( 2 ^ ( ( j  +  1 )  +  1 ) )  -  1 ) )  ->  (
1 ... ( ( 2 ^ ( ( j  +  1 )  +  1 ) )  - 
1 ) )  =  ( ( 1 ... ( ( 2 ^ ( j  +  1 ) )  -  1 ) )  u.  (
( ( ( 2 ^ ( j  +  1 ) )  - 
1 )  +  1 ) ... ( ( 2 ^ ( ( j  +  1 )  +  1 ) )  -  1 ) ) ) )
156154, 155syl 17 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( 1 ... ( ( 2 ^ ( ( j  +  1 )  +  1 ) )  - 
1 ) )  =  ( ( 1 ... ( ( 2 ^ ( j  +  1 ) )  -  1 ) )  u.  (
( ( ( 2 ^ ( j  +  1 ) )  - 
1 )  +  1 ) ... ( ( 2 ^ ( ( j  +  1 )  +  1 ) )  -  1 ) ) ) )
157 npcan 10290 . . . . . . . . . . . . . . . . 17  |-  ( ( ( 2 ^ (
j  +  1 ) )  e.  CC  /\  1  e.  CC )  ->  ( ( ( 2 ^ ( j  +  1 ) )  - 
1 )  +  1 )  =  ( 2 ^ ( j  +  1 ) ) )
158111, 12, 157sylancl 694 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( (
( 2 ^ (
j  +  1 ) )  -  1 )  +  1 )  =  ( 2 ^ (
j  +  1 ) ) )
159158oveq1d 6665 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( (
( ( 2 ^ ( j  +  1 ) )  -  1 )  +  1 ) ... ( ( 2 ^ ( ( j  +  1 )  +  1 ) )  - 
1 ) )  =  ( ( 2 ^ ( j  +  1 ) ) ... (
( 2 ^ (
( j  +  1 )  +  1 ) )  -  1 ) ) )
160159uneq2d 3767 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( (
1 ... ( ( 2 ^ ( j  +  1 ) )  - 
1 ) )  u.  ( ( ( ( 2 ^ ( j  +  1 ) )  -  1 )  +  1 ) ... (
( 2 ^ (
( j  +  1 )  +  1 ) )  -  1 ) ) )  =  ( ( 1 ... (
( 2 ^ (
j  +  1 ) )  -  1 ) )  u.  ( ( 2 ^ ( j  +  1 ) ) ... ( ( 2 ^ ( ( j  +  1 )  +  1 ) )  - 
1 ) ) ) )
161156, 160eqtrd 2656 . . . . . . . . . . . . 13  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( 1 ... ( ( 2 ^ ( ( j  +  1 )  +  1 ) )  - 
1 ) )  =  ( ( 1 ... ( ( 2 ^ ( j  +  1 ) )  -  1 ) )  u.  (
( 2 ^ (
j  +  1 ) ) ... ( ( 2 ^ ( ( j  +  1 )  +  1 ) )  -  1 ) ) ) )
162161fveq2d 6195 . . . . . . . . . . . 12  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( # `  (
1 ... ( ( 2 ^ ( ( j  +  1 )  +  1 ) )  - 
1 ) ) )  =  ( # `  (
( 1 ... (
( 2 ^ (
j  +  1 ) )  -  1 ) )  u.  ( ( 2 ^ ( j  +  1 ) ) ... ( ( 2 ^ ( ( j  +  1 )  +  1 ) )  - 
1 ) ) ) ) )
163 expp1 12867 . . . . . . . . . . . . . . . . 17  |-  ( ( 2  e.  CC  /\  ( j  +  1 )  e.  NN0 )  ->  ( 2 ^ (
( j  +  1 )  +  1 ) )  =  ( ( 2 ^ ( j  +  1 ) )  x.  2 ) )
1645, 75, 163sylancr 695 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( 2 ^ ( ( j  +  1 )  +  1 ) )  =  ( ( 2 ^ ( j  +  1 ) )  x.  2 ) )
165111times2d 11276 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( (
2 ^ ( j  +  1 ) )  x.  2 )  =  ( ( 2 ^ ( j  +  1 ) )  +  ( 2 ^ ( j  +  1 ) ) ) )
