Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mrsubco Structured version   Visualization version   Unicode version

Theorem mrsubco 31418
Description: The composition of two substitutions is a substitution. (Contributed by Mario Carneiro, 18-Jul-2016.)
Hypothesis
Ref Expression
mrsubco.s  |-  S  =  (mRSubst `  T )
Assertion
Ref Expression
mrsubco  |-  ( ( F  e.  ran  S  /\  G  e.  ran  S )  ->  ( F  o.  G )  e.  ran  S )

Proof of Theorem mrsubco
Dummy variables  c  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mrsubco.s . . . . 5  |-  S  =  (mRSubst `  T )
2 eqid 2622 . . . . 5  |-  (mREx `  T )  =  (mREx `  T )
31, 2mrsubf 31414 . . . 4  |-  ( F  e.  ran  S  ->  F : (mREx `  T
) --> (mREx `  T
) )
43adantr 481 . . 3  |-  ( ( F  e.  ran  S  /\  G  e.  ran  S )  ->  F :
(mREx `  T ) --> (mREx `  T ) )
51, 2mrsubf 31414 . . . 4  |-  ( G  e.  ran  S  ->  G : (mREx `  T
) --> (mREx `  T
) )
65adantl 482 . . 3  |-  ( ( F  e.  ran  S  /\  G  e.  ran  S )  ->  G :
(mREx `  T ) --> (mREx `  T ) )
7 fco 6058 . . 3  |-  ( ( F : (mREx `  T ) --> (mREx `  T )  /\  G : (mREx `  T ) --> (mREx `  T ) )  ->  ( F  o.  G ) : (mREx `  T ) --> (mREx `  T ) )
84, 6, 7syl2anc 693 . 2  |-  ( ( F  e.  ran  S  /\  G  e.  ran  S )  ->  ( F  o.  G ) : (mREx `  T ) --> (mREx `  T ) )
96adantr 481 . . . . 5  |-  ( ( ( F  e.  ran  S  /\  G  e.  ran  S )  /\  c  e.  ( (mCN `  T
)  \  (mVR `  T
) ) )  ->  G : (mREx `  T
) --> (mREx `  T
) )
10 eldifi 3732 . . . . . . . . 9  |-  ( c  e.  ( (mCN `  T )  \  (mVR `  T ) )  -> 
c  e.  (mCN `  T ) )
11 elun1 3780 . . . . . . . . 9  |-  ( c  e.  (mCN `  T
)  ->  c  e.  ( (mCN `  T )  u.  (mVR `  T )
) )
1210, 11syl 17 . . . . . . . 8  |-  ( c  e.  ( (mCN `  T )  \  (mVR `  T ) )  -> 
c  e.  ( (mCN
`  T )  u.  (mVR `  T )
) )
1312adantl 482 . . . . . . 7  |-  ( ( ( F  e.  ran  S  /\  G  e.  ran  S )  /\  c  e.  ( (mCN `  T
)  \  (mVR `  T
) ) )  -> 
c  e.  ( (mCN
`  T )  u.  (mVR `  T )
) )
1413s1cld 13383 . . . . . 6  |-  ( ( ( F  e.  ran  S  /\  G  e.  ran  S )  /\  c  e.  ( (mCN `  T
)  \  (mVR `  T
) ) )  ->  <" c ">  e. Word  ( (mCN `  T
)  u.  (mVR `  T ) ) )
15 n0i 3920 . . . . . . . . . 10  |-  ( F  e.  ran  S  ->  -.  ran  S  =  (/) )
16 fvprc 6185 . . . . . . . . . . . . 13  |-  ( -.  T  e.  _V  ->  (mRSubst `  T )  =  (/) )
171, 16syl5eq 2668 . . . . . . . . . . . 12  |-  ( -.  T  e.  _V  ->  S  =  (/) )
1817rneqd 5353 . . . . . . . . . . 11  |-  ( -.  T  e.  _V  ->  ran 
