Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  climinf Structured version   Visualization version   Unicode version

Theorem climinf 39838
Description: A bounded monotonic non increasing sequence converges to the infimum of its range. (Contributed by Glauco Siliprandi, 29-Jun-2017.) (Revised by AV, 15-Sep-2020.)
Hypotheses
Ref Expression
climinf.3  |-  Z  =  ( ZZ>= `  M )
climinf.4  |-  ( ph  ->  M  e.  ZZ )
climinf.5  |-  ( ph  ->  F : Z --> RR )
climinf.6  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  ( k  +  1 ) )  <_  ( F `  k ) )
climinf.7  |-  ( ph  ->  E. x  e.  RR  A. k  e.  Z  x  <_  ( F `  k ) )
Assertion
Ref Expression
climinf  |-  ( ph  ->  F  ~~> inf ( ran  F ,  RR ,  <  )
)
Distinct variable groups:    ph, k    x, k, F    k, Z, x
Allowed substitution hints:    ph( x)    M( x, k)

Proof of Theorem climinf
Dummy variables  j  n  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 climinf.5 . . . . . . . . . . . 12  |-  ( ph  ->  F : Z --> RR )
2 frn 6053 . . . . . . . . . . . 12  |-  ( F : Z --> RR  ->  ran 
F  C_  RR )
31, 2syl 17 . . . . . . . . . . 11  |-  ( ph  ->  ran  F  C_  RR )
4 ffn 6045 . . . . . . . . . . . . . 14  |-  ( F : Z --> RR  ->  F  Fn  Z )
51, 4syl 17 . . . . . . . . . . . . 13  |-  ( ph  ->  F  Fn  Z )
6 climinf.4 . . . . . . . . . . . . . . 15  |-  ( ph  ->  M  e.  ZZ )
7 uzid 11702 . . . . . . . . . . . . . . 15  |-  ( M  e.  ZZ  ->  M  e.  ( ZZ>= `  M )
)
86, 7syl 17 . . . . . . . . . . . . . 14  |-  ( ph  ->  M  e.  ( ZZ>= `  M ) )
9 climinf.3 . . . . . . . . . . . . . 14  |-  Z  =  ( ZZ>= `  M )
108, 9syl6eleqr 2712 . . . . . . . . . . . . 13  |-  ( ph  ->  M  e.  Z )
11 fnfvelrn 6356 . . . . . . . . . . . . 13  |-  ( ( F  Fn  Z  /\  M  e.  Z )  ->  ( F `  M
)  e.  ran  F
)
125, 10, 11syl2anc 693 . . . . . . . . . . . 12  |-  ( ph  ->  ( F `  M
)  e.  ran  F
)
13 ne0i 3921 . . . . . . . . . . . 12  |-  ( ( F `  M )  e.  ran  F  ->  ran  F  =/=  (/) )
1412, 13syl 17 . . . . . . . . . . 11  |-  ( ph  ->  ran  F  =/=  (/) )
15 climinf.7 . . . . . . . . . . . 12  |-  ( ph  ->  E. x  e.  RR  A. k  e.  Z  x  <_  ( F `  k ) )
16 breq2 4657 . . . . . . . . . . . . . . 15  |-  ( y  =  ( F `  k )  ->  (
x  <_  y  <->  x  <_  ( F `  k ) ) )
1716ralrn 6362 . . . . . . . . . . . . . 14  |-  ( F  Fn  Z  ->  ( A. y  e.  ran  F  x  <_  y  <->  A. k  e.  Z  x  <_  ( F `  k ) ) )
1817rexbidv 3052 . . . . . . . . . . . . 13  |-  ( F  Fn  Z  ->  ( E. x  e.  RR  A. y  e.  ran  F  x  <_  y  <->  E. x  e.  RR  A. k  e.  Z  x  <_  ( F `  k )
) )
195, 18syl 17 . . . . . . . . . . . 12  |-  ( ph  ->  ( E. x  e.  RR  A. y  e. 
