Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mrsubcn Structured version   Visualization version   Unicode version

Theorem mrsubcn 31416
Description: A substitution does not change the value of constant substrings. (Contributed by Mario Carneiro, 18-Jul-2016.)
Hypotheses
Ref Expression
mrsubccat.s  |-  S  =  (mRSubst `  T )
mrsubccat.r  |-  R  =  (mREx `  T )
mrsubcn.v  |-  V  =  (mVR `  T )
mrsubcn.c  |-  C  =  (mCN `  T )
Assertion
Ref Expression
mrsubcn  |-  ( ( F  e.  ran  S  /\  X  e.  ( C  \  V ) )  ->  ( F `  <" X "> )  =  <" X "> )

Proof of Theorem mrsubcn
Dummy variable  f is distinct from all other variables.
StepHypRef Expression
1 n0i 3920 . . . . 5  |-  ( F  e.  ran  S  ->  -.  ran  S  =  (/) )
2 mrsubccat.s . . . . . . . 8  |-  S  =  (mRSubst `  T )
3 fvprc 6185 . . . . . . . 8  |-  ( -.  T  e.  _V  ->  (mRSubst `  T )  =  (/) )
42, 3syl5eq 2668 . . . . . . 7  |-  ( -.  T  e.  _V  ->  S  =  (/) )
54rneqd 5353 . . . . . 6  |-  ( -.  T  e.  _V  ->  ran 
S  =  ran  (/) )
6 rn0 5377 . . . . . 6  |-  ran  (/)  =  (/)
75, 6syl6eq 2672 . . . . 5  |-  ( -.  T  e.  _V  ->  ran 
S  =  (/) )
81, 7nsyl2 142 . . . 4  |-  ( F  e.  ran  S  ->  T  e.  _V )
9 mrsubcn.v . . . . 5  |-  V  =  (mVR `  T )
10 mrsubccat.r . . . . 5  |-  R  =  (mREx `  T )
119, 10, 2mrsubff 31409 . . . 4  |-  ( T  e.  _V  ->  S : ( R  ^pm  V ) --> ( R  ^m  R ) )
12 ffun 6048 . . . 4  |-  ( S : ( R  ^pm  V ) --> ( R  ^m  R )  ->  Fun  S )
138, 11, 123syl 18 . . 3  |-  ( F  e.  ran  S  ->  Fun  S )
149, 10, 2mrsubrn 31410 . . . . 5  |-  ran  S  =  ( S "
( R  ^m  V
) )
1514eleq2i 2693 . . . 4  |-  ( F  e.  ran  S  <->  F  e.  ( S " ( R  ^m  V ) ) )
1615biimpi 206 . . 3  |-  ( F  e.  ran  S  ->  F  e.  ( S " ( R  ^m  V
) ) )
17 fvelima 6248 . . 3  |-  ( ( Fun  S  /\  F  e.  ( S " ( R  ^m  V ) ) )  ->  E. f  e.  ( R  ^m  V
) ( S `  f )  =  F )
1813, 16, 17syl2anc 693 . 2  |-  ( F  e.  ran  S  ->  E. f  e.  ( R  ^m  V ) ( S `  f )  =  F )
19 elmapi 7879 . . . . . . 7  |-  ( f  e.  ( R  ^m  V )  ->  f : V --> R )
2019adantl 482 . . . . . 6  |-  ( ( X  e.  ( C 
\  V )  /\  f  e.  ( R  ^m  V ) )  -> 
f : V --> R )
21 ssid 3624 . . . . . . 7  |-  V  C_  V
2221a1i 11 . . . . . 6  |-  ( ( X  e.  ( C 
\  V )  /\  f  e.  ( R  ^m  V ) )  ->  V  C_  V )
23 eldifi 3732 . . . . . . . 8  |-  ( X  e.  ( C  \  V )  ->  X  e.  C )
24 elun1 3780 . . . . . . . 8  |-  ( X  e.  C  ->  X  e.  ( C  u.  V
) )