166164, 165eqtrd 2656 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( 2 ^ ( ( j  +  1 )  +  1 ) )  =  ( ( 2 ^ ( j  +  1 ) )  +  ( 2 ^ ( j  +  1 ) ) ) )
167166oveq1d 6665 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( (
2 ^ ( ( j  +  1 )  +  1 ) )  -  1 )  =  ( ( ( 2 ^ ( j  +  1 ) )  +  ( 2 ^ (
j  +  1 ) ) )  -  1 ) )
168 1cnd 10056 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  j  e.  NN0 )  ->  1  e.  CC )
169111, 111, 168addsubd 10413 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( (
( 2 ^ (
j  +  1 ) )  +  ( 2 ^ ( j  +  1 ) ) )  -  1 )  =  ( ( ( 2 ^ ( j  +  1 ) )  - 
1 )  +  ( 2 ^ ( j  +  1 ) ) ) )
170167, 169eqtrd 2656 . . . . . . . . . . . . 13  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( (
2 ^ ( ( j  +  1 )  +  1 ) )  -  1 )  =  ( ( ( 2 ^ ( j  +  1 ) )  - 
1 )  +  ( 2 ^ ( j  +  1 ) ) ) )
171 uztrn 11704 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( 2 ^ ( ( j  +  1 )  +  1 ) )  -  1 )  e.  ( ZZ>= `  ( ( 2 ^ ( j  +  1 ) )  -  1 ) )  /\  (
( 2 ^ (
j  +  1 ) )  -  1 )  e.  ( ZZ>= `  1
) )  ->  (
( 2 ^ (
( j  +  1 )  +  1 ) )  -  1 )  e.  ( ZZ>= `  1
) )
172152, 132, 171syl2anc 693 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( (
2 ^ ( ( j  +  1 )  +  1 ) )  -  1 )  e.  ( ZZ>= `  1 )
)
173172, 120syl6eleqr 2712 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( (
2 ^ ( ( j  +  1 )  +  1 ) )  -  1 )  e.  NN )
174173nnnn0d 11351 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( (
2 ^ ( ( j  +  1 )  +  1 ) )  -  1 )  e. 
NN0 )
175 hashfz1 13134 . . . . . . . . . . . . . 14  |-  ( ( ( 2 ^ (
( j  +  1 )  +  1 ) )  -  1 )  e.  NN0  ->  ( # `  ( 1 ... (
( 2 ^ (
( j  +  1 )  +  1 ) )  -  1 ) ) )  =  ( ( 2 ^ (
( j  +  1 )  +  1 ) )  -  1 ) )
176174, 175syl 17 . . . . . . . . . . . . 13  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( # `  (
1 ... ( ( 2 ^ ( ( j  +  1 )  +  1 ) )  - 
1 ) ) )  =  ( ( 2 ^ ( ( j  +  1 )  +  1 ) )  - 
1 ) )
177131nnnn0d 11351 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( (
2 ^ ( j  +  1 ) )  -  1 )  e. 
NN0 )
178 hashfz1 13134 . . . . . . . . . . . . . . 15  |-  ( ( ( 2 ^ (
j  +  1 ) )  -  1 )  e.  NN0  ->  ( # `  ( 1 ... (
( 2 ^ (
j  +  1 ) )  -  1 ) ) )  =  ( ( 2 ^ (
j  +  1 ) )  -  1 ) )
179177, 178syl 17 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( # `  (
1 ... ( ( 2 ^ ( j  +  1 ) )  - 
1 ) ) )  =  ( ( 2 ^ ( j  +  1 ) )  - 
1 ) )
180179oveq1d 6665 . . . . . . . . . . . . 13  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( ( # `
 ( 1 ... ( ( 2 ^ ( j  +  1 ) )  -  1 ) ) )  +  ( 2 ^ (