ran  F  x  <_  y  <->  E. x  e.  RR  A. k  e.  Z  x  <_  ( F `  k ) ) )
2015, 19mpbird 247 . . . . . . . . . . 11  |-  ( ph  ->  E. x  e.  RR  A. y  e.  ran  F  x  <_  y )
213, 14, 203jca 1242 . . . . . . . . . 10  |-  ( ph  ->  ( ran  F  C_  RR  /\  ran  F  =/=  (/)  /\  E. x  e.  RR  A. y  e. 
ran  F  x  <_  y ) )
2221adantr 481 . . . . . . . . 9  |-  ( (
ph  /\  y  e.  RR+ )  ->  ( ran  F 
C_  RR  /\  ran  F  =/=  (/)  /\  E. x  e.  RR  A. y  e. 
ran  F  x  <_  y ) )
23 infrecl 11005 . . . . . . . . 9  |-  ( ( ran  F  C_  RR  /\ 
ran  F  =/=  (/)  /\  E. x  e.  RR  A. y  e.  ran  F  x  <_ 
y )  -> inf ( ran 
F ,  RR ,  <  )  e.  RR )
2422, 23syl 17 . . . . . . . 8  |-  ( (
ph  /\  y  e.  RR+ )  -> inf ( ran  F ,  RR ,  <  )  e.  RR )
25 simpr 477 . . . . . . . 8  |-  ( (
ph  /\  y  e.  RR+ )  ->  y  e.  RR+ )
2624, 25ltaddrpd 11905 . . . . . . 7  |-  ( (
ph  /\  y  e.  RR+ )  -> inf ( ran  F ,  RR ,  <  )  <  (inf ( ran 
F ,  RR ,  <  )  +  y ) )
27 rpre 11839 . . . . . . . . . 10  |-  ( y  e.  RR+  ->  y  e.  RR )
2827adantl 482 . . . . . . . . 9  |-  ( (
ph  /\  y  e.  RR+ )  ->  y  e.  RR )
2924, 28readdcld 10069 . . . . . . . 8  |-  ( (
ph  /\  y  e.  RR+ )  ->  (inf ( ran  F ,  RR ,  <  )  +  y )  e.  RR )
30 infrglb 39822 . . . . . . . 8  |-  ( ( ( ran  F  C_  RR  /\  ran  F  =/=  (/)  /\  E. x  e.  RR  A. y  e. 
ran  F  x  <_  y )  /\  (inf ( ran  F ,  RR ,  <  )  +  y )  e.  RR )  ->  (inf ( ran 
F ,  RR ,  <  )  <  (inf ( ran  F ,  RR ,  <  )  +  y )  <->  E. k  e.  ran  F  k  <  (inf ( ran  F ,  RR ,  <  )  +  y ) ) )
3122, 29, 30syl2anc 693 . . . . . . 7  |-  ( (
ph  /\  y  e.  RR+ )  ->  (inf ( ran  F ,  RR ,  <  )  <  (inf ( ran  F ,  RR ,  <  )  +  y )  <->  E. k  e.  ran  F  k  <  (inf ( ran  F ,  RR ,  <  )  +  y ) ) )
3226, 31mpbid 222 . . . . . 6  |-  ( (
ph  /\  y  e.  RR+ )  ->  E. k  e.  ran  F  k  < 
(inf ( ran  F ,  RR ,  <  )  +  y ) )
333sselda 3603 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  ran  F )  ->  k  e.  RR )
3433adantlr 751 . . . . . . . . . 10  |-  ( ( ( ph  /\  y  e.  RR+ )  /\  k  e.  ran  F )  -> 
k  e.  RR )
3524adantr 481 . . . . . . . . . . 11  |-  ( ( ( ph  /\  y  e.  RR+ )  /\  k  e.  ran  F )  -> inf ( ran  F ,  RR ,  <  )  e.  RR )
3627ad2antlr 763 . . . . . . . . . . 11  |-  ( ( ( ph  /\  y  e.  RR+ )  /\  k  e.  ran  F )  -> 
y  e.  RR )
