MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulgneg2 Structured version   Visualization version   Unicode version

Theorem mulgneg2 17575
Description: Group multiple (exponentiation) operation at a negative integer. (Contributed by Mario Carneiro, 13-Dec-2014.)
Hypotheses
Ref Expression
mulgneg2.b  |-  B  =  ( Base `  G
)
mulgneg2.m  |-  .x.  =  (.g
`  G )
mulgneg2.i  |-  I  =  ( invg `  G )
Assertion
Ref Expression
mulgneg2  |-  ( ( G  e.  Grp  /\  N  e.  ZZ  /\  X  e.  B )  ->  ( -u N  .x.  X )  =  ( N  .x.  ( I `  X
) ) )

Proof of Theorem mulgneg2
Dummy variables  x  n are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 negeq 10273 . . . . . . 7  |-  ( x  =  0  ->  -u x  =  -u 0 )
2 neg0 10327 . . . . . . 7  |-  -u 0  =  0
31, 2syl6eq 2672 . . . . . 6  |-  ( x  =  0  ->  -u x  =  0 )
43oveq1d 6665 . . . . 5  |-  ( x  =  0  ->  ( -u x  .x.  X )  =  ( 0  .x. 
X ) )
5 oveq1 6657 . . . . 5  |-  ( x  =  0  ->  (
x  .x.  ( I `  X ) )  =  ( 0  .x.  (
I `  X )
) )
64, 5eqeq12d 2637 . . . 4  |-  ( x  =  0  ->  (
( -u x  .x.  X
)  =  ( x 
.x.  ( I `  X ) )  <->  ( 0 
.x.  X )  =  ( 0  .x.  (
I `  X )
) ) )
7 negeq 10273 . . . . . 6  |-  ( x  =  n  ->  -u x  =  -u n )
87oveq1d 6665 . . . . 5  |-  ( x  =  n  ->  ( -u x  .x.  X )  =  ( -u n  .x.  X ) )
9 oveq1 6657 . . . . 5  |-  ( x  =  n  ->  (
x  .x.  ( I `  X ) )  =  ( n  .x.  (
I `  X )
) )
108, 9eqeq12d 2637 . . . 4  |-  ( x  =  n  ->  (
( -u x  .x.  X
)  =  ( x 
.x.  ( I `  X ) )  <->  ( -u n  .x.  X )  =  ( n  .x.  ( I `
 X ) ) ) )
11 negeq 10273 . . . . . 6  |-  ( x  =  ( n  + 
1 )  ->  -u x  =  -u ( n  + 
1 ) )
1211oveq1d 6665 . . . . 5  |-  ( x  =  ( n  + 
1 )  ->  ( -u x  .x.  X )  =  ( -u (
n  +  1 ) 
.x.  X ) )
13 oveq1 6657 . . . . 5  |-  ( x  =  ( n  + 
1 )  ->  (
x  .x.  ( I `  X ) )  =  ( ( n  + 
1 )  .x.  (
I `  X )
) )
1412, 13eqeq12d 2637 . . . 4  |-  ( x  =  ( n  + 
1 )  ->  (
( -u x  .x.  X
)  =  ( x 
.x.  ( I `  X ) )  <->  ( -u (
n  +  1 ) 
.x.  X )  =  ( ( n  + 
1 )  .x.  (
I `  X )
) ) )
15 negeq 10273 . . . . . 6  |-  ( x  =  -u n  ->  -u x  =  -u -u n )
1615oveq1d 6665 . . . . 5  |-  ( x  =  -u n  ->  ( -u x  .x.  X )  =  ( -u -u n  .x.  X ) )
17 oveq1 6657 . . . . 5  |-  ( x  =  -u n  ->  (
x  .x.  ( I `  X ) )  =  ( -u n  .x.  ( I `  X
) ) )
1816, 17eqeq12d 2637 . . . 4  |-  ( x  =  -u n  ->  (
( -u x  .x.  X
)  =  ( x 
.x.  ( I `  X ) )  <->  ( -u -u n  .x.  X )  =  (
-u n  .x.  (
I `  X )
) ) )
19 negeq 10273 . . . . . 6  |-  ( x  =  N  ->  -u x  =  -u N )
2019oveq1d 6665 . . . . 5  |-  ( x  =  N  ->  ( -u x  .x.  X )  =  ( -u N  .x.  X ) )
21 oveq1 6657 . . . . 5  |-  ( x  =  N  ->  (
x  .x.  ( I `  X ) )  =  ( N  .x.  (
I `  X )
) )