j  +  1 ) ) )  =  ( ( ( 2 ^ ( j  +  1 ) )  -  1 )  +  ( 2 ^ ( j  +  1 ) ) ) )
181170, 176, 1803eqtr4d 2666 . . . . . . . . . . . 12  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( # `  (
1 ... ( ( 2 ^ ( ( j  +  1 )  +  1 ) )  - 
1 ) ) )  =  ( ( # `  ( 1 ... (
( 2 ^ (
j  +  1 ) )  -  1 ) ) )  +  ( 2 ^ ( j  +  1 ) ) ) )
182110ltm1d 10956 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( (
2 ^ ( j  +  1 ) )  -  1 )  < 
( 2 ^ (
j  +  1 ) ) )
183 fzdisj 12368 . . . . . . . . . . . . . 14  |-  ( ( ( 2 ^ (
j  +  1 ) )  -  1 )  <  ( 2 ^ ( j  +  1 ) )  ->  (
( 1 ... (
( 2 ^ (
j  +  1 ) )  -  1 ) )  i^i  ( ( 2 ^ ( j  +  1 ) ) ... ( ( 2 ^ ( ( j  +  1 )  +  1 ) )  - 
1 ) ) )  =  (/) )
184182, 183syl 17 . . . . . . . . . . . . 13  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( (
1 ... ( ( 2 ^ ( j  +  1 ) )  - 
1 ) )  i^i  ( ( 2 ^ ( j  +  1 ) ) ... (
( 2 ^ (
( j  +  1 )  +  1 ) )  -  1 ) ) )  =  (/) )
185 hashun 13171 . . . . . . . . . . . . 13  |-  ( ( ( 1 ... (
( 2 ^ (
j  +  1 ) )  -  1 ) )  e.  Fin  /\  ( ( 2 ^ ( j  +  1 ) ) ... (
( 2 ^ (
( j  +  1 )  +  1 ) )  -  1 ) )  e.  Fin  /\  ( ( 1 ... ( ( 2 ^ ( j  +  1 ) )  -  1 ) )  i^i  (
( 2 ^ (
j  +  1 ) ) ... ( ( 2 ^ ( ( j  +  1 )  +  1 ) )  -  1 ) ) )  =  (/) )  -> 
( # `  ( ( 1 ... ( ( 2 ^ ( j  +  1 ) )  -  1 ) )  u.  ( ( 2 ^ ( j  +  1 ) ) ... ( ( 2 ^ ( ( j  +  1 )  +  1 ) )  -  1 ) ) ) )  =  ( ( # `  ( 1 ... (
( 2 ^ (
j  +  1 ) )  -  1 ) ) )  +  (
# `  ( (
2 ^ ( j  +  1 ) ) ... ( ( 2 ^ ( ( j  +  1 )  +  1 ) )  - 
1 ) ) ) ) )
186106, 70, 184, 185syl3anc 1326 . . . . . . . . . . . 12  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( # `  (
( 1 ... (
( 2 ^ (
j  +  1 ) )  -  1 ) )  u.  ( ( 2 ^ ( j  +  1 ) ) ... ( ( 2 ^ ( ( j  +  1 )  +  1 ) )  - 
1 ) ) ) )  =  ( (
# `  ( 1 ... ( ( 2 ^ ( j  +  1 ) )  -  1 ) ) )  +  ( # `  (
( 2 ^ (
j  +  1 ) ) ... ( ( 2 ^ ( ( j  +  1 )  +  1 ) )  -  1 ) ) ) ) )
187162, 181, 1863eqtr3d 2664 . . . . . . . . . . 11  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( ( # `
 ( 1 ... ( ( 2 ^ ( j  +  1 ) )  -  1 ) ) )  +  ( 2 ^ (
j  +  1 ) ) )  =  ( ( # `  (
1 ... ( ( 2 ^ ( j  +  1 ) )  - 
1 ) ) )  +  ( # `  (
( 2 ^ (
j  +  1 ) ) ... ( ( 2 ^ ( ( j  +  1 )  +  1 ) )  -  1 ) ) ) ) )
188109, 111, 114, 187addcanad 10241 . . . . . . . . . 10  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( 2 ^ ( j  +  1 ) )  =  ( # `  (
( 2 ^ (
j  +  1 ) ) ... ( ( 2 ^ ( ( j  +  1 )  +  1 ) )  -  1 ) ) ) )
189188oveq1d 6665 . . . . . . . . 9  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( (