3735, 36readdcld 10069 . . . . . . . . . 10  |-  ( ( ( ph  /\  y  e.  RR+ )  /\  k  e.  ran  F )  -> 
(inf ( ran  F ,  RR ,  <  )  +  y )  e.  RR )
3834, 37, 36ltsub1d 10636 . . . . . . . . 9  |-  ( ( ( ph  /\  y  e.  RR+ )  /\  k  e.  ran  F )  -> 
( k  <  (inf ( ran  F ,  RR ,  <  )  +  y )  <->  ( k  -  y )  <  (
(inf ( ran  F ,  RR ,  <  )  +  y )  -  y ) ) )
393, 14, 20, 23syl3anc 1326 . . . . . . . . . . . . 13  |-  ( ph  -> inf ( ran  F ,  RR ,  <  )  e.  RR )
4039recnd 10068 . . . . . . . . . . . 12  |-  ( ph  -> inf ( ran  F ,  RR ,  <  )  e.  CC )
4140ad2antrr 762 . . . . . . . . . . 11  |-  ( ( ( ph  /\  y  e.  RR+ )  /\  k  e.  ran  F )  -> inf ( ran  F ,  RR ,  <  )  e.  CC )
4236recnd 10068 . . . . . . . . . . 11  |-  ( ( ( ph  /\  y  e.  RR+ )  /\  k  e.  ran  F )  -> 
y  e.  CC )
4341, 42pncand 10393 . . . . . . . . . 10  |-  ( ( ( ph  /\  y  e.  RR+ )  /\  k  e.  ran  F )  -> 
( (inf ( ran 
F ,  RR ,  <  )  +  y )  -  y )  = inf ( ran  F ,  RR ,  <  ) )
4443breq2d 4665 . . . . . . . . 9  |-  ( ( ( ph  /\  y  e.  RR+ )  /\  k  e.  ran  F )  -> 
( ( k  -  y )  <  (
(inf ( ran  F ,  RR ,  <  )  +  y )  -  y )  <->  ( k  -  y )  < inf ( ran  F ,  RR ,  <  ) ) )
4538, 44bitrd 268 . . . . . . . 8  |-  ( ( ( ph  /\  y  e.  RR+ )  /\  k  e.  ran  F )  -> 
( k  <  (inf ( ran  F ,  RR ,  <  )  +  y )  <->  ( k  -  y )  < inf ( ran  F ,  RR ,  <  ) ) )
4645biimpd 219 . . . . . . 7  |-  ( ( ( ph  /\  y  e.  RR+ )  /\  k  e.  ran  F )  -> 
( k  <  (inf ( ran  F ,  RR ,  <  )  +  y )  ->  ( k  -  y )  < inf ( ran  F ,  RR ,  <  ) ) )
4746reximdva 3017 . . . . . 6  |-  ( (
ph  /\  y  e.  RR+ )  ->  ( E. k  e.  ran  F  k  <  (inf ( ran 
F ,  RR ,  <  )  +  y )  ->  E. k  e.  ran  F ( k  -  y
)  < inf ( ran  F ,  RR ,  <  ) ) )
4832, 47mpd 15 . . . . 5  |-  ( (
ph  /\  y  e.  RR+ )  ->  E. k  e.  ran  F ( k  -  y )  < inf ( ran  F ,  RR ,  <  ) )
49 oveq1 6657 . . . . . . . . 9  |-  ( k  =  ( F `  j )  ->  (
k  -  y )  =  ( ( F `
 j )  -  y ) )
5049breq1d 4663 . . . . . . . 8  |-  ( k  =  ( F `  j )  ->  (
( k  -  y
)  < inf ( ran  F ,  RR ,  <  )  <-> 
( ( F `  j )  -  y
)  < inf ( ran  F ,  RR ,  <  ) ) )
5150rexrn 6361 . . . . . . 7  |-  ( F  Fn  Z  ->  ( E. k  e.  ran  F ( k  -  y
)  < inf ( ran  F ,  RR ,  <  )  <->  E. j  e.  Z  ( ( F `  j )  -  y
)  < inf ( ran  F ,  RR ,  <  ) ) )
525, 51syl 17 . . . . . 6  |-  ( ph  ->  ( E. k  e. 
