MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mplsubrg Structured version   Visualization version   Unicode version

Theorem mplsubrg 19440
Description: The set of polynomials is closed under multiplication, i.e. it is a subring of the set of power series. (Contributed by Mario Carneiro, 9-Jan-2015.)
Hypotheses
Ref Expression
mplsubg.s  |-  S  =  ( I mPwSer  R )
mplsubg.p  |-  P  =  ( I mPoly  R )
mplsubg.u  |-  U  =  ( Base `  P
)
mplsubg.i  |-  ( ph  ->  I  e.  W )
mpllss.r  |-  ( ph  ->  R  e.  Ring )
Assertion
Ref Expression
mplsubrg  |-  ( ph  ->  U  e.  (SubRing `  S
) )

Proof of Theorem mplsubrg
Dummy variables  k  x  f  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mplsubg.s . . 3  |-  S  =  ( I mPwSer  R )
2 mplsubg.p . . 3  |-  P  =  ( I mPoly  R )
3 mplsubg.u . . 3  |-  U  =  ( Base `  P
)
4 mplsubg.i . . 3  |-  ( ph  ->  I  e.  W )
5 mpllss.r . . . 4  |-  ( ph  ->  R  e.  Ring )
6 ringgrp 18552 . . . 4  |-  ( R  e.  Ring  ->  R  e. 
Grp )
75, 6syl 17 . . 3  |-  ( ph  ->  R  e.  Grp )
81, 2, 3, 4, 7mplsubg 19437 . 2  |-  ( ph  ->  U  e.  (SubGrp `  S ) )
91, 4, 5psrring 19411 . . . 4  |-  ( ph  ->  S  e.  Ring )
10 eqid 2622 . . . . 5  |-  ( Base `  S )  =  (
Base `  S )
11 eqid 2622 . . . . 5  |-  ( 1r
`  S )  =  ( 1r `  S
)
1210, 11ringidcl 18568 . . . 4  |-  ( S  e.  Ring  ->  ( 1r
`  S )  e.  ( Base `  S
) )
139, 12syl 17 . . 3  |-  ( ph  ->  ( 1r `  S
)  e.  ( Base `  S ) )
14 eqid 2622 . . . . 5  |-  { f  e.  ( NN0  ^m  I )  |  ( `' f " NN )  e.  Fin }  =  { f  e.  ( NN0  ^m  I )  |  ( `' f
" NN )  e. 
Fin }
15 eqid 2622 . . . . 5  |-  ( 0g
`  R )  =  ( 0g `  R
)
16 eqid 2622 . . . . 5  |-  ( 1r
`  R )  =  ( 1r `  R
)
171, 4, 5, 14, 15, 16, 11psr1 19412 . . . 4  |-  ( ph  ->  ( 1r `  S
)  =  ( k  e.  { f  e.  ( NN0  ^m  I
)  |  ( `' f " NN )  e.  Fin }  |->  if ( k  =  ( I  X.  { 0 } ) ,  ( 1r `  R ) ,  ( 0g `  R ) ) ) )
18 ovex 6678 . . . . . . . 8  |-  ( NN0 
^m  I )  e. 
_V
1918mptrabex 6488 . . . . . . 7  |-  ( k  e.  { f  e.  ( NN0  ^m  I
)  |  ( `' f " NN )  e.  Fin }  |->  if ( k  =  ( I  X.  { 0 } ) ,  ( 1r `  R ) ,  ( 0g `  R ) ) )  e.  _V
20 funmpt 5926 . . . . . . 7  |-  Fun  (
k  e.  { f  e.  ( NN0  ^m  I )  |  ( `' f " NN )  e.  Fin }  |->  if ( k  =  ( I  X.  { 0 } ) ,  ( 1r `  R ) ,  ( 0g `  R ) ) )
21 fvex 6201 . . . . . . 7  |-  ( 0g
`  R )  e. 
_V
2219, 20, 213pm3.2i 1239 . . . . . 6  |-  ( ( k  e.  { f  e.  ( NN0  ^m  I )  |  ( `' f " NN )  e.  Fin }  |->  if ( k  =  ( I  X.  { 0 } ) ,  ( 1r `  R ) ,  ( 0g `  R ) ) )  e.  _V  /\  Fun  ( k  e.  {
f  e.  ( NN0 
^m  I )  |  ( `' f " NN )  e.  Fin } 
|->  if ( k  =  ( I  X.  {
0 } ) ,  ( 1r `  R
) ,  ( 0g
`  R ) ) )  /\  ( 0g
`  R )  e. 
_V )
2322a1i 11 . . . . 5  |-  ( ph  ->  ( ( k  e. 
