MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  emcllem7 Structured version   Visualization version   Unicode version

Theorem emcllem7 24728
Description: Lemma for emcl 24729 and harmonicbnd 24730. Derive bounds on  gamma as  F ( 1 ) and  G ( 1 ). (Contributed by Mario Carneiro, 11-Jul-2014.) (Revised by Mario Carneiro, 9-Apr-2016.)
Hypotheses
Ref Expression
emcl.1  |-  F  =  ( n  e.  NN  |->  ( sum_ m  e.  ( 1 ... n ) ( 1  /  m
)  -  ( log `  n ) ) )
emcl.2  |-  G  =  ( n  e.  NN  |->  ( sum_ m  e.  ( 1 ... n ) ( 1  /  m
)  -  ( log `  ( n  +  1 ) ) ) )
emcl.3  |-  H  =  ( n  e.  NN  |->  ( log `  ( 1  +  ( 1  /  n ) ) ) )
emcl.4  |-  T  =  ( n  e.  NN  |->  ( ( 1  /  n )  -  ( log `  ( 1  +  ( 1  /  n
) ) ) ) )
Assertion
Ref Expression
emcllem7  |-  ( gamma  e.  ( ( 1  -  ( log `  2
) ) [,] 1
)  /\  F : NN
--> ( gamma [,] 1 )  /\  G : NN --> ( ( 1  -  ( log `  2 ) ) [,] gamma ) )
Distinct variable groups:    m, H    m, n, T
Allowed substitution hints:    F( m, n)    G( m, n)    H( n)

Proof of Theorem emcllem7
Dummy variables  i 
k  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnuz 11723 . . . . 5  |-  NN  =  ( ZZ>= `  1 )
2 1zzd 11408 . . . . 5  |-  ( T. 
->  1  e.  ZZ )
3 emcl.1 . . . . . . . 8  |-  F  =  ( n  e.  NN  |->  ( sum_ m  e.  ( 1 ... n ) ( 1  /  m
)  -  ( log `  n ) ) )
4 emcl.2 . . . . . . . 8  |-  G  =  ( n  e.  NN  |->  ( sum_ m  e.  ( 1 ... n ) ( 1  /  m
)  -  ( log `  ( n  +  1 ) ) ) )
5 emcl.3 . . . . . . . 8  |-  H  =  ( n  e.  NN  |->  ( log `  ( 1  +  ( 1  /  n ) ) ) )
6 emcl.4 . . . . . . . 8  |-  T  =  ( n  e.  NN  |->  ( ( 1  /  n )  -  ( log `  ( 1  +  ( 1  /  n
) ) ) ) )
73, 4, 5, 6emcllem6 24727 . . . . . . 7  |-  ( F  ~~> 
gamma  /\  G  ~~>  gamma )
87simpri 478 . . . . . 6  |-  G  ~~>  gamma
98a1i 11 . . . . 5  |-  ( T. 
->  G  ~~>  gamma )
103, 4emcllem1 24722 . . . . . . . 8  |-  ( F : NN --> RR  /\  G : NN --> RR )
1110simpri 478 . . . . . . 7  |-  G : NN
--> RR
1211ffvelrni 6358 . . . . . 6  |-  ( k  e.  NN  ->  ( G `  k )  e.  RR )
1312adantl 482 . . . . 5  |-  ( ( T.  /\  k  e.  NN )  ->  ( G `  k )  e.  RR )
141, 2, 9, 13climrecl 14314 . . . 4  |-  ( T. 
->  gamma  e.  RR )
15 1nn 11031 . . . . 5  |-  1  e.  NN
16 simpr 477 . . . . . . 7  |-  ( ( T.  /\  i  e.  NN )  ->  i  e.  NN )
178a1i 11 . . . . . . 7  |-  ( ( T.  /\  i  e.  NN )  ->  G  ~~>  gamma )
1812adantl 482 . . . . . . 7  |-  ( ( ( T.  /\  i  e.  NN )  /\  k  e.  NN )  ->  ( G `  k )  e.  RR )
193, 4emcllem2 24723 . . . . . . . . 9  |-  ( k  e.  NN  ->  (
( F `  (
k  +  1 ) )  <_  ( F `  k )  /\  ( G `  k )  <_  ( G `  (
k  +  1 ) ) ) )
2019simprd 479 . . . . . . . 8  |-  ( k  e.  NN  ->  ( G `  k )  <_  ( G `  (
k  +  1 ) ) )
2120adantl 482 . . . . . . 7  |-  ( ( ( T.  /\  i  e.  NN )  /\  k  e.  NN )  ->  ( G `  k )  <_  ( G `  (
k  +  1 ) ) )
221, 16, 17, 18, 21climub 14392 . . . . . 6  |-  ( ( T.  /\  i  e.  NN )  ->  ( G `  i )  <_ 
gamma )
2322ralrimiva 2966 . . . . 5  |-  ( T. 
