Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xrsmulgzz Structured version   Visualization version   Unicode version

Theorem xrsmulgzz 29678
Description: The "multiple" function in the extended real numbers structure. (Contributed by Thierry Arnoux, 14-Jun-2017.)
Assertion
Ref Expression
xrsmulgzz  |-  ( ( A  e.  ZZ  /\  B  e.  RR* )  -> 
( A (.g `  RR*s
) B )  =  ( A xe B ) )

Proof of Theorem xrsmulgzz
Dummy variables  n  m  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq1 6657 . . . 4  |-  ( n  =  0  ->  (
n (.g `  RR*s ) B )  =  ( 0 (.g `  RR*s ) B ) )
2 oveq1 6657 . . . 4  |-  ( n  =  0  ->  (
n xe B )  =  ( 0 xe B ) )
31, 2eqeq12d 2637 . . 3  |-  ( n  =  0  ->  (
( n (.g `  RR*s
) B )  =  ( n xe B )  <->  ( 0 (.g `  RR*s ) B )  =  ( 0 xe B ) ) )
4 oveq1 6657 . . . 4  |-  ( n  =  m  ->  (
n (.g `  RR*s ) B )  =  ( m (.g `  RR*s ) B ) )
5 oveq1 6657 . . . 4  |-  ( n  =  m  ->  (
n xe B )  =  ( m xe B ) )
64, 5eqeq12d 2637 . . 3  |-  ( n  =  m  ->  (
( n (.g `  RR*s
) B )  =  ( n xe B )  <->  ( m
(.g `  RR*s ) B )  =  ( m xe B ) ) )
7 oveq1 6657 . . . 4  |-  ( n  =  ( m  + 
1 )  ->  (
n (.g `  RR*s ) B )  =  ( ( m  +  1 ) (.g `  RR*s ) B ) )
8 oveq1 6657 . . . 4  |-  ( n  =  ( m  + 
1 )  ->  (
n xe B )  =  ( ( m  +  1 ) xe B ) )
97, 8eqeq12d 2637 . . 3  |-  ( n  =  ( m  + 
1 )  ->  (
( n (.g `  RR*s
) B )  =  ( n xe B )  <->  ( (
m  +  1 ) (.g `  RR*s ) B )  =  ( ( m  +  1 ) xe B ) ) )
10 oveq1 6657 . . . 4  |-  ( n  =  -u m  ->  (
n (.g `  RR*s ) B )  =  ( -u m (.g `  RR*s ) B ) )
11 oveq1 6657 . . . 4  |-  ( n  =  -u m  ->  (
n xe B )  =  ( -u m xe B ) )
1210, 11eqeq12d 2637 . . 3  |-  ( n  =  -u m  ->  (
( n (.g `  RR*s
) B )  =  ( n xe B )  <->  ( -u m
(.g `  RR*s ) B )  =  ( -u m xe B ) ) )
13 oveq1 6657 . . . 4  |-  ( n  =  A  ->  (
n (.g `  RR*s ) B )  =  ( A (.g `  RR*s ) B ) )
14 oveq1 6657 . . . 4  |-  ( n  =  A  ->  (
n xe B )  =  ( A xe B ) )
1513, 14eqeq12d 2637 . . 3  |-  ( n  =  A  ->  (
( n (.g `  RR*s
) B )  =  ( n xe B )  <->  ( A
(.g `  RR*s ) B )  =  ( A xe B ) ) )
16 xrsbas 19762 . . . . 5  |-  RR*  =  ( Base `  RR*s )
17 xrs0 29675 . . . . 5  |-  0  =  ( 0g `  RR*s )
18 eqid 2622 . . . . 5  |-  (.g `  RR*s
)  =  (.g `  RR*s
)
1916, 17, 18mulg0 17546 . . . 4  |-  ( B  e.  RR*  ->  ( 0 (.g `  RR*s ) B )  =  0 )