ran  F ( k  -  y )  < inf ( ran  F ,  RR ,  <  )  <->  E. j  e.  Z  ( ( F `  j )  -  y )  < inf ( ran  F ,  RR ,  <  ) ) )
5352biimpa 501 . . . . 5  |-  ( (
ph  /\  E. k  e.  ran  F ( k  -  y )  < inf ( ran  F ,  RR ,  <  ) )  ->  E. j  e.  Z  ( ( F `  j )  -  y
)  < inf ( ran  F ,  RR ,  <  ) )
5448, 53syldan 487 . . . 4  |-  ( (
ph  /\  y  e.  RR+ )  ->  E. j  e.  Z  ( ( F `  j )  -  y )  < inf ( ran  F ,  RR ,  <  ) )
551adantr 481 . . . . . . . . . . 11  |-  ( (
ph  /\  y  e.  RR+ )  ->  F : Z
--> RR )
569uztrn2 11705 . . . . . . . . . . 11  |-  ( ( j  e.  Z  /\  k  e.  ( ZZ>= `  j ) )  -> 
k  e.  Z )
57 ffvelrn 6357 . . . . . . . . . . 11  |-  ( ( F : Z --> RR  /\  k  e.  Z )  ->  ( F `  k
)  e.  RR )
5855, 56, 57syl2an 494 . . . . . . . . . 10  |-  ( ( ( ph  /\  y  e.  RR+ )  /\  (
j  e.  Z  /\  k  e.  ( ZZ>= `  j ) ) )  ->  ( F `  k )  e.  RR )
59 simpl 473 . . . . . . . . . . 11  |-  ( ( j  e.  Z  /\  k  e.  ( ZZ>= `  j ) )  -> 
j  e.  Z )
60 ffvelrn 6357 . . . . . . . . . . 11  |-  ( ( F : Z --> RR  /\  j  e.  Z )  ->  ( F `  j
)  e.  RR )
6155, 59, 60syl2an 494 . . . . . . . . . 10  |-  ( ( ( ph  /\  y  e.  RR+ )  /\  (
j  e.  Z  /\  k  e.  ( ZZ>= `  j ) ) )  ->  ( F `  j )  e.  RR )
6239ad2antrr 762 . . . . . . . . . 10  |-  ( ( ( ph  /\  y  e.  RR+ )  /\  (
j  e.  Z  /\  k  e.  ( ZZ>= `  j ) ) )  -> inf ( ran  F ,  RR ,  <  )  e.  RR )
63 simprr 796 . . . . . . . . . . 11  |-  ( ( ( ph  /\  y  e.  RR+ )  /\  (
j  e.  Z  /\  k  e.  ( ZZ>= `  j ) ) )  ->  k  e.  (
ZZ>= `  j ) )
64 fzssuz 12382 . . . . . . . . . . . . . 14  |-  ( j ... k )  C_  ( ZZ>= `  j )
65 uzss 11708 . . . . . . . . . . . . . . . . 17  |-  ( j  e.  ( ZZ>= `  M
)  ->  ( ZZ>= `  j )  C_  ( ZZ>=
`  M ) )
6665, 9syl6sseqr 3652 . . . . . . . . . . . . . . . 16  |-  ( j  e.  ( ZZ>= `  M
)  ->  ( ZZ>= `  j )  C_  Z
)
6766, 9eleq2s 2719 . . . . . . . . . . . . . . 15  |-  ( j  e.  Z  ->  ( ZZ>=
`  j )  C_  Z )
6867ad2antrl 764 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  y  e.  RR+ )  /\  (
j  e.  Z  /\  k  e.  ( ZZ>= `  j ) ) )  ->  ( ZZ>= `  j
)  C_  Z )
6964, 68syl5ss 3614 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  y  e.  RR+ )  /\  (
j  e.  Z  /\  k  e.  ( ZZ>= `  j ) ) )  ->  ( j ... k )  C_  Z
)
70 ffvelrn 6357 . . . . . . . . . . . . . . . 16  |-  ( ( F : Z --> RR  /\  n  e.  Z )  ->  ( F `  n
)  e.  RR )