->  A. i  e.  NN  ( G `  i )  <_  gamma )
24 fveq2 6191 . . . . . . . 8  |-  ( i  =  1  ->  ( G `  i )  =  ( G ` 
1 ) )
25 oveq2 6658 . . . . . . . . . . . . 13  |-  ( n  =  1  ->  (
1 ... n )  =  ( 1 ... 1
) )
2625sumeq1d 14431 . . . . . . . . . . . 12  |-  ( n  =  1  ->  sum_ m  e.  ( 1 ... n
) ( 1  /  m )  =  sum_ m  e.  ( 1 ... 1 ) ( 1  /  m ) )
27 1z 11407 . . . . . . . . . . . . 13  |-  1  e.  ZZ
28 ax-1cn 9994 . . . . . . . . . . . . 13  |-  1  e.  CC
29 oveq2 6658 . . . . . . . . . . . . . . 15  |-  ( m  =  1  ->  (
1  /  m )  =  ( 1  / 
1 ) )
30 1div1e1 10717 . . . . . . . . . . . . . . 15  |-  ( 1  /  1 )  =  1
3129, 30syl6eq 2672 . . . . . . . . . . . . . 14  |-  ( m  =  1  ->  (
1  /  m )  =  1 )
3231fsum1 14476 . . . . . . . . . . . . 13  |-  ( ( 1  e.  ZZ  /\  1  e.  CC )  -> 
sum_ m  e.  (
1 ... 1 ) ( 1  /  m )  =  1 )
3327, 28, 32mp2an 708 . . . . . . . . . . . 12  |-  sum_ m  e.  ( 1 ... 1
) ( 1  /  m )  =  1
3426, 33syl6eq 2672 . . . . . . . . . . 11  |-  ( n  =  1  ->  sum_ m  e.  ( 1 ... n
) ( 1  /  m )  =  1 )
35 oveq1 6657 . . . . . . . . . . . . 13  |-  ( n  =  1  ->  (
n  +  1 )  =  ( 1  +  1 ) )
36 df-2 11079 . . . . . . . . . . . . 13  |-  2  =  ( 1  +  1 )
3735, 36syl6eqr 2674 . . . . . . . . . . . 12  |-  ( n  =  1  ->  (
n  +  1 )  =  2 )
3837fveq2d 6195 . . . . . . . . . . 11  |-  ( n  =  1  ->  ( log `  ( n  + 
1 ) )  =  ( log `  2
) )
3934, 38oveq12d 6668 . . . . . . . . . 10  |-  ( n  =  1  ->  ( sum_ m  e.  ( 1 ... n ) ( 1  /  m )  -  ( log `  (
n  +  1 ) ) )  =  ( 1  -  ( log `  2 ) ) )
40 1re 10039 . . . . . . . . . . . 12  |-  1  e.  RR
41 2rp 11837 . . . . . . . . . . . . 13  |-  2  e.  RR+
42 relogcl 24322 . . . . . . . . . . . . 13  |-  ( 2  e.  RR+  ->  ( log `  2 )  e.  RR )
4341, 42ax-mp 5 . . . . . . . . . . . 12  |-  ( log `  2 )  e.  RR
4440, 43resubcli 10343 . . . . . . . . . . 11  |-  ( 1  -  ( log `  2
) )  e.  RR
4544elexi 3213 . . . . . . . . . 10  |-  ( 1  -  ( log `  2
) )  e.  _V
4639, 4, 45fvmpt 6282 . . . . . . . . 9  |-  ( 1  e.  NN  ->  ( G `  1 )  =  ( 1  -  ( log `  2
) ) )
4715, 46ax-mp 5 . . . . . . . 8  |-  ( G `
 1 )  =  ( 1  -  ( log `  2 ) )
4824, 47syl6eq 2672 . . . . . . 7  |-  ( i  =  1  ->  ( G `  i )  =  ( 1  -  ( log `  2
) ) )
4948breq1d 4663 . . . . . 6  |-  ( i  =  1  ->  (
( G `  i
)  <_  gamma  <->  ( 1  -  ( log `  2
) )  <_  gamma )
)
5049rspcva 3307 . . . . 5  |-  ( ( 1  e.  NN  /\  A. i  e.  NN  ( G `  i )  <_ 
gamma )  ->  ( 1  -  ( log `  2
) )  <_  gamma )
5115, 23, 50sylancr 695 . . . 4  |-  ( T. 