20 xmul02 12098 . . . 4  |-  ( B  e.  RR*  ->  ( 0 xe B )  =  0 )
2119, 20eqtr4d 2659 . . 3  |-  ( B  e.  RR*  ->  ( 0 (.g `  RR*s ) B )  =  ( 0 xe B ) )
22 simpr 477 . . . . . 6  |-  ( ( ( B  e.  RR*  /\  m  e.  NN0 )  /\  ( m (.g `  RR*s
) B )  =  ( m xe B ) )  -> 
( m (.g `  RR*s
) B )  =  ( m xe B ) )
2322oveq1d 6665 . . . . 5  |-  ( ( ( B  e.  RR*  /\  m  e.  NN0 )  /\  ( m (.g `  RR*s
) B )  =  ( m xe B ) )  -> 
( ( m (.g ` 
RR*s ) B ) +e B )  =  ( ( m xe B ) +e B ) )
24 simpr 477 . . . . . . . 8  |-  ( ( ( B  e.  RR*  /\  m  e.  NN0 )  /\  m  e.  NN )  ->  m  e.  NN )
25 simpll 790 . . . . . . . 8  |-  ( ( ( B  e.  RR*  /\  m  e.  NN0 )  /\  m  e.  NN )  ->  B  e.  RR* )
26 xrsadd 19763 . . . . . . . . 9  |-  +e 
=  ( +g  `  RR*s
)
2716, 18, 26mulgnnp1 17549 . . . . . . . 8  |-  ( ( m  e.  NN  /\  B  e.  RR* )  -> 
( ( m  + 
1 ) (.g `  RR*s
) B )  =  ( ( m (.g ` 
RR*s ) B ) +e B ) )
2824, 25, 27syl2anc 693 . . . . . . 7  |-  ( ( ( B  e.  RR*  /\  m  e.  NN0 )  /\  m  e.  NN )  ->  ( ( m  +  1 ) (.g ` 
RR*s ) B )  =  ( ( m (.g `  RR*s ) B ) +e B ) )
29 simpr 477 . . . . . . . 8  |-  ( ( ( B  e.  RR*  /\  m  e.  NN0 )  /\  m  =  0
)  ->  m  = 
0 )
30 simpll 790 . . . . . . . 8  |-  ( ( ( B  e.  RR*  /\  m  e.  NN0 )  /\  m  =  0
)  ->  B  e.  RR* )
31 xaddid2 12073 . . . . . . . . . 10  |-  ( B  e.  RR*  ->  ( 0 +e B )  =  B )
3231adantl 482 . . . . . . . . 9  |-  ( ( m  =  0  /\  B  e.  RR* )  ->  ( 0 +e
B )  =  B )
33 simpl 473 . . . . . . . . . . . 12  |-  ( ( m  =  0  /\  B  e.  RR* )  ->  m  =  0 )
3433oveq1d 6665 . . . . . . . . . . 11  |-  ( ( m  =  0  /\  B  e.  RR* )  ->  ( m (.g `  RR*s
) B )  =  ( 0 (.g `  RR*s
) B ) )
3519adantl 482 . . . . . . . . . . 11  |-  ( ( m  =  0  /\  B  e.  RR* )  ->  ( 0 (.g `  RR*s
) B )  =  0 )
3634, 35eqtrd 2656 . . . . . . . . . 10  |-  ( ( m  =  0  /\  B  e.  RR* )  ->  ( m (.g `  RR*s
) B )  =  0 )
3736oveq1d 6665 . . . . . . . . 9  |-  ( ( m  =  0  /\  B  e.  RR* )  ->  ( ( m (.g ` 
RR*s ) B ) +e B )  =  ( 0 +e B ) )
3833oveq1d 6665 . . . . . . . . . . . 12  |-  ( ( m  =  0  /\  B  e.  RR* )  ->  ( m  +  1 )  =  ( 0  +  1 ) )
39 0p1e1 11132 . . . . . . . . . . . 12  |-  ( 0  +  1 )  =  1