7170ralrimiva 2966 . . . . . . . . . . . . . . 15  |-  ( F : Z --> RR  ->  A. n  e.  Z  ( F `  n )  e.  RR )
721, 71syl 17 . . . . . . . . . . . . . 14  |-  ( ph  ->  A. n  e.  Z  ( F `  n )  e.  RR )
7372ad2antrr 762 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  y  e.  RR+ )  /\  (
j  e.  Z  /\  k  e.  ( ZZ>= `  j ) ) )  ->  A. n  e.  Z  ( F `  n )  e.  RR )
74 ssralv 3666 . . . . . . . . . . . . 13  |-  ( ( j ... k ) 
C_  Z  ->  ( A. n  e.  Z  ( F `  n )  e.  RR  ->  A. n  e.  ( j ... k
) ( F `  n )  e.  RR ) )
7569, 73, 74sylc 65 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  y  e.  RR+ )  /\  (
j  e.  Z  /\  k  e.  ( ZZ>= `  j ) ) )  ->  A. n  e.  ( j ... k ) ( F `  n
)  e.  RR )
7675r19.21bi 2932 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  y  e.  RR+ )  /\  ( j  e.  Z  /\  k  e.  ( ZZ>=
`  j ) ) )  /\  n  e.  ( j ... k
) )  ->  ( F `  n )  e.  RR )
77 fzssuz 12382 . . . . . . . . . . . . . 14  |-  ( j ... ( k  - 
1 ) )  C_  ( ZZ>= `  j )
7877, 68syl5ss 3614 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  y  e.  RR+ )  /\  (
j  e.  Z  /\  k  e.  ( ZZ>= `  j ) ) )  ->  ( j ... ( k  -  1 ) )  C_  Z
)
7978sselda 3603 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  y  e.  RR+ )  /\  ( j  e.  Z  /\  k  e.  ( ZZ>=
`  j ) ) )  /\  n  e.  ( j ... (
k  -  1 ) ) )  ->  n  e.  Z )
80 climinf.6 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  ( k  +  1 ) )  <_  ( F `  k ) )
8180ralrimiva 2966 . . . . . . . . . . . . . 14  |-  ( ph  ->  A. k  e.  Z  ( F `  ( k  +  1 ) )  <_  ( F `  k ) )
8281ad2antrr 762 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  y  e.  RR+ )  /\  (
j  e.  Z  /\  k  e.  ( ZZ>= `  j ) ) )  ->  A. k  e.  Z  ( F `  ( k  +  1 ) )  <_  ( F `  k ) )
83 oveq1 6657 . . . . . . . . . . . . . . . 16  |-  ( k  =  n  ->  (
k  +  1 )  =  ( n  + 
1 ) )
8483fveq2d 6195 . . . . . . . . . . . . . . 15  |-  ( k  =  n  ->  ( F `  ( k  +  1 ) )  =  ( F `  ( n  +  1
) ) )
85 fveq2 6191 . . . . . . . . . . . . . . 15  |-  ( k  =  n  ->  ( F `  k )  =  ( F `  n ) )
8684, 85breq12d 4666 . . . . . . . . . . . . . 14  |-  ( k  =  n  ->  (
( F `  (
k  +  1 ) )  <_  ( F `  k )  <->  ( F `  ( n  +  1 ) )  <_  ( F `  n )
) )
8786rspccva 3308 . . . . . . . . . . . . 13  |-  ( ( A. k  e.  Z  ( F `  ( k  +  1 ) )  <_  ( F `  k )  /\  n  e.  Z )  ->  ( F `  ( n  +  1 ) )  <_  ( F `  n ) )
8882, 87sylan 488 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  y  e.  RR+ )  /\  ( j  e.  Z  /\  k  e.  ( ZZ>=