2220, 21eqeq12d 2637 . . . 4  |-  ( x  =  N  ->  (
( -u x  .x.  X
)  =  ( x 
.x.  ( I `  X ) )  <->  ( -u N  .x.  X )  =  ( N  .x.  ( I `
 X ) ) ) )
23 mulgneg2.b . . . . . . 7  |-  B  =  ( Base `  G
)
24 eqid 2622 . . . . . . 7  |-  ( 0g
`  G )  =  ( 0g `  G
)
25 mulgneg2.m . . . . . . 7  |-  .x.  =  (.g
`  G )
2623, 24, 25mulg0 17546 . . . . . 6  |-  ( X  e.  B  ->  (
0  .x.  X )  =  ( 0g `  G ) )
2726adantl 482 . . . . 5  |-  ( ( G  e.  Grp  /\  X  e.  B )  ->  ( 0  .x.  X
)  =  ( 0g
`  G ) )
28 mulgneg2.i . . . . . . 7  |-  I  =  ( invg `  G )
2923, 28grpinvcl 17467 . . . . . 6  |-  ( ( G  e.  Grp  /\  X  e.  B )  ->  ( I `  X
)  e.  B )
3023, 24, 25mulg0 17546 . . . . . 6  |-  ( ( I `  X )  e.  B  ->  (
0  .x.  ( I `  X ) )  =  ( 0g `  G
) )
3129, 30syl 17 . . . . 5  |-  ( ( G  e.  Grp  /\  X  e.  B )  ->  ( 0  .x.  (
I `  X )
)  =  ( 0g
`  G ) )
3227, 31eqtr4d 2659 . . . 4  |-  ( ( G  e.  Grp  /\  X  e.  B )  ->  ( 0  .x.  X
)  =  ( 0 
.x.  ( I `  X ) ) )
33 oveq1 6657 . . . . . 6  |-  ( (
-u n  .x.  X
)  =  ( n 
.x.  ( I `  X ) )  -> 
( ( -u n  .x.  X ) ( +g  `  G ) ( I `
 X ) )  =  ( ( n 
.x.  ( I `  X ) ) ( +g  `  G ) ( I `  X
) ) )
34 nn0cn 11302 . . . . . . . . . . 11  |-  ( n  e.  NN0  ->  n  e.  CC )
3534adantl 482 . . . . . . . . . 10  |-  ( ( ( G  e.  Grp  /\  X  e.  B )  /\  n  e.  NN0 )  ->  n  e.  CC )
36 ax-1cn 9994 . . . . . . . . . 10  |-  1  e.  CC
37 negdi 10338 . . . . . . . . . 10  |-  ( ( n  e.  CC  /\  1  e.  CC )  -> 
-u ( n  + 
1 )  =  (
-u n  +  -u
1 ) )
3835, 36, 37sylancl 694 . . . . . . . . 9  |-  ( ( ( G  e.  Grp  /\  X  e.  B )  /\  n  e.  NN0 )  ->  -u ( n  + 
1 )  =  (
-u n  +  -u
1 ) )
3938oveq1d 6665 . . . . . . . 8  |-  ( ( ( G  e.  Grp  /\  X  e.  B )  /\  n  e.  NN0 )  ->  ( -u (
n  +  1 ) 
.x.  X )  =  ( ( -u n  +  -u 1 )  .x.  X ) )
40 simpll 790 . . . . . . . . 9  |-  ( ( ( G  e.  Grp  /\  X  e.  B )  /\  n  e.  NN0 )  ->  G  e.  Grp )
41 nn0negz 11415 . . . . . . . . . 10  |-  ( n  e.  NN0  ->  -u n  e.  ZZ )
4241adantl 482 . . . . . . . . 9  |-  ( ( ( G  e.  Grp  /\  X  e.  B )  /\  n  e.  NN0 )  ->  -u n  e.  ZZ )
43 1z 11407 . . . . . . . . . 10  |-  1  e.  ZZ
44 znegcl 11412 . . . . . . . . . 10  |-  ( 1  e.  ZZ  ->  -u 1  e.  ZZ )
4543, 44mp1i 13 . . . . . . . . 9  |-  ( ( ( G  e.  Grp  /\  X  e.  B )  /\  n  e.  NN0 )  ->  -u 1  e.  ZZ )
46 simplr 792 . . . . . . . . 9  |-  ( ( ( G  e.  Grp  /\  X  e.  B )  /\  n  e.  NN0 )  ->  X  e.  B
)
47 eqid 2622 . . . . . . . . . 10  |-  ( +g  `  G )  =  ( +g  `  G )
4823, 25, 47mulgdir 17573 . . . . . . . . 9  |-  ( ( G  e.  Grp  /\  ( -u n  e.  ZZ  /\  -u 1  e.  ZZ  /\  X  e.  B ) )  ->  ( ( -u n  +  -u 1
)  .x.  X )  =  ( ( -u n  .x.  X ) ( +g  `  G ) ( -u 1  .x. 