4038, 39syl6eq 2672 . . . . . . . . . . 11  |-  ( ( m  =  0  /\  B  e.  RR* )  ->  ( m  +  1 )  =  1 )
4140oveq1d 6665 . . . . . . . . . 10  |-  ( ( m  =  0  /\  B  e.  RR* )  ->  ( ( m  + 
1 ) (.g `  RR*s
) B )  =  ( 1 (.g `  RR*s
) B ) )
4216, 18mulg1 17548 . . . . . . . . . . 11  |-  ( B  e.  RR*  ->  ( 1 (.g `  RR*s ) B )  =  B )
4342adantl 482 . . . . . . . . . 10  |-  ( ( m  =  0  /\  B  e.  RR* )  ->  ( 1 (.g `  RR*s
) B )  =  B )
4441, 43eqtrd 2656 . . . . . . . . 9  |-  ( ( m  =  0  /\  B  e.  RR* )  ->  ( ( m  + 
1 ) (.g `  RR*s
) B )  =  B )
4532, 37, 443eqtr4rd 2667 . . . . . . . 8  |-  ( ( m  =  0  /\  B  e.  RR* )  ->  ( ( m  + 
1 ) (.g `  RR*s
) B )  =  ( ( m (.g ` 
RR*s ) B ) +e B ) )
4629, 30, 45syl2anc 693 . . . . . . 7  |-  ( ( ( B  e.  RR*  /\  m  e.  NN0 )  /\  m  =  0
)  ->  ( (
m  +  1 ) (.g `  RR*s ) B )  =  ( ( m (.g `  RR*s ) B ) +e B ) )
47 simpr 477 . . . . . . . 8  |-  ( ( B  e.  RR*  /\  m  e.  NN0 )  ->  m  e.  NN0 )
48 elnn0 11294 . . . . . . . 8  |-  ( m  e.  NN0  <->  ( m  e.  NN  \/  m  =  0 ) )
4947, 48sylib 208 . . . . . . 7  |-  ( ( B  e.  RR*  /\  m  e.  NN0 )  ->  (
m  e.  NN  \/  m  =  0 ) )
5028, 46, 49mpjaodan 827 . . . . . 6  |-  ( ( B  e.  RR*  /\  m  e.  NN0 )  ->  (
( m  +  1 ) (.g `  RR*s ) B )  =  ( ( m (.g `  RR*s ) B ) +e B ) )
5150adantr 481 . . . . 5  |-  ( ( ( B  e.  RR*  /\  m  e.  NN0 )  /\  ( m (.g `  RR*s
) B )  =  ( m xe B ) )  -> 
( ( m  + 
1 ) (.g `  RR*s
) B )  =  ( ( m (.g ` 
RR*s ) B ) +e B ) )
52 nn0ssre 11296 . . . . . . . . 9  |-  NN0  C_  RR
53 ressxr 10083 . . . . . . . . 9  |-  RR  C_  RR*
5452, 53sstri 3612 . . . . . . . 8  |-  NN0  C_  RR*
5547adantr 481 . . . . . . . 8  |-  ( ( ( B  e.  RR*  /\  m  e.  NN0 )  /\  ( m (.g `  RR*s
) B )  =  ( m xe B ) )  ->  m  e.  NN0 )
5654, 55sseldi 3601 . . . . . . 7  |-  ( ( ( B  e.  RR*  /\  m  e.  NN0 )  /\  ( m (.g `  RR*s
) B )  =  ( m xe B ) )  ->  m  e.  RR* )
57 nn0ge0 11318 . . . . . . . 8  |-  ( m  e.  NN0  ->  0  <_  m )
5857ad2antlr 763 . . . . . . 7  |-  ( ( ( B  e.  RR*  /\  m  e.  NN0 )  /\  ( m (.g `  RR*s
) B )  =  ( m xe B ) )  -> 
0  <_  m )
59 1re 10039 . . . . . . . . 9  |-  1  e.  RR
6059rexri 10097 . . . . . . . 8  |-  1  e.  RR*
6160a1i 11 . . . . . . 7  |-  ( ( ( B  e.  RR*  /\  m  e.  NN0 )  /\  ( m (.g `  RR*s