2 ^ ( j  +  1 ) )  x.  ( F `  ( 2 ^ (
j  +  1 ) ) ) )  =  ( ( # `  (
( 2 ^ (
j  +  1 ) ) ... ( ( 2 ^ ( ( j  +  1 )  +  1 ) )  -  1 ) ) )  x.  ( F `
 ( 2 ^ ( j  +  1 ) ) ) ) )
19057adantr 481 . . . . . . . . . 10  |-  ( (
ph  /\  j  e.  NN0 )  ->  A. n  e.  NN0  ( G `  n )  =  ( ( 2 ^ n
)  x.  ( F `
 ( 2 ^ n ) ) ) )
191 fveq2 6191 . . . . . . . . . . . 12  |-  ( n  =  ( j  +  1 )  ->  ( G `  n )  =  ( G `  ( j  +  1 ) ) )
192 oveq2 6658 . . . . . . . . . . . . 13  |-  ( n  =  ( j  +  1 )  ->  (
2 ^ n )  =  ( 2 ^ ( j  +  1 ) ) )
193192fveq2d 6195 . . . . . . . . . . . . 13  |-  ( n  =  ( j  +  1 )  ->  ( F `  ( 2 ^ n ) )  =  ( F `  ( 2 ^ (
j  +  1 ) ) ) )
194192, 193oveq12d 6668 . . . . . . . . . . . 12  |-  ( n  =  ( j  +  1 )  ->  (
( 2 ^ n
)  x.  ( F `
 ( 2 ^ n ) ) )  =  ( ( 2 ^ ( j  +  1 ) )  x.  ( F `  (
2 ^ ( j  +  1 ) ) ) ) )
195191, 194eqeq12d 2637 . . . . . . . . . . 11  |-  ( n  =  ( j  +  1 )  ->  (
( G `  n
)  =  ( ( 2 ^ n )  x.  ( F `  ( 2 ^ n
) ) )  <->  ( G `  ( j  +  1 ) )  =  ( ( 2 ^ (
j  +  1 ) )  x.  ( F `
 ( 2 ^ ( j  +  1 ) ) ) ) ) )
196195rspcv 3305 . . . . . . . . . 10  |-  ( ( j  +  1 )  e.  NN0  ->  ( A. n  e.  NN0  ( G `
 n )  =  ( ( 2 ^ n )  x.  ( F `  ( 2 ^ n ) ) )  ->  ( G `  ( j  +  1 ) )  =  ( ( 2 ^ (
j  +  1 ) )  x.  ( F `
 ( 2 ^ ( j  +  1 ) ) ) ) ) )
19775, 190, 196sylc 65 . . . . . . . . 9  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( G `  ( j  +  1 ) )  =  ( ( 2 ^ (
j  +  1 ) )  x.  ( F `
 ( 2 ^ ( j  +  1 ) ) ) ) )
19886recnd 10068 . . . . . . . . . 10  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( F `  ( 2 ^ (
j  +  1 ) ) )  e.  CC )
199 fsumconst 14522 . . . . . . . . . 10  |-  ( ( ( ( 2 ^ ( j  +  1 ) ) ... (
( 2 ^ (
( j  +  1 )  +  1 ) )  -  1 ) )  e.  Fin  /\  ( F `  ( 2 ^ ( j  +  1 ) ) )  e.  CC )  ->  sum_ k  e.  ( ( 2 ^ ( j  +  1 ) ) ... ( ( 2 ^ ( ( j  +  1 )  +  1 ) )  - 
1 ) ) ( F `  ( 2 ^ ( j  +  1 ) ) )  =  ( ( # `  ( ( 2 ^ ( j  +  1 ) ) ... (
( 2 ^ (
( j  +  1 )  +  1 ) )  -  1 ) ) )  x.  ( F `  ( 2 ^ ( j  +  1 ) ) ) ) )
20070, 198, 199syl2anc 693 . . . . . . . . 9  |-  ( (
ph  /\  j  e.  NN0 )  ->  sum_ k  e.  ( ( 2 ^ ( j  +  1 ) ) ... (
( 2 ^ (
( j  +  1 )  +  1 ) )  -  1 ) ) ( F `  ( 2 ^ (
j  +  1 ) ) )  =  ( ( # `  (
( 2 ^ (
j  +  1 ) ) ... ( ( 2 ^ ( ( j  +  1 )  +  1 ) )  -  1 ) ) )  x.  ( F `
 ( 2 ^ ( j  +  1 ) ) ) ) )
201189, 197, 2003eqtr4d 2666 . . . . . . . 8  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( G `  ( j  +  1 ) )  =  sum_ k  e.  ( (