X ) ) )
4940, 42, 45, 46, 48syl13anc 1328 . . . . . . . 8  |-  ( ( ( G  e.  Grp  /\  X  e.  B )  /\  n  e.  NN0 )  ->  ( ( -u n  +  -u 1 ) 
.x.  X )  =  ( ( -u n  .x.  X ) ( +g  `  G ) ( -u
1  .x.  X )
) )
5023, 25, 28mulgm1 17562 . . . . . . . . . 10  |-  ( ( G  e.  Grp  /\  X  e.  B )  ->  ( -u 1  .x. 
X )  =  ( I `  X ) )
5150adantr 481 . . . . . . . . 9  |-  ( ( ( G  e.  Grp  /\  X  e.  B )  /\  n  e.  NN0 )  ->  ( -u 1  .x.  X )  =  ( I `  X ) )
5251oveq2d 6666 . . . . . . . 8  |-  ( ( ( G  e.  Grp  /\  X  e.  B )  /\  n  e.  NN0 )  ->  ( ( -u n  .x.  X ) ( +g  `  G ) ( -u 1  .x. 
X ) )  =  ( ( -u n  .x.  X ) ( +g  `  G ) ( I `
 X ) ) )
5339, 49, 523eqtrd 2660 . . . . . . 7  |-  ( ( ( G  e.  Grp  /\  X  e.  B )  /\  n  e.  NN0 )  ->  ( -u (
n  +  1 ) 
.x.  X )  =  ( ( -u n  .x.  X ) ( +g  `  G ) ( I `
 X ) ) )
54 grpmnd 17429 . . . . . . . . 9  |-  ( G  e.  Grp  ->  G  e.  Mnd )
5554ad2antrr 762 . . . . . . . 8  |-  ( ( ( G  e.  Grp  /\  X  e.  B )  /\  n  e.  NN0 )  ->  G  e.  Mnd )
56 simpr 477 . . . . . . . 8  |-  ( ( ( G  e.  Grp  /\  X  e.  B )  /\  n  e.  NN0 )  ->  n  e.  NN0 )
5729adantr 481 . . . . . . . 8  |-  ( ( ( G  e.  Grp  /\  X  e.  B )  /\  n  e.  NN0 )  ->  ( I `  X )  e.  B
)
5823, 25, 47mulgnn0p1 17552 . . . . . . . 8  |-  ( ( G  e.  Mnd  /\  n  e.  NN0  /\  (
I `  X )  e.  B )  ->  (
( n  +  1 )  .x.  ( I `
 X ) )  =  ( ( n 
.x.  ( I `  X ) ) ( +g  `  G ) ( I `  X
) ) )
5955, 56, 57, 58syl3anc 1326 . . . . . . 7  |-  ( ( ( G  e.  Grp  /\  X  e.  B )  /\  n  e.  NN0 )  ->  ( ( n  +  1 )  .x.  ( I `  X
) )  =  ( ( n  .x.  (
I `  X )
) ( +g  `  G
) ( I `  X ) ) )
6053, 59eqeq12d 2637 . . . . . 6  |-  ( ( ( G  e.  Grp  /\  X  e.  B )  /\  n  e.  NN0 )  ->  ( ( -u ( n  +  1
)  .x.  X )  =  ( ( n  +  1 )  .x.  ( I `  X
) )  <->  ( ( -u n  .x.  X ) ( +g  `  G
) ( I `  X ) )  =  ( ( n  .x.  ( I `  X
) ) ( +g  `  G ) ( I `
 X ) ) ) )
6133, 60syl5ibr 236 . . . . 5  |-  ( ( ( G  e.  Grp  /\  X  e.  B )  /\  n  e.  NN0 )  ->  ( ( -u n  .x.  X )  =  ( n  .x.  (
I `  X )
)  ->  ( -u (
n  +  1 ) 
.x.  X )  =  ( ( n  + 
1 )  .x.  (
I `  X )
) ) )
6261ex 450 . . . 4  |-  ( ( G  e.  Grp  /\  X  e.  B )  ->  ( n  e.  NN0  ->  ( ( -u n  .x.  X )  =  ( n  .x.  ( I `
 X ) )  ->  ( -u (
n  +  1 ) 
.x.  X )  =  ( ( n  + 
1 )  .x.  (
I `  X )
) ) ) )
63 fveq2 6191 . . . . . 6  |-  ( (
-u n  .x.  X
)  =  ( n 
.x.  ( I `  X ) )  -> 
( I `  ( -u n  .x.  X ) )  =  ( I `
 ( n  .x.  ( I `  X
) ) ) )
64 simpll 790 . . . . . . . 8  |-  ( ( ( G  e.  Grp  /\  X  e.  B )  /\  n  e.  NN )  ->  G  e.  Grp )