S  =  ran  (/) )
19 rn0 5377 . . . . . . . . . . 11  |-  ran  (/)  =  (/)
2018, 19syl6eq 2672 . . . . . . . . . 10  |-  ( -.  T  e.  _V  ->  ran 
S  =  (/) )
2115, 20nsyl2 142 . . . . . . . . 9  |-  ( F  e.  ran  S  ->  T  e.  _V )
2221adantr 481 . . . . . . . 8  |-  ( ( F  e.  ran  S  /\  G  e.  ran  S )  ->  T  e.  _V )
2322adantr 481 . . . . . . 7  |-  ( ( ( F  e.  ran  S  /\  G  e.  ran  S )  /\  c  e.  ( (mCN `  T
)  \  (mVR `  T
) ) )  ->  T  e.  _V )
24 eqid 2622 . . . . . . . 8  |-  (mCN `  T )  =  (mCN
`  T )
25 eqid 2622 . . . . . . . 8  |-  (mVR `  T )  =  (mVR
`  T )
2624, 25, 2mrexval 31398 . . . . . . 7  |-  ( T  e.  _V  ->  (mREx `  T )  = Word  (
(mCN `  T )  u.  (mVR `  T )
) )
2723, 26syl 17 . . . . . 6  |-  ( ( ( F  e.  ran  S  /\  G  e.  ran  S )  /\  c  e.  ( (mCN `  T
)  \  (mVR `  T
) ) )  -> 
(mREx `  T )  = Word  ( (mCN `  T
)  u.  (mVR `  T ) ) )
2814, 27eleqtrrd 2704 . . . . 5  |-  ( ( ( F  e.  ran  S  /\  G  e.  ran  S )  /\  c  e.  ( (mCN `  T
)  \  (mVR `  T
) ) )  ->  <" c ">  e.  (mREx `  T )
)
29 fvco3 6275 . . . . 5  |-  ( ( G : (mREx `  T ) --> (mREx `  T )  /\  <" c ">  e.  (mREx `  T ) )  ->  ( ( F  o.  G ) `  <" c "> )  =  ( F `  ( G `  <" c "> )
) )
309, 28, 29syl2anc 693 . . . 4  |-  ( ( ( F  e.  ran  S  /\  G  e.  ran  S )  /\  c  e.  ( (mCN `  T
)  \  (mVR `  T
) ) )  -> 
( ( F  o.  G ) `  <" c "> )  =  ( F `  ( G `  <" c "> ) ) )
311, 2, 25, 24mrsubcn 31416 . . . . . 6  |-  ( ( G  e.  ran  S  /\  c  e.  (
(mCN `  T )  \  (mVR `  T )
) )  ->  ( G `  <" c "> )  =  <" c "> )
3231adantll 750 . . . . 5  |-  ( ( ( F  e.  ran  S  /\  G  e.  ran  S )  /\  c  e.  ( (mCN `  T
)  \  (mVR `  T
) ) )  -> 
( G `  <" c "> )  =  <" c "> )
3332fveq2d 6195 . . . 4  |-  ( ( ( F  e.  ran  S  /\  G  e.  ran  S )  /\  c  e.  ( (mCN `  T
)  \  (mVR `  T
) ) )  -> 
( F `  ( G `  <" c "> ) )  =  ( F `  <" c "> )
)
341, 2, 25, 24mrsubcn 31416 . . . . 5  |-  ( ( F  e.  ran  S  /\  c  e.  (
(mCN `  T )  \  (mVR `  T )
) )  ->  ( F `  <" c "> )  =  <" c "> )
3534adantlr 751 . . . 4  |-  ( ( ( F  e.  ran  S  /\  G  e.  ran  S )  /\  c  e.  ( (mCN `  T
)  \  (mVR `  T
) ) )  -> 
( F `  <" c "> )  =  <" c "> )
3630, 33, 353eqtrd 2660 . . 3  |-  ( ( ( F  e.  ran  S  /\  G  e.  ran  S )  /\  c  e.  ( (mCN `  T
)  \  (mVR `  T
) ) )  -> 
( ( F  o.  G ) `  <" c "> )  =  <" c "> )
3736ralrimiva 2966 . 2  |-  ( ( F  e.  ran  S  /\  G  e.  ran  S )  ->  A. c  e.  ( (mCN `  T