{ f  e.  ( NN0  ^m  I )  |  ( `' f
" NN )  e. 
Fin }  |->  if ( k  =  ( I  X.  { 0 } ) ,  ( 1r
`  R ) ,  ( 0g `  R
) ) )  e. 
_V  /\  Fun  ( k  e.  { f  e.  ( NN0  ^m  I
)  |  ( `' f " NN )  e.  Fin }  |->  if ( k  =  ( I  X.  { 0 } ) ,  ( 1r `  R ) ,  ( 0g `  R ) ) )  /\  ( 0g `  R )  e.  _V ) )
24 snfi 8038 . . . . . 6  |-  { ( I  X.  { 0 } ) }  e.  Fin
2524a1i 11 . . . . 5  |-  ( ph  ->  { ( I  X.  { 0 } ) }  e.  Fin )
26 eldifsni 4320 . . . . . . . 8  |-  ( k  e.  ( { f  e.  ( NN0  ^m  I )  |  ( `' f " NN )  e.  Fin }  \  { ( I  X.  { 0 } ) } )  ->  k  =/=  ( I  X.  {
0 } ) )
2726adantl 482 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( { f  e.  ( NN0  ^m  I )  |  ( `' f
" NN )  e. 
Fin }  \  { ( I  X.  { 0 } ) } ) )  ->  k  =/=  ( I  X.  { 0 } ) )
28 ifnefalse 4098 . . . . . . 7  |-  ( k  =/=  ( I  X.  { 0 } )  ->  if ( k  =  ( I  X.  { 0 } ) ,  ( 1r `  R ) ,  ( 0g `  R ) )  =  ( 0g
`  R ) )
2927, 28syl 17 . . . . . 6  |-  ( (
ph  /\  k  e.  ( { f  e.  ( NN0  ^m  I )  |  ( `' f
" NN )  e. 
Fin }  \  { ( I  X.  { 0 } ) } ) )  ->  if (
k  =  ( I  X.  { 0 } ) ,  ( 1r
`  R ) ,  ( 0g `  R
) )  =  ( 0g `  R ) )
3018rabex 4813 . . . . . . 7  |-  { f  e.  ( NN0  ^m  I )  |  ( `' f " NN )  e.  Fin }  e.  _V
3130a1i 11 . . . . . 6  |-  ( ph  ->  { f  e.  ( NN0  ^m  I )  |  ( `' f
" NN )  e. 
Fin }  e.  _V )
3229, 31suppss2 7329 . . . . 5  |-  ( ph  ->  ( ( k  e. 
{ f  e.  ( NN0  ^m  I )  |  ( `' f
" NN )  e. 
Fin }  |->  if ( k  =  ( I  X.  { 0 } ) ,  ( 1r
`  R ) ,  ( 0g `  R
) ) ) supp  ( 0g `  R ) ) 
C_  { ( I  X.  { 0 } ) } )
33 suppssfifsupp 8290 . . . . 5  |-  ( ( ( ( k  e. 
{ f  e.  ( NN0  ^m  I )  |  ( `' f
" NN )  e. 
Fin }  |->  if ( k  =  ( I  X.  { 0 } ) ,  ( 1r
`  R ) ,  ( 0g `  R
) ) )  e. 
_V  /\  Fun  ( k  e.  { f  e.  ( NN0  ^m  I
)  |  ( `' f " NN )  e.  Fin }  |->  if ( k  =  ( I  X.  { 0 } ) ,  ( 1r `  R ) ,  ( 0g `  R ) ) )  /\  ( 0g `  R )  e.  _V )  /\  ( { ( I  X.  { 0 } ) }  e.  Fin  /\  ( ( k  e.  { f  e.  ( NN0  ^m  I
)  |  ( `' f " NN )  e.  Fin }  |->  if ( k  =  ( I  X.  { 0 } ) ,  ( 1r `  R ) ,  ( 0g `  R ) ) ) supp  ( 0g `  R
) )  C_  { ( I  X.  { 0 } ) } ) )  ->  ( k  e.  { f  e.  ( NN0  ^m  I )  |  ( `' f
" NN )  e. 