->  ( 1  -  ( log `  2 ) )  <_  gamma )
52 fveq2 6191 . . . . . . . . . . . 12  |-  ( x  =  i  ->  ( F `  x )  =  ( F `  i ) )
5352negeqd 10275 . . . . . . . . . . 11  |-  ( x  =  i  ->  -u ( F `  x )  =  -u ( F `  i ) )
54 eqid 2622 . . . . . . . . . . 11  |-  ( x  e.  NN  |->  -u ( F `  x )
)  =  ( x  e.  NN  |->  -u ( F `  x )
)
55 negex 10279 . . . . . . . . . . 11  |-  -u ( F `  i )  e.  _V
5653, 54, 55fvmpt 6282 . . . . . . . . . 10  |-  ( i  e.  NN  ->  (
( x  e.  NN  |->  -u ( F `  x
) ) `  i
)  =  -u ( F `  i )
)
5756adantl 482 . . . . . . . . 9  |-  ( ( T.  /\  i  e.  NN )  ->  (
( x  e.  NN  |->  -u ( F `  x
) ) `  i
)  =  -u ( F `  i )
)
587simpli 474 . . . . . . . . . . . . 13  |-  F  ~~>  gamma
5958a1i 11 . . . . . . . . . . . 12  |-  ( T. 
->  F  ~~>  gamma )
60 0cnd 10033 . . . . . . . . . . . 12  |-  ( T. 
->  0  e.  CC )
61 nnex 11026 . . . . . . . . . . . . . 14  |-  NN  e.  _V
6261mptex 6486 . . . . . . . . . . . . 13  |-  ( x  e.  NN  |->  -u ( F `  x )
)  e.  _V
6362a1i 11 . . . . . . . . . . . 12  |-  ( T. 
->  ( x  e.  NN  |->  -u ( F `  x
) )  e.  _V )
6410simpli 474 . . . . . . . . . . . . . . 15  |-  F : NN
--> RR
6564ffvelrni 6358 . . . . . . . . . . . . . 14  |-  ( k  e.  NN  ->  ( F `  k )  e.  RR )
6665adantl 482 . . . . . . . . . . . . 13  |-  ( ( T.  /\  k  e.  NN )  ->  ( F `  k )  e.  RR )
6766recnd 10068 . . . . . . . . . . . 12  |-  ( ( T.  /\  k  e.  NN )  ->  ( F `  k )  e.  CC )
68 fveq2 6191 . . . . . . . . . . . . . . . 16  |-  ( x  =  k  ->  ( F `  x )  =  ( F `  k ) )
6968negeqd 10275 . . . . . . . . . . . . . . 15  |-  ( x  =  k  ->  -u ( F `  x )  =  -u ( F `  k ) )
70 negex 10279 . . . . . . . . . . . . . . 15  |-  -u ( F `  k )  e.  _V
7169, 54, 70fvmpt 6282 . . . . . . . . . . . . . 14  |-  ( k  e.  NN  ->  (
( x  e.  NN  |->  -u ( F `  x
) ) `  k
)  =  -u ( F `  k )
)
7271adantl 482 . . . . . . . . . . . . 13  |-  ( ( T.  /\  k  e.  NN )  ->  (
( x  e.  NN  |->  -u ( F `  x
) ) `  k
)  =  -u ( F `  k )
)
73 df-neg 10269 . . . . . . . . . . . . 13  |-  -u ( F `  k )  =  ( 0  -  ( F `  k
) )
7472, 73syl6eq 2672 . . . . . . . . . . . 12  |-  ( ( T.  /\  k  e.  NN )  ->  (
( x  e.  NN  |->  -u ( F `  x
) ) `  k
)  =  ( 0  -  ( F `  k ) ) )
751, 2, 59, 60, 63, 67, 74climsubc2 14369 . . . . . . . . . . 11  |-  ( T. 