)  \  (mVR `  T
) ) ( ( F  o.  G ) `
 <" c "> )  =  <" c "> )
381, 2mrsubccat 31415 . . . . . . . 8  |-  ( ( G  e.  ran  S  /\  x  e.  (mREx `  T )  /\  y  e.  (mREx `  T )
)  ->  ( G `  ( x ++  y ) )  =  ( ( G `  x ) ++  ( G `  y
) ) )
39383expb 1266 . . . . . . 7  |-  ( ( G  e.  ran  S  /\  ( x  e.  (mREx `  T )  /\  y  e.  (mREx `  T )
) )  ->  ( G `  ( x ++  y ) )  =  ( ( G `  x ) ++  ( G `  y ) ) )
4039adantll 750 . . . . . 6  |-  ( ( ( F  e.  ran  S  /\  G  e.  ran  S )  /\  ( x  e.  (mREx `  T
)  /\  y  e.  (mREx `  T ) ) )  ->  ( G `  ( x ++  y ) )  =  ( ( G `  x ) ++  ( G `  y
) ) )
4140fveq2d 6195 . . . . 5  |-  ( ( ( F  e.  ran  S  /\  G  e.  ran  S )  /\  ( x  e.  (mREx `  T
)  /\  y  e.  (mREx `  T ) ) )  ->  ( F `  ( G `  (
x ++  y ) ) )  =  ( F `
 ( ( G `
 x ) ++  ( G `  y ) ) ) )
42 simpll 790 . . . . . 6  |-  ( ( ( F  e.  ran  S  /\  G  e.  ran  S )  /\  ( x  e.  (mREx `  T
)  /\  y  e.  (mREx `  T ) ) )  ->  F  e.  ran  S )
436adantr 481 . . . . . . 7  |-  ( ( ( F  e.  ran  S  /\  G  e.  ran  S )  /\  ( x  e.  (mREx `  T
)  /\  y  e.  (mREx `  T ) ) )  ->  G :
(mREx `  T ) --> (mREx `  T ) )
44 simprl 794 . . . . . . 7  |-  ( ( ( F  e.  ran  S  /\  G  e.  ran  S )  /\  ( x  e.  (mREx `  T
)  /\  y  e.  (mREx `  T ) ) )  ->  x  e.  (mREx `  T ) )
4543, 44ffvelrnd 6360 . . . . . 6  |-  ( ( ( F  e.  ran  S  /\  G  e.  ran  S )  /\  ( x  e.  (mREx `  T
)  /\  y  e.  (mREx `  T ) ) )  ->  ( G `  x )  e.  (mREx `  T ) )
46 simprr 796 . . . . . . 7  |-  ( ( ( F  e.  ran  S  /\  G  e.  ran  S )  /\  ( x  e.  (mREx `  T
)  /\  y  e.  (mREx `  T ) ) )  ->  y  e.  (mREx `  T ) )
4743, 46ffvelrnd 6360 . . . . . 6  |-  ( ( ( F  e.  ran  S  /\  G  e.  ran  S )  /\  ( x  e.  (mREx `  T
)  /\  y  e.  (mREx `  T ) ) )  ->  ( G `  y )  e.  (mREx `  T ) )
481, 2mrsubccat 31415 . . . . . 6  |-  ( ( F  e.  ran  S  /\  ( G `  x
)  e.  (mREx `  T )  /\  ( G `  y )  e.  (mREx `  T )
)  ->  ( F `  ( ( G `  x ) ++  ( G `  y ) ) )  =  ( ( F `
 ( G `  x ) ) ++  ( F `  ( G `
 y ) ) ) )
4942, 45, 47, 48syl3anc 1326 . . . . 5  |-  ( ( ( F  e.  ran  S  /\  G  e.  ran  S )  /\  ( x  e.  (mREx `  T
)  /\  y  e.  (mREx `  T ) ) )  ->  ( F `  ( ( G `  x ) ++  ( G `  y ) ) )  =  ( ( F `
 ( G `  x ) ) ++  ( F `  ( G `
 y ) ) ) )
5041, 49eqtrd 2656 . . . 4  |-  ( ( ( F  e.  ran  S  /\  G  e.  ran  S )  /\  ( x  e.  (mREx `  T
)  /\  y  e.  (mREx `  T ) ) )  ->  ( F `  ( G `  (