2 ^ ( j  +  1 ) ) ... ( ( 2 ^ ( ( j  +  1 )  +  1 ) )  - 
1 ) ) ( F `  ( 2 ^ ( j  +  1 ) ) ) )
202105, 201breqtrrd 4681 . . . . . . 7  |-  ( (
ph  /\  j  e.  NN0 )  ->  sum_ k  e.  ( ( 2 ^ ( j  +  1 ) ) ... (
( 2 ^ (
( j  +  1 )  +  1 ) )  -  1 ) ) ( F `  k )  <_  ( G `  ( j  +  1 ) ) )
203 elfznn 12370 . . . . . . . . . 10  |-  ( k  e.  ( 1 ... ( ( 2 ^ ( j  +  1 ) )  -  1 ) )  ->  k  e.  NN )
20471, 203, 41syl2an 494 . . . . . . . . 9  |-  ( ( ( ph  /\  j  e.  NN0 )  /\  k  e.  ( 1 ... (
( 2 ^ (
j  +  1 ) )  -  1 ) ) )  ->  ( F `  k )  e.  RR )
205106, 204fsumrecl 14465 . . . . . . . 8  |-  ( (
ph  /\  j  e.  NN0 )  ->  sum_ k  e.  ( 1 ... (
( 2 ^ (
j  +  1 ) )  -  1 ) ) ( F `  k )  e.  RR )
20670, 81fsumrecl 14465 . . . . . . . 8  |-  ( (
ph  /\  j  e.  NN0 )  ->  sum_ k  e.  ( ( 2 ^ ( j  +  1 ) ) ... (
( 2 ^ (
( j  +  1 )  +  1 ) )  -  1 ) ) ( F `  k )  e.  RR )
207 nn0uz 11722 . . . . . . . . . 10  |-  NN0  =  ( ZZ>= `  0 )
208 0zd 11389 . . . . . . . . . 10  |-  ( ph  ->  0  e.  ZZ )
209 simpr 477 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  n  e.  NN0 )  ->  n  e.  NN0 )
210 nnexpcl 12873 . . . . . . . . . . . . . 14  |-  ( ( 2  e.  NN  /\  n  e.  NN0 )  -> 
( 2 ^ n
)  e.  NN )
21173, 209, 210sylancr 695 . . . . . . . . . . . . 13  |-  ( (
ph  /\  n  e.  NN0 )  ->  ( 2 ^ n )  e.  NN )
212211nnred 11035 . . . . . . . . . . . 12  |-  ( (
ph  /\  n  e.  NN0 )  ->  ( 2 ^ n )  e.  RR )
21342adantr 481 . . . . . . . . . . . . 13  |-  ( (
ph  /\  n  e.  NN0 )  ->  A. k  e.  NN  ( F `  k )  e.  RR )
214 fveq2 6191 . . . . . . . . . . . . . . 15  |-  ( k  =  ( 2 ^ n )  ->  ( F `  k )  =  ( F `  ( 2 ^ n
) ) )
215214eleq1d 2686 . . . . . . . . . . . . . 14  |-  ( k  =  ( 2 ^ n )  ->  (
( F `  k
)  e.  RR  <->  ( F `  ( 2 ^ n
) )  e.  RR ) )
216215rspcv 3305 . . . . . . . . . . . . 13  |-  ( ( 2 ^ n )  e.  NN  ->  ( A. k  e.  NN  ( F `  k )  e.  RR  ->  ( F `  ( 2 ^ n ) )  e.  RR ) )
217211, 213, 216sylc 65 . . . . . . . . . . . 12  |-  ( (
ph  /\  n  e.  NN0 )  ->  ( F `  ( 2 ^ n
) )  e.  RR )
218212, 217remulcld 10070 . . . . . . . . . . 11  |-  ( (
ph  /\  n  e.  NN0 )  ->  ( (
2 ^ n )  x.  ( F `  ( 2 ^ n
) ) )  e.  RR )
21956, 218eqeltrd 2701 . . . . . . . . . 10  |-  ( (
ph  /\  n  e.  NN0 )  ->  ( G `  n )  e.  RR )
220207, 208, 219serfre 12830 . . . . . . . . 9  |-  ( ph  ->  seq 0 (  +  ,  G ) : NN0 --> RR )
221220ffvelrnda 6359 . . . . . . . 8  |-  ( (
ph  /\  j  e.  NN0 )  ->  (  seq 0 (  +  ,  G ) `  j
)  e.  RR )