2523, 24syl 17 . . . . . . 7  |-  ( X  e.  ( C  \  V )  ->  X  e.  ( C  u.  V
) )
2625adantr 481 . . . . . 6  |-  ( ( X  e.  ( C 
\  V )  /\  f  e.  ( R  ^m  V ) )  ->  X  e.  ( C  u.  V ) )
27 mrsubcn.c . . . . . . 7  |-  C  =  (mCN `  T )
2827, 9, 10, 2mrsubcv 31407 . . . . . 6  |-  ( ( f : V --> R  /\  V  C_  V  /\  X  e.  ( C  u.  V
) )  ->  (
( S `  f
) `  <" X "> )  =  if ( X  e.  V ,  ( f `  X ) ,  <" X "> )
)
2920, 22, 26, 28syl3anc 1326 . . . . 5  |-  ( ( X  e.  ( C 
\  V )  /\  f  e.  ( R  ^m  V ) )  -> 
( ( S `  f ) `  <" X "> )  =  if ( X  e.  V ,  ( f `
 X ) , 
<" X "> ) )
30 eldifn 3733 . . . . . . 7  |-  ( X  e.  ( C  \  V )  ->  -.  X  e.  V )
3130adantr 481 . . . . . 6  |-  ( ( X  e.  ( C 
\  V )  /\  f  e.  ( R  ^m  V ) )  ->  -.  X  e.  V
)
3231iffalsed 4097 . . . . 5  |-  ( ( X  e.  ( C 
\  V )  /\  f  e.  ( R  ^m  V ) )  ->  if ( X  e.  V ,  ( f `  X ) ,  <" X "> )  =  <" X "> )
3329, 32eqtrd 2656 . . . 4  |-  ( ( X  e.  ( C 
\  V )  /\  f  e.  ( R  ^m  V ) )  -> 
( ( S `  f ) `  <" X "> )  =  <" X "> )
34 fveq1 6190 . . . . 5  |-  ( ( S `  f )  =  F  ->  (
( S `  f
) `  <" X "> )  =  ( F `  <" X "> ) )
3534eqeq1d 2624 . . . 4  |-  ( ( S `  f )  =  F  ->  (
( ( S `  f ) `  <" X "> )  =  <" X "> 
<->  ( F `  <" X "> )  =  <" X "> ) )
3633, 35syl5ibcom 235 . . 3  |-  ( ( X  e.  ( C 
\  V )  /\  f  e.  ( R  ^m  V ) )  -> 
( ( S `  f )  =  F  ->  ( F `  <" X "> )  =  <" X "> ) )
3736rexlimdva 3031 . 2  |-  ( X  e.  ( C  \  V )  ->  ( E. f  e.  ( R  ^m  V ) ( S `  f )  =  F  ->  ( F `  <" X "> )  =  <" X "> )
)
3818, 37mpan9 486 1  |-  ( ( F  e.  ran  S  /\  X  e.  ( C  \  V ) )  ->  ( F `  <" X "> )  =  <" X "> )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   E.wrex 2913   _Vcvv 3200    \ cdif 3571    u. cun 3572    C_ wss 3574   (/)c0 3915   ifcif 4086   ran crn 5115   "cima 5117   Fun wfun 5882   -->wf 5884   ` cfv 5888  (class class class)co 6650    ^m cmap 7857    ^pm cpm 7858   <"cs1 13294  mCNcmcn 31357  mVRcmvar 31358  mRExcmrex 31363  mRSubstcmrsub 31367
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466  df-seq 12802  df-hash 13118  df-word 13299  df-concat 13301  df-s1 13302  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-0g 16102  df-gsum 16103  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-frmd 17386  df-mrex 31383  df-mrsub 31387
This theorem is referenced by:  elmrsubrn  31417  mrsubco  31418  mrsubvrs  31419
  Copyright terms: Public domain W3C validator