x ++  y ) ) )  =  ( ( F `  ( G `
 x ) ) ++  ( F `  ( G `  y )
) ) )
5122, 26syl 17 . . . . . . . . 9  |-  ( ( F  e.  ran  S  /\  G  e.  ran  S )  ->  (mREx `  T
)  = Word  ( (mCN `  T )  u.  (mVR `  T ) ) )
5251adantr 481 . . . . . . . 8  |-  ( ( ( F  e.  ran  S  /\  G  e.  ran  S )  /\  ( x  e.  (mREx `  T
)  /\  y  e.  (mREx `  T ) ) )  ->  (mREx `  T
)  = Word  ( (mCN `  T )  u.  (mVR `  T ) ) )
5344, 52eleqtrd 2703 . . . . . . 7  |-  ( ( ( F  e.  ran  S  /\  G  e.  ran  S )  /\  ( x  e.  (mREx `  T
)  /\  y  e.  (mREx `  T ) ) )  ->  x  e. Word  ( (mCN `  T )  u.  (mVR `  T )
) )
5446, 52eleqtrd 2703 . . . . . . 7  |-  ( ( ( F  e.  ran  S  /\  G  e.  ran  S )  /\  ( x  e.  (mREx `  T
)  /\  y  e.  (mREx `  T ) ) )  ->  y  e. Word  ( (mCN `  T )  u.  (mVR `  T )
) )
55 ccatcl 13359 . . . . . . 7  |-  ( ( x  e. Word  ( (mCN
`  T )  u.  (mVR `  T )
)  /\  y  e. Word  ( (mCN `  T )  u.  (mVR `  T )
) )  ->  (
x ++  y )  e. Word 
( (mCN `  T
)  u.  (mVR `  T ) ) )
5653, 54, 55syl2anc 693 . . . . . 6  |-  ( ( ( F  e.  ran  S  /\  G  e.  ran  S )  /\  ( x  e.  (mREx `  T
)  /\  y  e.  (mREx `  T ) ) )  ->  ( x ++  y )  e. Word  (
(mCN `  T )  u.  (mVR `  T )
) )
5756, 52eleqtrrd 2704 . . . . 5  |-  ( ( ( F  e.  ran  S  /\  G  e.  ran  S )  /\  ( x  e.  (mREx `  T
)  /\  y  e.  (mREx `  T ) ) )  ->  ( x ++  y )  e.  (mREx `  T ) )
58 fvco3 6275 . . . . 5  |-  ( ( G : (mREx `  T ) --> (mREx `  T )  /\  (
x ++  y )  e.  (mREx `  T )
)  ->  ( ( F  o.  G ) `  ( x ++  y ) )  =  ( F `
 ( G `  ( x ++  y )
) ) )
5943, 57, 58syl2anc 693 . . . 4  |-  ( ( ( F  e.  ran  S  /\  G  e.  ran  S )  /\  ( x  e.  (mREx `  T
)  /\  y  e.  (mREx `  T ) ) )  ->  ( ( F  o.  G ) `  ( x ++  y ) )  =  ( F `
 ( G `  ( x ++  y )
) ) )
60 fvco3 6275 . . . . . 6  |-  ( ( G : (mREx `  T ) --> (mREx `  T )  /\  x  e.  (mREx `  T )
)  ->  ( ( F  o.  G ) `  x )  =  ( F `  ( G `
 x ) ) )
6143, 44, 60syl2anc 693 . . . . 5  |-  ( ( ( F  e.  ran  S  /\  G  e.  ran  S )  /\  ( x  e.  (mREx `  T
)  /\  y  e.  (mREx `  T ) ) )  ->  ( ( F  o.  G ) `  x )  =  ( F `  ( G `
 x ) ) )
62 fvco3 6275 . . . . . 6  |-  ( ( G : (mREx `  T ) --> (mREx `  T )  /\  y  e.  (mREx `  T )
)  ->  ( ( F  o.  G ) `  y )  =  ( F `  ( G `
 y ) ) )
6343, 46, 62syl2anc 693 . . . . 5  |-  ( ( ( F  e.  ran  S  /\  G  e.  ran  S )  /\  ( x  e.  (mREx `  T
)  /\  y  e.  (mREx `  T ) ) )  ->  ( ( F  o.  G ) `  y )  =  ( F `  ( G `
 y ) ) )