222141, 86remulcld 10070 . . . . . . . . 9  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( (
2 ^ ( j  +  1 ) )  x.  ( F `  ( 2 ^ (
j  +  1 ) ) ) )  e.  RR )
223197, 222eqeltrd 2701 . . . . . . . 8  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( G `  ( j  +  1 ) )  e.  RR )
224 le2add 10510 . . . . . . . 8  |-  ( ( ( sum_ k  e.  ( 1 ... ( ( 2 ^ ( j  +  1 ) )  -  1 ) ) ( F `  k
)  e.  RR  /\  sum_ k  e.  ( ( 2 ^ ( j  +  1 ) ) ... ( ( 2 ^ ( ( j  +  1 )  +  1 ) )  - 
1 ) ) ( F `  k )  e.  RR )  /\  ( (  seq 0
(  +  ,  G
) `  j )  e.  RR  /\  ( G `
 ( j  +  1 ) )  e.  RR ) )  -> 
( ( sum_ k  e.  ( 1 ... (
( 2 ^ (
j  +  1 ) )  -  1 ) ) ( F `  k )  <_  (  seq 0 (  +  ,  G ) `  j
)  /\  sum_ k  e.  ( ( 2 ^ ( j  +  1 ) ) ... (
( 2 ^ (
( j  +  1 )  +  1 ) )  -  1 ) ) ( F `  k )  <_  ( G `  ( j  +  1 ) ) )  ->  ( sum_ k  e.  ( 1 ... ( ( 2 ^ ( j  +  1 ) )  - 
1 ) ) ( F `  k )  +  sum_ k  e.  ( ( 2 ^ (
j  +  1 ) ) ... ( ( 2 ^ ( ( j  +  1 )  +  1 ) )  -  1 ) ) ( F `  k
) )  <_  (
(  seq 0 (  +  ,  G ) `  j )  +  ( G `  ( j  +  1 ) ) ) ) )
225205, 206, 221, 223, 224syl22anc 1327 . . . . . . 7  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( ( sum_ k  e.  ( 1 ... ( ( 2 ^ ( j  +  1 ) )  - 
1 ) ) ( F `  k )  <_  (  seq 0
(  +  ,  G
) `  j )  /\  sum_ k  e.  ( ( 2 ^ (
j  +  1 ) ) ... ( ( 2 ^ ( ( j  +  1 )  +  1 ) )  -  1 ) ) ( F `  k
)  <_  ( G `  ( j  +  1 ) ) )  -> 
( sum_ k  e.  ( 1 ... ( ( 2 ^ ( j  +  1 ) )  -  1 ) ) ( F `  k
)  +  sum_ k  e.  ( ( 2 ^ ( j  +  1 ) ) ... (
( 2 ^ (
( j  +  1 )  +  1 ) )  -  1 ) ) ( F `  k ) )  <_ 
( (  seq 0
(  +  ,  G
) `  j )  +  ( G `  ( j  +  1 ) ) ) ) )
226202, 225mpan2d 710 . . . . . 6  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( sum_ k  e.  ( 1 ... ( ( 2 ^ ( j  +  1 ) )  - 
1 ) ) ( F `  k )  <_  (  seq 0
(  +  ,  G
) `  j )  ->  ( sum_ k  e.  ( 1 ... ( ( 2 ^ ( j  +  1 ) )  -  1 ) ) ( F `  k
)  +  sum_ k  e.  ( ( 2 ^ ( j  +  1 ) ) ... (
( 2 ^ (
( j  +  1 )  +  1 ) )  -  1 ) ) ( F `  k ) )  <_ 
( (  seq 0
(  +  ,  G
) `  j )  +  ( G `  ( j  +  1 ) ) ) ) )
227 eqidd 2623 . . . . . . . . 9  |-  ( ( ( ph  /\  j  e.  NN0 )  /\  k  e.  ( 1 ... (
( 2 ^ (
j  +  1 ) )  -  1 ) ) )  ->  ( F `  k )  =  ( F `  k ) )
22841recnd 10068 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  NN )  ->  ( F `
 k )  e.  CC )
22971, 203, 228syl2an 494 . . . . . . . . 9  |-  ( ( ( ph  /\  j  e.  NN0 )  /\  k  e.  ( 1 ... (
( 2 ^ (
j  +  1 ) )  -  1 ) ) )  ->  ( F `  k )  e.  CC )
230227, 132, 229fsumser 14461 . . . . . . . 8  |-  ( (