) B )  =  ( m xe B ) )  -> 
1  e.  RR* )
62 0le1 10551 . . . . . . . 8  |-  0  <_  1
6362a1i 11 . . . . . . 7  |-  ( ( ( B  e.  RR*  /\  m  e.  NN0 )  /\  ( m (.g `  RR*s
) B )  =  ( m xe B ) )  -> 
0  <_  1 )
64 simpll 790 . . . . . . 7  |-  ( ( ( B  e.  RR*  /\  m  e.  NN0 )  /\  ( m (.g `  RR*s
) B )  =  ( m xe B ) )  ->  B  e.  RR* )
65 xadddi2r 12128 . . . . . . 7  |-  ( ( ( m  e.  RR*  /\  0  <_  m )  /\  ( 1  e.  RR*  /\  0  <_  1 )  /\  B  e.  RR* )  ->  ( ( m +e 1 ) xe B )  =  ( ( m xe B ) +e ( 1 xe B ) ) )
6656, 58, 61, 63, 64, 65syl221anc 1337 . . . . . 6  |-  ( ( ( B  e.  RR*  /\  m  e.  NN0 )  /\  ( m (.g `  RR*s
) B )  =  ( m xe B ) )  -> 
( ( m +e 1 ) xe B )  =  ( ( m xe B ) +e ( 1 xe B ) ) )
6752, 55sseldi 3601 . . . . . . . 8  |-  ( ( ( B  e.  RR*  /\  m  e.  NN0 )  /\  ( m (.g `  RR*s
) B )  =  ( m xe B ) )  ->  m  e.  RR )
6859a1i 11 . . . . . . . 8  |-  ( ( ( B  e.  RR*  /\  m  e.  NN0 )  /\  ( m (.g `  RR*s
) B )  =  ( m xe B ) )  -> 
1  e.  RR )
69 rexadd 12063 . . . . . . . 8  |-  ( ( m  e.  RR  /\  1  e.  RR )  ->  ( m +e 1 )  =  ( m  +  1 ) )
7067, 68, 69syl2anc 693 . . . . . . 7  |-  ( ( ( B  e.  RR*  /\  m  e.  NN0 )  /\  ( m (.g `  RR*s
) B )  =  ( m xe B ) )  -> 
( m +e 1 )  =  ( m  +  1 ) )
7170oveq1d 6665 . . . . . 6  |-  ( ( ( B  e.  RR*  /\  m  e.  NN0 )  /\  ( m (.g `  RR*s
) B )  =  ( m xe B ) )  -> 
( ( m +e 1 ) xe B )  =  ( ( m  + 
1 ) xe B ) )
72 xmulid2 12110 . . . . . . . 8  |-  ( B  e.  RR*  ->  ( 1 xe B )  =  B )
7364, 72syl 17 . . . . . . 7  |-  ( ( ( B  e.  RR*  /\  m  e.  NN0 )  /\  ( m (.g `  RR*s
) B )  =  ( m xe B ) )  -> 
( 1 xe B )  =  B )
7473oveq2d 6666 . . . . . 6  |-  ( ( ( B  e.  RR*  /\  m  e.  NN0 )  /\  ( m (.g `  RR*s
) B )  =  ( m xe B ) )  -> 
( ( m xe B ) +e ( 1 xe B ) )  =  ( ( m xe B ) +e B ) )
7566, 71, 743eqtr3d 2664 . . . . 5  |-  ( ( ( B  e.  RR*  /\  m  e.  NN0 )  /\  ( m (.g `  RR*s
) B )  =  ( m xe B ) )  -> 
( ( m  + 
1 ) xe B )  =  ( ( m xe B ) +e
B ) )
7623, 51, 753eqtr4d 2666 . . . 4  |-  ( ( ( B  e.  RR*  /\  m  e.  NN0 )  /\  ( m (.g `  RR*s
) B )  =  ( m xe B ) )  -> 
( ( m  + 
1 ) (.g `  RR*s
) B )  =  ( ( m  + 
1 ) xe B ) )
7776exp31 630 . . 3  |-  ( B  e.  RR*  ->  ( m  e.  NN0  ->  ( ( m (.g `  RR*s ) B )  =  ( m xe B )  ->  ( ( m  +  1 ) (.g ` 