->  ( x  e.  NN  |->  -u ( F `  x
) )  ~~>  ( 0  -  gamma ) )
7675adantr 481 . . . . . . . . . 10  |-  ( ( T.  /\  i  e.  NN )  ->  (
x  e.  NN  |->  -u ( F `  x ) )  ~~>  ( 0  - 
gamma ) )
7766renegcld 10457 . . . . . . . . . . . 12  |-  ( ( T.  /\  k  e.  NN )  ->  -u ( F `  k )  e.  RR )
7872, 77eqeltrd 2701 . . . . . . . . . . 11  |-  ( ( T.  /\  k  e.  NN )  ->  (
( x  e.  NN  |->  -u ( F `  x
) ) `  k
)  e.  RR )
7978adantlr 751 . . . . . . . . . 10  |-  ( ( ( T.  /\  i  e.  NN )  /\  k  e.  NN )  ->  (
( x  e.  NN  |->  -u ( F `  x
) ) `  k
)  e.  RR )
8019simpld 475 . . . . . . . . . . . . . 14  |-  ( k  e.  NN  ->  ( F `  ( k  +  1 ) )  <_  ( F `  k ) )
8180adantl 482 . . . . . . . . . . . . 13  |-  ( ( T.  /\  k  e.  NN )  ->  ( F `  ( k  +  1 ) )  <_  ( F `  k ) )
82 peano2nn 11032 . . . . . . . . . . . . . . . 16  |-  ( k  e.  NN  ->  (
k  +  1 )  e.  NN )
8382adantl 482 . . . . . . . . . . . . . . 15  |-  ( ( T.  /\  k  e.  NN )  ->  (
k  +  1 )  e.  NN )
8464ffvelrni 6358 . . . . . . . . . . . . . . 15  |-  ( ( k  +  1 )  e.  NN  ->  ( F `  ( k  +  1 ) )  e.  RR )
8583, 84syl 17 . . . . . . . . . . . . . 14  |-  ( ( T.  /\  k  e.  NN )  ->  ( F `  ( k  +  1 ) )  e.  RR )
8685, 66lenegd 10606 . . . . . . . . . . . . 13  |-  ( ( T.  /\  k  e.  NN )  ->  (
( F `  (
k  +  1 ) )  <_  ( F `  k )  <->  -u ( F `
 k )  <_  -u ( F `  (
k  +  1 ) ) ) )
8781, 86mpbid 222 . . . . . . . . . . . 12  |-  ( ( T.  /\  k  e.  NN )  ->  -u ( F `  k )  <_ 
-u ( F `  ( k  +  1 ) ) )
88 fveq2 6191 . . . . . . . . . . . . . . 15  |-  ( x  =  ( k  +  1 )  ->  ( F `  x )  =  ( F `  ( k  +  1 ) ) )
8988negeqd 10275 . . . . . . . . . . . . . 14  |-  ( x  =  ( k  +  1 )  ->  -u ( F `  x )  =  -u ( F `  ( k  +  1 ) ) )
90 negex 10279 . . . . . . . . . . . . . 14  |-  -u ( F `  ( k  +  1 ) )  e.  _V
9189, 54, 90fvmpt 6282 . . . . . . . . . . . . 13  |-  ( ( k  +  1 )  e.  NN  ->  (
( x  e.  NN  |->  -u ( F `  x
) ) `  (
k  +  1 ) )  =  -u ( F `  ( k  +  1 ) ) )
9283, 91syl 17 . . . . . . . . . . . 12  |-  ( ( T.  /\  k  e.  NN )  ->  (
( x  e.  NN  |->  -u ( F `  x
) ) `  (
k  +  1 ) )  =  -u ( F `  ( k  +  1 ) ) )
9387, 72, 923brtr4d 4685 . . . . . . . . . . 11  |-  ( ( T.  /\  k  e.  NN )  ->  (
( x  e.  NN  |->  -u ( F `  x
) ) `  k
)  <_  ( (
x  e.  NN  |->  -u ( F `  x ) ) `  ( k  +  1 ) ) )
9493adantlr 751 . . . . . . . . . 10  |-  ( ( ( T.  /\  i  e.  NN )  /\  k  e.  NN )  ->  (