ph  /\  j  e.  NN0 )  ->  sum_ k  e.  ( 1 ... (
( 2 ^ (
j  +  1 ) )  -  1 ) ) ( F `  k )  =  (  seq 1 (  +  ,  F ) `  ( ( 2 ^ ( j  +  1 ) )  -  1 ) ) )
231230eqcomd 2628 . . . . . . 7  |-  ( (
ph  /\  j  e.  NN0 )  ->  (  seq 1 (  +  ,  F ) `  (
( 2 ^ (
j  +  1 ) )  -  1 ) )  =  sum_ k  e.  ( 1 ... (
( 2 ^ (
j  +  1 ) )  -  1 ) ) ( F `  k ) )
232231breq1d 4663 . . . . . 6  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( (  seq 1 (  +  ,  F ) `  (
( 2 ^ (
j  +  1 ) )  -  1 ) )  <_  (  seq 0 (  +  ,  G ) `  j
)  <->  sum_ k  e.  ( 1 ... ( ( 2 ^ ( j  +  1 ) )  -  1 ) ) ( F `  k
)  <_  (  seq 0 (  +  ,  G ) `  j
) ) )
233 eqidd 2623 . . . . . . . . 9  |-  ( ( ( ph  /\  j  e.  NN0 )  /\  k  e.  ( 1 ... (
( 2 ^ (
( j  +  1 )  +  1 ) )  -  1 ) ) )  ->  ( F `  k )  =  ( F `  k ) )
234 elfznn 12370 . . . . . . . . . 10  |-  ( k  e.  ( 1 ... ( ( 2 ^ ( ( j  +  1 )  +  1 ) )  -  1 ) )  ->  k  e.  NN )
23571, 234, 228syl2an 494 . . . . . . . . 9  |-  ( ( ( ph  /\  j  e.  NN0 )  /\  k  e.  ( 1 ... (
( 2 ^ (
( j  +  1 )  +  1 ) )  -  1 ) ) )  ->  ( F `  k )  e.  CC )
236233, 172, 235fsumser 14461 . . . . . . . 8  |-  ( (
ph  /\  j  e.  NN0 )  ->  sum_ k  e.  ( 1 ... (
( 2 ^ (
( j  +  1 )  +  1 ) )  -  1 ) ) ( F `  k )  =  (  seq 1 (  +  ,  F ) `  ( ( 2 ^ ( ( j  +  1 )  +  1 ) )  -  1 ) ) )
237 fzfid 12772 . . . . . . . . 9  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( 1 ... ( ( 2 ^ ( ( j  +  1 )  +  1 ) )  - 
1 ) )  e. 
Fin )
238184, 161, 237, 235fsumsplit 14471 . . . . . . . 8  |-  ( (
ph  /\  j  e.  NN0 )  ->  sum_ k  e.  ( 1 ... (
( 2 ^ (
( j  +  1 )  +  1 ) )  -  1 ) ) ( F `  k )  =  (
sum_ k  e.  ( 1 ... ( ( 2 ^ ( j  +  1 ) )  -  1 ) ) ( F `  k
)  +  sum_ k  e.  ( ( 2 ^ ( j  +  1 ) ) ... (
( 2 ^ (
( j  +  1 )  +  1 ) )  -  1 ) ) ( F `  k ) ) )
239236, 238eqtr3d 2658 . . . . . . 7  |-  ( (
ph  /\  j  e.  NN0 )  ->  (  seq 1 (  +  ,  F ) `  (
( 2 ^ (
( j  +  1 )  +  1 ) )  -  1 ) )  =  ( sum_ k  e.  ( 1 ... ( ( 2 ^ ( j  +  1 ) )  - 
1 ) ) ( F `  k )  +  sum_ k  e.  ( ( 2 ^ (
j  +  1 ) ) ... ( ( 2 ^ ( ( j  +  1 )  +  1 ) )  -  1 ) ) ( F `  k
) ) )
240 simpr 477 . . . . . . . . 9  |-  ( (
ph  /\  j  e.  NN0 )  ->  j  e.  NN0 )
241240, 207syl6eleq 2711 . . . . . . . 8  |-  ( (
ph  /\  j  e.  NN0 )  ->  j  e.  ( ZZ>= `  0 )
)
242 seqp1 12816 . . . . . . . 8  |-  ( j  e.  ( ZZ>= `  0
)  ->  (  seq 0 (  +  ,  G ) `  (
j  +  1 ) )  =  ( (  seq 0 (  +  ,  G ) `  j )  +  ( G `  ( j  +  1 ) ) ) )
243241, 242syl 17 . . . . . . 7  |-  ( (