Fin }  |->  if ( k  =  ( I  X.  { 0 } ) ,  ( 1r
`  R ) ,  ( 0g `  R
) ) ) finSupp  ( 0g `  R ) )
3423, 25, 32, 33syl12anc 1324 . . . 4  |-  ( ph  ->  ( k  e.  {
f  e.  ( NN0 
^m  I )  |  ( `' f " NN )  e.  Fin } 
|->  if ( k  =  ( I  X.  {
0 } ) ,  ( 1r `  R
) ,  ( 0g
`  R ) ) ) finSupp  ( 0g `  R ) )
3517, 34eqbrtrd 4675 . . 3  |-  ( ph  ->  ( 1r `  S
) finSupp  ( 0g `  R
) )
362, 1, 10, 15, 3mplelbas 19430 . . 3  |-  ( ( 1r `  S )  e.  U  <->  ( ( 1r `  S )  e.  ( Base `  S
)  /\  ( 1r `  S ) finSupp  ( 0g
`  R ) ) )
3713, 35, 36sylanbrc 698 . 2  |-  ( ph  ->  ( 1r `  S
)  e.  U )
384adantr 481 . . . 4  |-  ( (
ph  /\  ( x  e.  U  /\  y  e.  U ) )  ->  I  e.  W )
395adantr 481 . . . 4  |-  ( (
ph  /\  ( x  e.  U  /\  y  e.  U ) )  ->  R  e.  Ring )
40 eqid 2622 . . . 4  |-  (  oF  +  " (
( x supp  ( 0g
`  R ) )  X.  ( y supp  ( 0g `  R ) ) ) )  =  (  oF  +  "
( ( x supp  ( 0g `  R ) )  X.  ( y supp  ( 0g `  R ) ) ) )
41 eqid 2622 . . . 4  |-  ( .r
`  R )  =  ( .r `  R
)
42 simprl 794 . . . 4  |-  ( (
ph  /\  ( x  e.  U  /\  y  e.  U ) )  ->  x  e.  U )
43 simprr 796 . . . 4  |-  ( (
ph  /\  ( x  e.  U  /\  y  e.  U ) )  -> 
y  e.  U )
441, 2, 3, 38, 39, 14, 15, 40, 41, 42, 43mplsubrglem 19439 . . 3  |-  ( (
ph  /\  ( x  e.  U  /\  y  e.  U ) )  -> 
( x ( .r
`  S ) y )  e.  U )
4544ralrimivva 2971 . 2  |-  ( ph  ->  A. x  e.  U  A. y  e.  U  ( x ( .r
`  S ) y )  e.  U )
46 eqid 2622 . . . 4  |-  ( .r
`  S )  =  ( .r `  S
)
4710, 11, 46issubrg2 18800 . . 3  |-  ( S  e.  Ring  ->  ( U  e.  (SubRing `  S
)  <->  ( U  e.  (SubGrp `  S )  /\  ( 1r `  S
)  e.  U  /\  A. x  e.  U  A. y  e.  U  (
x ( .r `  S ) y )  e.  U ) ) )
489, 47syl 17 . 2  |-  ( ph  ->  ( U  e.  (SubRing `  S )  <->  ( U  e.  (SubGrp `  S )  /\  ( 1r `  S
)  e.  U  /\  A. x  e.  U  A. y  e.  U  (
x ( .r `  S ) y )  e.  U ) ) )
498, 37, 45, 48mpbir3and 1245 1  |-  ( ph  ->  U  e.  (SubRing `  S
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   A.wral 2912   {crab 2916   _Vcvv 3200    \ cdif 3571    C_ wss 3574   ifcif 4086   {csn 4177   class class class wbr 4653    |-> cmpt 4729    X. cxp 5112   `'ccnv 5113   "cima 5117   Fun wfun 5882   ` cfv 5888  (class class class)co 6650    oFcof 6895   supp csupp 7295    ^m cmap 7857   Fincfn 7955   finSupp cfsupp 8275   0cc0 9936    + caddc 9939   NNcn 11020   NN0cn0 11292   Basecbs 15857   .rcmulr 15942   0gc0g 16100   Grpcgrp 17422  SubGrpcsubg 17588   1rcur 18501   Ringcrg 18547  SubRingcsubrg 18776   mPwSer cmps 19351   mPoly cmpl 19353
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-ofr 6898  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466  df-seq 12802  df-hash 13118  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-sca 15957  df-vsca 15958  df-tset 15960  df-0g 16102  df-gsum 16103  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-mhm 17335  df-submnd 17336  df-grp 17425  df-minusg 17426  df-mulg 17541  df-subg 17591  df-ghm 17658  df-cntz 17750  df-cmn 18195  df-abl 18196  df-mgp 18490  df-ur 18502  df-ring 18549  df-subrg 18778  df-psr 19356  df-mpl 19358
This theorem is referenced by:  mpl1  19444  mplring  19452  mplcrng  19453  mplassa  19454  subrgmpl  19460  mplbas2  19470  subrgasclcl  19499  mplind  19502  evlseu  19516  ply1subrg  19567
  Copyright terms: Public domain W3C validator