( x  e.  NN  |->  -u ( F `  x
) ) `  k
)  <_  ( (
x  e.  NN  |->  -u ( F `  x ) ) `  ( k  +  1 ) ) )
951, 16, 76, 79, 94climub 14392 . . . . . . . . 9  |-  ( ( T.  /\  i  e.  NN )  ->  (
( x  e.  NN  |->  -u ( F `  x
) ) `  i
)  <_  ( 0  -  gamma ) )
9657, 95eqbrtrrd 4677 . . . . . . . 8  |-  ( ( T.  /\  i  e.  NN )  ->  -u ( F `  i )  <_  ( 0  -  gamma ) )
97 df-neg 10269 . . . . . . . 8  |-  -u gamma  =  ( 0  -  gamma )
9896, 97syl6breqr 4695 . . . . . . 7  |-  ( ( T.  /\  i  e.  NN )  ->  -u ( F `  i )  <_ 
-u gamma )
9914trud 1493 . . . . . . . 8  |-  gamma  e.  RR
10064ffvelrni 6358 . . . . . . . . 9  |-  ( i  e.  NN  ->  ( F `  i )  e.  RR )
101100adantl 482 . . . . . . . 8  |-  ( ( T.  /\  i  e.  NN )  ->  ( F `  i )  e.  RR )
102 leneg 10531 . . . . . . . 8  |-  ( (
gamma  e.  RR  /\  ( F `  i )  e.  RR )  ->  ( gamma  <_  ( F `  i )  <->  -u ( F `
 i )  <_  -u
gamma ) )
10399, 101, 102sylancr 695 . . . . . . 7  |-  ( ( T.  /\  i  e.  NN )  ->  ( gamma  <_  ( F `  i )  <->  -u ( F `
 i )  <_  -u
gamma ) )
10498, 103mpbird 247 . . . . . 6  |-  ( ( T.  /\  i  e.  NN )  ->  gamma  <_  ( F `  i )
)
105104ralrimiva 2966 . . . . 5  |-  ( T. 
->  A. i  e.  NN  gamma  <_  ( F `  i
) )
106 fveq2 6191 . . . . . . . 8  |-  ( i  =  1  ->  ( F `  i )  =  ( F ` 
1 ) )
107 fveq2 6191 . . . . . . . . . . . . 13  |-  ( n  =  1  ->  ( log `  n )  =  ( log `  1
) )
108 log1 24332 . . . . . . . . . . . . 13  |-  ( log `  1 )  =  0
109107, 108syl6eq 2672 . . . . . . . . . . . 12  |-  ( n  =  1  ->  ( log `  n )  =  0 )
11034, 109oveq12d 6668 . . . . . . . . . . 11  |-  ( n  =  1  ->  ( sum_ m  e.  ( 1 ... n ) ( 1  /  m )  -  ( log `  n
) )  =  ( 1  -  0 ) )
111 1m0e1 11131 . . . . . . . . . . 11  |-  ( 1  -  0 )  =  1
112110, 111syl6eq 2672 . . . . . . . . . 10  |-  ( n  =  1  ->  ( sum_ m  e.  ( 1 ... n ) ( 1  /  m )  -  ( log `  n
) )  =  1 )
11340elexi 3213 . . . . . . . . . 10  |-  1  e.  _V
114112, 3, 113fvmpt 6282 . . . . . . . . 9  |-  ( 1  e.  NN  ->  ( F `  1 )  =  1 )
11515, 114ax-mp 5 . . . . . . . 8  |-  ( F `
 1 )  =  1
116106, 115syl6eq 2672 . . . . . . 7  |-  ( i  =  1  ->  ( F `  i )  =  1 )
117116breq2d 4665 . . . . . 6  |-  ( i  =  1  ->  ( gamma  <_  ( F `  i )  <->  gamma  <_  1
) )
118117rspcva 3307 . . . . 5  |-  ( ( 1  e.  NN  /\  A. i  e.  NN  gamma  <_ 
( F `  i
) )  ->  gamma  <_  1
)
11915, 105, 118sylancr 695 . . . 4  |-  ( T. 