`  j ) ) )  /\  n  e.  Z )  ->  ( F `  ( n  +  1 ) )  <_  ( F `  n ) )
8979, 88syldan 487 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  y  e.  RR+ )  /\  ( j  e.  Z  /\  k  e.  ( ZZ>=
`  j ) ) )  /\  n  e.  ( j ... (
k  -  1 ) ) )  ->  ( F `  ( n  +  1 ) )  <_  ( F `  n ) )
9063, 76, 89monoord2 12832 . . . . . . . . . 10  |-  ( ( ( ph  /\  y  e.  RR+ )  /\  (
j  e.  Z  /\  k  e.  ( ZZ>= `  j ) ) )  ->  ( F `  k )  <_  ( F `  j )
)
9158, 61, 62, 90lesub1dd 10643 . . . . . . . . 9  |-  ( ( ( ph  /\  y  e.  RR+ )  /\  (
j  e.  Z  /\  k  e.  ( ZZ>= `  j ) ) )  ->  ( ( F `
 k )  - inf ( ran  F ,  RR ,  <  ) )  <_ 
( ( F `  j )  - inf ( ran  F ,  RR ,  <  ) ) )
9258, 62resubcld 10458 . . . . . . . . . 10  |-  ( ( ( ph  /\  y  e.  RR+ )  /\  (
j  e.  Z  /\  k  e.  ( ZZ>= `  j ) ) )  ->  ( ( F `
 k )  - inf ( ran  F ,  RR ,  <  ) )  e.  RR )
9361, 62resubcld 10458 . . . . . . . . . 10  |-  ( ( ( ph  /\  y  e.  RR+ )  /\  (
j  e.  Z  /\  k  e.  ( ZZ>= `  j ) ) )  ->  ( ( F `
 j )  - inf ( ran  F ,  RR ,  <  ) )  e.  RR )
9427ad2antlr 763 . . . . . . . . . 10  |-  ( ( ( ph  /\  y  e.  RR+ )  /\  (
j  e.  Z  /\  k  e.  ( ZZ>= `  j ) ) )  ->  y  e.  RR )
95 lelttr 10128 . . . . . . . . . 10  |-  ( ( ( ( F `  k )  - inf ( ran  F ,  RR ,  <  ) )  e.  RR  /\  ( ( F `  j )  - inf ( ran  F ,  RR ,  <  ) )  e.  RR  /\  y  e.  RR )  ->  ( ( ( ( F `  k
)  - inf ( ran  F ,  RR ,  <  ) )  <_  ( ( F `  j )  - inf ( ran  F ,  RR ,  <  ) )  /\  ( ( F `
 j )  - inf ( ran  F ,  RR ,  <  ) )  < 
y )  ->  (
( F `  k
)  - inf ( ran  F ,  RR ,  <  ) )  <  y ) )
9692, 93, 94, 95syl3anc 1326 . . . . . . . . 9  |-  ( ( ( ph  /\  y  e.  RR+ )  /\  (
j  e.  Z  /\  k  e.  ( ZZ>= `  j ) ) )  ->  ( ( ( ( F `  k
)  - inf ( ran  F ,  RR ,  <  ) )  <_  ( ( F `  j )  - inf ( ran  F ,  RR ,  <  ) )  /\  ( ( F `
 j )  - inf ( ran  F ,  RR ,  <  ) )  < 
y )  ->  (
( F `  k
)  - inf ( ran  F ,  RR ,  <  ) )  <  y ) )
9791, 96mpand 711 . . . . . . . 8  |-  ( ( ( ph  /\  y  e.  RR+ )  /\  (
j  e.  Z  /\  k  e.  ( ZZ>= `  j ) ) )  ->  ( ( ( F `  j )  - inf ( ran  F ,  RR ,  <  )
)  <  y  ->  ( ( F `  k
)  - inf ( ran  F ,  RR ,  <  ) )  <  y ) )
98 ltsub23 10508 . . . . . . . . 9  |-  ( ( ( F `  j
)  e.  RR  /\  y  e.  RR  /\ inf ( ran  F ,  RR ,  <  )  e.  RR )  ->  ( ( ( F `  j )  -  y )  < inf ( ran  F ,  RR ,  <  )  <->  ( ( F `  j )  - inf ( ran  F ,  RR ,  <  ) )  <  y ) )