ph  /\  j  e.  NN0 )  ->  (  seq 0 (  +  ,  G ) `  (
j  +  1 ) )  =  ( (  seq 0 (  +  ,  G ) `  j )  +  ( G `  ( j  +  1 ) ) ) )
244239, 243breq12d 4666 . . . . . 6  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( (  seq 1 (  +  ,  F ) `  (
( 2 ^ (
( j  +  1 )  +  1 ) )  -  1 ) )  <_  (  seq 0 (  +  ,  G ) `  (
j  +  1 ) )  <->  ( sum_ k  e.  ( 1 ... (
( 2 ^ (
j  +  1 ) )  -  1 ) ) ( F `  k )  +  sum_ k  e.  ( (
2 ^ ( j  +  1 ) ) ... ( ( 2 ^ ( ( j  +  1 )  +  1 ) )  - 
1 ) ) ( F `  k ) )  <_  ( (  seq 0 (  +  ,  G ) `  j
)  +  ( G `
 ( j  +  1 ) ) ) ) )
245226, 232, 2443imtr4d 283 . . . . 5  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( (  seq 1 (  +  ,  F ) `  (
( 2 ^ (
j  +  1 ) )  -  1 ) )  <_  (  seq 0 (  +  ,  G ) `  j
)  ->  (  seq 1 (  +  ,  F ) `  (
( 2 ^ (
( j  +  1 )  +  1 ) )  -  1 ) )  <_  (  seq 0 (  +  ,  G ) `  (
j  +  1 ) ) ) )
246245expcom 451 . . . 4  |-  ( j  e.  NN0  ->  ( ph  ->  ( (  seq 1
(  +  ,  F
) `  ( (
2 ^ ( j  +  1 ) )  -  1 ) )  <_  (  seq 0
(  +  ,  G
) `  j )  ->  (  seq 1 (  +  ,  F ) `
 ( ( 2 ^ ( ( j  +  1 )  +  1 ) )  - 
1 ) )  <_ 
(  seq 0 (  +  ,  G ) `  ( j  +  1 ) ) ) ) )
247246a2d 29 . . 3  |-  ( j  e.  NN0  ->  ( (
ph  ->  (  seq 1
(  +  ,  F
) `  ( (
2 ^ ( j  +  1 ) )  -  1 ) )  <_  (  seq 0
(  +  ,  G
) `  j )
)  ->  ( ph  ->  (  seq 1 (  +  ,  F ) `
 ( ( 2 ^ ( ( j  +  1 )  +  1 ) )  - 
1 ) )  <_ 
(  seq 0 (  +  ,  G ) `  ( j  +  1 ) ) ) ) )
24818, 25, 32, 39, 69, 247nn0ind 11472 . 2  |-  ( N  e.  NN0  ->  ( ph  ->  (  seq 1 (  +  ,  F ) `
 ( ( 2 ^ ( N  + 
1 ) )  - 
1 ) )  <_ 
(  seq 0 (  +  ,  G ) `  N ) ) )
249248impcom 446 1  |-  ( (
ph  /\  N  e.  NN0 )  ->  (  seq 1 (  +  ,  F ) `  (
( 2 ^ ( N  +  1 ) )  -  1 ) )  <_  (  seq 0 (  +  ,  G ) `  N
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912    u. cun 3572    i^i cin 3573   (/)c0 3915   class class class wbr 4653   ` cfv 5888  (class class class)co 6650   Fincfn 7955   CCcc 9934   RRcr 9935   0cc0 9936   1c1 9937    + caddc 9939    x. cmul 9941    < clt 10074    <_ cle 10075    - cmin 10266   NNcn 11020   2c2 11070   NN0cn0 11292   ZZcz 11377   ZZ>=cuz 11687   ...cfz 12326    seqcseq 12801   ^cexp 12860   #chash 13117   sum_csu 14416
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-oi 8415  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-ico 12181  df-fz 12327  df-fzo 12466  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-sum 14417
This theorem is referenced by:  climcnds  14583
  Copyright terms: Public domain W3C validator