->  gamma  <_  1 )
12044, 40elicc2i 12239 . . . 4  |-  ( gamma  e.  ( ( 1  -  ( log `  2
) ) [,] 1
)  <->  ( gamma  e.  RR  /\  ( 1  -  ( log `  2 ) )  <_  gamma  /\  gamma  <_  1
) )
12114, 51, 119, 120syl3anbrc 1246 . . 3  |-  ( T. 
->  gamma  e.  ( ( 1  -  ( log `  2 ) ) [,] 1 ) )
122 ffn 6045 . . . . 5  |-  ( F : NN --> RR  ->  F  Fn  NN )
12364, 122mp1i 13 . . . 4  |-  ( T. 
->  F  Fn  NN )
12416, 1syl6eleq 2711 . . . . . . . 8  |-  ( ( T.  /\  i  e.  NN )  ->  i  e.  ( ZZ>= `  1 )
)
125 elfznn 12370 . . . . . . . . . 10  |-  ( k  e.  ( 1 ... i )  ->  k  e.  NN )
126125adantl 482 . . . . . . . . 9  |-  ( ( ( T.  /\  i  e.  NN )  /\  k  e.  ( 1 ... i
) )  ->  k  e.  NN )
127126, 65syl 17 . . . . . . . 8  |-  ( ( ( T.  /\  i  e.  NN )  /\  k  e.  ( 1 ... i
) )  ->  ( F `  k )  e.  RR )
128 elfznn 12370 . . . . . . . . . 10  |-  ( k  e.  ( 1 ... ( i  -  1 ) )  ->  k  e.  NN )
129128adantl 482 . . . . . . . . 9  |-  ( ( ( T.  /\  i  e.  NN )  /\  k  e.  ( 1 ... (
i  -  1 ) ) )  ->  k  e.  NN )
130129, 80syl 17 . . . . . . . 8  |-  ( ( ( T.  /\  i  e.  NN )  /\  k  e.  ( 1 ... (
i  -  1 ) ) )  ->  ( F `  ( k  +  1 ) )  <_  ( F `  k ) )
131124, 127, 130monoord2 12832 . . . . . . 7  |-  ( ( T.  /\  i  e.  NN )  ->  ( F `  i )  <_  ( F `  1
) )
132131, 115syl6breq 4694 . . . . . 6  |-  ( ( T.  /\  i  e.  NN )  ->  ( F `  i )  <_  1 )
13399, 40elicc2i 12239 . . . . . 6  |-  ( ( F `  i )  e.  ( gamma [,] 1
)  <->  ( ( F `
 i )  e.  RR  /\  gamma  <_  ( F `  i )  /\  ( F `  i
)  <_  1 ) )
134101, 104, 132, 133syl3anbrc 1246 . . . . 5  |-  ( ( T.  /\  i  e.  NN )  ->  ( F `  i )  e.  ( gamma [,] 1 ) )
135134ralrimiva 2966 . . . 4  |-  ( T. 
->  A. i  e.  NN  ( F `  i )  e.  ( gamma [,] 1
) )
136 ffnfv 6388 . . . 4  |-  ( F : NN --> ( gamma [,] 1 )  <->  ( F  Fn  NN  /\  A. i  e.  NN  ( F `  i )  e.  (
gamma [,] 1 ) ) )
137123, 135, 136sylanbrc 698 . . 3  |-  ( T. 
->  F : NN --> ( gamma [,] 1 ) )
138 ffn 6045 . . . . 5  |-  ( G : NN --> RR  ->  G  Fn  NN )
13911, 138mp1i 13 . . . 4  |-  ( T. 