9961, 94, 62, 98syl3anc 1326 . . . . . . . 8  |-  ( ( ( ph  /\  y  e.  RR+ )  /\  (
j  e.  Z  /\  k  e.  ( ZZ>= `  j ) ) )  ->  ( ( ( F `  j )  -  y )  < inf ( ran  F ,  RR ,  <  )  <->  ( ( F `  j )  - inf ( ran  F ,  RR ,  <  ) )  <  y ) )
1003ad2antrr 762 . . . . . . . . . . 11  |-  ( ( ( ph  /\  y  e.  RR+ )  /\  (
j  e.  Z  /\  k  e.  ( ZZ>= `  j ) ) )  ->  ran  F  C_  RR )
1015adantr 481 . . . . . . . . . . . 12  |-  ( (
ph  /\  y  e.  RR+ )  ->  F  Fn  Z )
102 fnfvelrn 6356 . . . . . . . . . . . 12  |-  ( ( F  Fn  Z  /\  k  e.  Z )  ->  ( F `  k
)  e.  ran  F
)
103101, 56, 102syl2an 494 . . . . . . . . . . 11  |-  ( ( ( ph  /\  y  e.  RR+ )  /\  (
j  e.  Z  /\  k  e.  ( ZZ>= `  j ) ) )  ->  ( F `  k )  e.  ran  F )
104100, 103sseldd 3604 . . . . . . . . . 10  |-  ( ( ( ph  /\  y  e.  RR+ )  /\  (
j  e.  Z  /\  k  e.  ( ZZ>= `  j ) ) )  ->  ( F `  k )  e.  RR )
10520ad2antrr 762 . . . . . . . . . . 11  |-  ( ( ( ph  /\  y  e.  RR+ )  /\  (
j  e.  Z  /\  k  e.  ( ZZ>= `  j ) ) )  ->  E. x  e.  RR  A. y  e.  ran  F  x  <_  y )
106 infrelb 11008 . . . . . . . . . . 11  |-  ( ( ran  F  C_  RR  /\ 
E. x  e.  RR  A. y  e.  ran  F  x  <_  y  /\  ( F `  k )  e.  ran  F )  -> inf ( ran  F ,  RR ,  <  )  <_  ( F `  k )
)
107100, 105, 103, 106syl3anc 1326 . . . . . . . . . 10  |-  ( ( ( ph  /\  y  e.  RR+ )  /\  (
j  e.  Z  /\  k  e.  ( ZZ>= `  j ) ) )  -> inf ( ran  F ,  RR ,  <  )  <_  ( F `  k
) )
10862, 104, 107abssubge0d 14170 . . . . . . . . 9  |-  ( ( ( ph  /\  y  e.  RR+ )  /\  (
j  e.  Z  /\  k  e.  ( ZZ>= `  j ) ) )  ->  ( abs `  (
( F `  k
)  - inf ( ran  F ,  RR ,  <  ) ) )  =  ( ( F `  k
)  - inf ( ran  F ,  RR ,  <  ) ) )
109108breq1d 4663 . . . . . . . 8  |-  ( ( ( ph  /\  y  e.  RR+ )  /\  (
j  e.  Z  /\  k  e.  ( ZZ>= `  j ) ) )  ->  ( ( abs `  ( ( F `  k )  - inf ( ran  F ,  RR ,  <  ) ) )  < 
y  <->  ( ( F `
 k )  - inf ( ran  F ,  RR ,  <  ) )  < 
y ) )
11097, 99, 1093imtr4d 283 . . . . . . 7  |-  ( ( ( ph  /\  y  e.  RR+ )  /\  (
j  e.  Z  /\  k  e.  ( ZZ>= `  j ) ) )  ->  ( ( ( F `  j )  -  y )  < inf ( ran  F ,  RR ,  <  )  ->  ( abs `  ( ( F `
 k )  - inf ( ran  F ,  RR ,  <  ) ) )  <  y ) )
111110anassrs 680 . . . . . 6  |-  ( ( ( ( ph  /\  y  e.  RR+ )  /\  j  e.  Z )  /\  k  e.  ( ZZ>=
`  j ) )  ->  ( ( ( F `  j )  -  y )  < inf ( ran  F ,  RR ,  <  )  ->  ( abs `  ( ( F `