6461, 63oveq12d 6668 . . . 4  |-  ( ( ( F  e.  ran  S  /\  G  e.  ran  S )  /\  ( x  e.  (mREx `  T
)  /\  y  e.  (mREx `  T ) ) )  ->  ( (
( F  o.  G
) `  x ) ++  ( ( F  o.  G ) `  y
) )  =  ( ( F `  ( G `  x )
) ++  ( F `  ( G `  y ) ) ) )
6550, 59, 643eqtr4d 2666 . . 3  |-  ( ( ( F  e.  ran  S  /\  G  e.  ran  S )  /\  ( x  e.  (mREx `  T
)  /\  y  e.  (mREx `  T ) ) )  ->  ( ( F  o.  G ) `  ( x ++  y ) )  =  ( ( ( F  o.  G
) `  x ) ++  ( ( F  o.  G ) `  y
) ) )
6665ralrimivva 2971 . 2  |-  ( ( F  e.  ran  S  /\  G  e.  ran  S )  ->  A. x  e.  (mREx `  T ) A. y  e.  (mREx `  T ) ( ( F  o.  G ) `
 ( x ++  y
) )  =  ( ( ( F  o.  G ) `  x
) ++  ( ( F  o.  G ) `  y ) ) )
671, 2, 25, 24elmrsubrn 31417 . . 3  |-  ( T  e.  _V  ->  (
( F  o.  G
)  e.  ran  S  <->  ( ( F  o.  G
) : (mREx `  T ) --> (mREx `  T )  /\  A. c  e.  ( (mCN `  T )  \  (mVR `  T ) ) ( ( F  o.  G
) `  <" c "> )  =  <" c ">  /\  A. x  e.  (mREx `  T
) A. y  e.  (mREx `  T )
( ( F  o.  G ) `  (
x ++  y ) )  =  ( ( ( F  o.  G ) `
 x ) ++  ( ( F  o.  G
) `  y )
) ) ) )
6822, 67syl 17 . 2  |-  ( ( F  e.  ran  S  /\  G  e.  ran  S )  ->  ( ( F  o.  G )  e.  ran  S  <->  ( ( F  o.  G ) : (mREx `  T ) --> (mREx `  T )  /\  A. c  e.  ( (mCN
`  T )  \ 
(mVR `  T )
) ( ( F  o.  G ) `  <" c "> )  =  <" c ">  /\  A. x  e.  (mREx `  T ) A. y  e.  (mREx `  T ) ( ( F  o.  G ) `
 ( x ++  y
) )  =  ( ( ( F  o.  G ) `  x
) ++  ( ( F  o.  G ) `  y ) ) ) ) )
698, 37, 66, 68mpbir3and 1245 1  |-  ( ( F  e.  ran  S  /\  G  e.  ran  S )  ->  ( F  o.  G )  e.  ran  S )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   A.wral 2912   _Vcvv 3200    \ cdif 3571    u. cun 3572   (/)c0 3915   ran crn 5115    o. ccom 5118   -->wf 5884   ` cfv 5888  (class class class)co 6650  Word cword 13291   ++ cconcat 13293   <"cs1 13294  mCNcmcn 31357  mVRcmvar 31358  mRExcmrex 31363  mRSubstcmrsub 31367
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-n0 11293  df-xnn0 11364  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466  df-seq 12802  df-hash 13118  df-word 13299  df-lsw 13300  df-concat 13301  df-s1 13302  df-substr 13303  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-0g 16102  df-gsum 16103  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-mhm 17335  df-submnd 17336  df-frmd 17386  df-vrmd 17387  df-mrex 31383  df-mrsub 31387
This theorem is referenced by:  msubco  31428
  Copyright terms: Public domain W3C validator