65 nnnegz 11380 . . . . . . . . 9  |-  ( n  e.  NN  ->  -u n  e.  ZZ )
6665adantl 482 . . . . . . . 8  |-  ( ( ( G  e.  Grp  /\  X  e.  B )  /\  n  e.  NN )  ->  -u n  e.  ZZ )
67 simplr 792 . . . . . . . 8  |-  ( ( ( G  e.  Grp  /\  X  e.  B )  /\  n  e.  NN )  ->  X  e.  B
)
6823, 25, 28mulgneg 17560 . . . . . . . 8  |-  ( ( G  e.  Grp  /\  -u n  e.  ZZ  /\  X  e.  B )  ->  ( -u -u n  .x.  X )  =  ( I `  ( -u n  .x.  X ) ) )
6964, 66, 67, 68syl3anc 1326 . . . . . . 7  |-  ( ( ( G  e.  Grp  /\  X  e.  B )  /\  n  e.  NN )  ->  ( -u -u n  .x.  X )  =  ( I `  ( -u n  .x.  X ) ) )
70 id 22 . . . . . . . 8  |-  ( n  e.  NN  ->  n  e.  NN )
7123, 25, 28mulgnegnn 17551 . . . . . . . 8  |-  ( ( n  e.  NN  /\  ( I `  X
)  e.  B )  ->  ( -u n  .x.  ( I `  X
) )  =  ( I `  ( n 
.x.  ( I `  X ) ) ) )
7270, 29, 71syl2anr 495 . . . . . . 7  |-  ( ( ( G  e.  Grp  /\  X  e.  B )  /\  n  e.  NN )  ->  ( -u n  .x.  ( I `  X
) )  =  ( I `  ( n 
.x.  ( I `  X ) ) ) )
7369, 72eqeq12d 2637 . . . . . 6  |-  ( ( ( G  e.  Grp  /\  X  e.  B )  /\  n  e.  NN )  ->  ( ( -u -u n  .x.  X )  =  ( -u n  .x.  ( I `  X
) )  <->  ( I `  ( -u n  .x.  X ) )  =  ( I `  (
n  .x.  ( I `  X ) ) ) ) )
7463, 73syl5ibr 236 . . . . 5  |-  ( ( ( G  e.  Grp  /\  X  e.  B )  /\  n  e.  NN )  ->  ( ( -u n  .x.  X )  =  ( n  .x.  (
I `  X )
)  ->  ( -u -u n  .x.  X )  =  (
-u n  .x.  (
I `  X )
) ) )
7574ex 450 . . . 4  |-  ( ( G  e.  Grp  /\  X  e.  B )  ->  ( n  e.  NN  ->  ( ( -u n  .x.  X )  =  ( n  .x.  ( I `
 X ) )  ->  ( -u -u n  .x.  X )  =  (
-u n  .x.  (
I `  X )
) ) ) )
766, 10, 14, 18, 22, 32, 62, 75zindd 11478 . . 3  |-  ( ( G  e.  Grp  /\  X  e.  B )  ->  ( N  e.  ZZ  ->  ( -u N  .x.  X )  =  ( N  .x.  ( I `
 X ) ) ) )
77763impia 1261 . 2  |-  ( ( G  e.  Grp  /\  X  e.  B  /\  N  e.  ZZ )  ->  ( -u N  .x.  X )  =  ( N  .x.  ( I `
 X ) ) )
78773com23 1271 1  |-  ( ( G  e.  Grp  /\  N  e.  ZZ  /\  X  e.  B )  ->  ( -u N  .x.  X )  =  ( N  .x.  ( I `  X
) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   ` cfv 5888  (class class class)co 6650   CCcc 9934   0cc0 9936   1c1 9937    + caddc 9939   -ucneg 10267   NNcn 11020   NN0cn0 11292   ZZcz 11377   Basecbs 15857   +g cplusg 15941   0gc0g 16100   Mndcmnd 17294   Grpcgrp 17422   invgcminusg 17423  .gcmg 17540
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-seq 12802  df-0g 16102  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-grp 17425  df-minusg 17426  df-mulg 17541
This theorem is referenced by:  mulgass  17579  mulgsubdi  18235  cyggeninv  18285
  Copyright terms: Public domain W3C validator