 k )  - inf ( ran  F ,  RR ,  <  ) ) )  <  y ) )
112111ralrimdva 2969 . . . . 5  |-  ( ( ( ph  /\  y  e.  RR+ )  /\  j  e.  Z )  ->  (
( ( F `  j )  -  y
)  < inf ( ran  F ,  RR ,  <  )  ->  A. k  e.  (
ZZ>= `  j ) ( abs `  ( ( F `  k )  - inf ( ran  F ,  RR ,  <  )
) )  <  y
) )
113112reximdva 3017 . . . 4  |-  ( (
ph  /\  y  e.  RR+ )  ->  ( E. j  e.  Z  (
( F `  j
)  -  y )  < inf ( ran  F ,  RR ,  <  )  ->  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( abs `  ( ( F `  k )  - inf ( ran  F ,  RR ,  <  )
) )  <  y
) )
11454, 113mpd 15 . . 3  |-  ( (
ph  /\  y  e.  RR+ )  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( abs `  (
( F `  k
)  - inf ( ran  F ,  RR ,  <  ) ) )  <  y
)
115114ralrimiva 2966 . 2  |-  ( ph  ->  A. y  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ( abs `  ( ( F `  k )  - inf ( ran  F ,  RR ,  <  ) ) )  < 
y )
116 fvex 6201 . . . . 5  |-  ( ZZ>= `  M )  e.  _V
1179, 116eqeltri 2697 . . . 4  |-  Z  e. 
_V
118 fex 6490 . . . 4  |-  ( ( F : Z --> RR  /\  Z  e.  _V )  ->  F  e.  _V )
1191, 117, 118sylancl 694 . . 3  |-  ( ph  ->  F  e.  _V )
120 eqidd 2623 . . 3  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  =  ( F `  k ) )
1211ffvelrnda 6359 . . . 4  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  e.  RR )
122121recnd 10068 . . 3  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  e.  CC )
1239, 6, 119, 120, 40, 122clim2c 14236 . 2  |-  ( ph  ->  ( F  ~~> inf ( ran  F ,  RR ,  <  )  <->  A. y  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( abs `  (
( F `  k
)  - inf ( ran  F ,  RR ,  <  ) ) )  <  y
) )
124115, 123mpbird 247 1  |-  ( ph  ->  F  ~~> inf ( ran  F ,  RR ,  <  )
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   A.wral 2912   E.wrex 2913   _Vcvv 3200    C_ wss 3574   (/)c0 3915   class class class wbr 4653   ran crn 5115    Fn wfn 5883   -->wf 5884   ` cfv 5888  (class class class)co 6650  infcinf 8347   CCcc 9934   RRcr 9935   1c1 9937    + caddc 9939    < clt 10074    <_ cle 10075    - cmin 10266   ZZcz 11377   ZZ>=cuz 11687   RR+crp 11832   ...cfz 12326   abscabs 13974    ~~> cli 14215
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-fz 12327  df-seq 12802  df-exp 12861  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219
This theorem is referenced by:  climinff  39843  climinf2lem  39938  supcnvlimsup  39972  stirlinglem13  40303
  Copyright terms: Public domain W3C validator