->  G  Fn  NN )
14011ffvelrni 6358 . . . . . . 7  |-  ( i  e.  NN  ->  ( G `  i )  e.  RR )
141140adantl 482 . . . . . 6  |-  ( ( T.  /\  i  e.  NN )  ->  ( G `  i )  e.  RR )
142126, 12syl 17 . . . . . . . 8  |-  ( ( ( T.  /\  i  e.  NN )  /\  k  e.  ( 1 ... i
) )  ->  ( G `  k )  e.  RR )
143129, 20syl 17 . . . . . . . 8  |-  ( ( ( T.  /\  i  e.  NN )  /\  k  e.  ( 1 ... (
i  -  1 ) ) )  ->  ( G `  k )  <_  ( G `  (
k  +  1 ) ) )
144124, 142, 143monoord 12831 . . . . . . 7  |-  ( ( T.  /\  i  e.  NN )  ->  ( G `  1 )  <_  ( G `  i
) )
14547, 144syl5eqbrr 4689 . . . . . 6  |-  ( ( T.  /\  i  e.  NN )  ->  (
1  -  ( log `  2 ) )  <_  ( G `  i ) )
14644, 99elicc2i 12239 . . . . . 6  |-  ( ( G `  i )  e.  ( ( 1  -  ( log `  2
) ) [,] gamma )  <-> 
( ( G `  i )  e.  RR  /\  ( 1  -  ( log `  2 ) )  <_  ( G `  i )  /\  ( G `  i )  <_ 
gamma ) )
147141, 145, 22, 146syl3anbrc 1246 . . . . 5  |-  ( ( T.  /\  i  e.  NN )  ->  ( G `  i )  e.  ( ( 1  -  ( log `  2
) ) [,] gamma ) )
148147ralrimiva 2966 . . . 4  |-  ( T. 
->  A. i  e.  NN  ( G `  i )  e.  ( ( 1  -  ( log `  2
) ) [,] gamma ) )
149 ffnfv 6388 . . . 4  |-  ( G : NN --> ( ( 1  -  ( log `  2 ) ) [,] gamma )  <->  ( G  Fn  NN  /\  A. i  e.  NN  ( G `  i )  e.  ( ( 1  -  ( log `  2 ) ) [,] gamma ) ) )
150139, 148, 149sylanbrc 698 . . 3  |-  ( T. 
->  G : NN --> ( ( 1  -  ( log `  2 ) ) [,] gamma ) )
151121, 137, 1503jca 1242 . 2  |-  ( T. 
->  ( gamma  e.  (
( 1  -  ( log `  2 ) ) [,] 1 )  /\  F : NN --> ( gamma [,] 1 )  /\  G : NN --> ( ( 1  -  ( log `  2
) ) [,] gamma ) ) )
152151trud 1493 1  |-  ( gamma  e.  ( ( 1  -  ( log `  2
) ) [,] 1
)  /\  F : NN
--> ( gamma [,] 1 )  /\  G : NN --> ( ( 1  -  ( log `  2 ) ) [,] gamma ) )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483   T. wtru 1484    e. wcel 1990   A.wral 2912   _Vcvv 3200   class class class wbr 4653    |-> cmpt 4729    Fn wfn 5883   -->wf 5884   ` cfv 5888  (class class class)co 6650   CCcc 9934   RRcr 9935   0cc0 9936   1c1 9937    + caddc 9939    <_ cle 10075    - cmin 10266   -ucneg 10267    / cdiv 10684   NNcn 11020   2c2 11070   ZZcz 11377   ZZ>=cuz 11687   RR+crp 11832   [,]cicc 12178   ...cfz 12326    ~~> cli 14215   sum_csu 14416   logclog 24301   gammacem 24718
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ioo 12179  df-ioc 12180  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-fl 12593  df-mod 12669  df-seq 12802  df-exp 12861  df-fac 13061  df-bc 13090  df-hash 13118  df-shft 13807  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-limsup 14202  df-clim 14219  df-rlim 14220  df-sum 14417  df-ef 14798  df-sin 14800  df-cos 14801  df-pi 14803  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-hom 15966  df-cco 15967  df-rest 16083  df-topn 16084  df-0g 16102  df-gsum 16103  df-topgen 16104  df-pt 16105  df-prds 16108  df-xrs 16162  df-qtop 16167  df-imas 16168  df-xps 16170  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-mulg 17541  df-cntz 17750  df-cmn 18195  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-fbas 19743  df-fg 19744  df-cnfld 19747  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cld 20823  df-ntr 20824  df-cls 20825  df-nei 20902  df-lp 20940  df-perf 20941  df-cn 21031  df-cnp 21032  df-haus 21119  df-tx 21365  df-hmeo 21558  df-fil 21650  df-fm 21742  df-flim 21743  df-flf 21744  df-xms 22125  df-ms 22126  df-tms 22127  df-cncf 22681  df-limc 23630  df-dv 23631  df-log 24303  df-em 24719
This theorem is referenced by:  emcl  24729  harmonicbnd  24730  harmonicbnd2  24731
  Copyright terms: Public domain W3C validator