RR*s ) B )  =  ( ( m  +  1 ) xe B ) ) ) )
78 xnegeq 12038 . . . . . 6  |-  ( ( m (.g `  RR*s ) B )  =  ( m xe B )  ->  -e ( m (.g `  RR*s ) B )  =  -e
( m xe B ) )
7978adantl 482 . . . . 5  |-  ( ( ( B  e.  RR*  /\  m  e.  NN )  /\  ( m (.g ` 
RR*s ) B )  =  ( m xe B ) )  ->  -e ( m (.g `  RR*s ) B )  =  -e
( m xe B ) )
80 eqid 2622 . . . . . . . . 9  |-  ( invg `  RR*s
)  =  ( invg `  RR*s
)
8116, 18, 80mulgnegnn 17551 . . . . . . . 8  |-  ( ( m  e.  NN  /\  B  e.  RR* )  -> 
( -u m (.g `  RR*s
) B )  =  ( ( invg `  RR*s ) `  ( m (.g `  RR*s
) B ) ) )
8281ancoms 469 . . . . . . 7  |-  ( ( B  e.  RR*  /\  m  e.  NN )  ->  ( -u m (.g `  RR*s ) B )  =  ( ( invg `  RR*s
) `  ( m
(.g `  RR*s ) B ) ) )
83 xrsex 19761 . . . . . . . . . . . 12  |-  RR*s 
e.  _V
8483a1i 11 . . . . . . . . . . 11  |-  ( m  e.  NN  ->  RR*s 
e.  _V )
85 ssid 3624 . . . . . . . . . . . 12  |-  RR*  C_  RR*
8685a1i 11 . . . . . . . . . . 11  |-  ( m  e.  NN  ->  RR*  C_  RR* )
87 simp2 1062 . . . . . . . . . . . 12  |-  ( ( m  e.  NN  /\  x  e.  RR*  /\  y  e.  RR* )  ->  x  e.  RR* )
88 simp3 1063 . . . . . . . . . . . 12  |-  ( ( m  e.  NN  /\  x  e.  RR*  /\  y  e.  RR* )  ->  y  e.  RR* )
8987, 88xaddcld 12131 . . . . . . . . . . 11  |-  ( ( m  e.  NN  /\  x  e.  RR*  /\  y  e.  RR* )  ->  (
x +e y )  e.  RR* )
9016, 18, 26, 84, 86, 89mulgnnsubcl 17553 . . . . . . . . . 10  |-  ( ( m  e.  NN  /\  m  e.  NN  /\  B  e.  RR* )  ->  (
m (.g `  RR*s ) B )  e.  RR* )
91903anidm12 1383 . . . . . . . . 9  |-  ( ( m  e.  NN  /\  B  e.  RR* )  -> 
( m (.g `  RR*s
) B )  e. 
RR* )
9291ancoms 469 . . . . . . . 8  |-  ( ( B  e.  RR*  /\  m  e.  NN )  ->  (
m (.g `  RR*s ) B )  e.  RR* )
93 xrsinvgval 29677 . . . . . . . 8  |-  ( ( m (.g `  RR*s ) B )  e.  RR*  ->  ( ( invg `  RR*s ) `  (
m (.g `  RR*s ) B ) )  =  -e ( m (.g ` 
RR*s ) B ) )
9492, 93syl 17 . . . . . . 7  |-  ( ( B  e.  RR*  /\  m  e.  NN )  ->  (
( invg `  RR*s ) `  (
m (.g `  RR*s ) B ) )  =  -e ( m (.g ` 
RR*s ) B ) )
9582, 94eqtrd 2656 . . . . . 6  |-  ( ( B  e.  RR*  /\  m  e.  NN )  ->  ( -u m (.g `  RR*s ) B )  =  -e
( m (.g `  RR*s
) B ) )
9695adantr 481 . . . . 5  |-  ( ( ( B  e.  RR*  /\  m  e.  NN )  /\  ( m (.g ` 
RR*s ) B )  =  ( m xe B ) )  ->  ( -u m
(.g `  RR*s ) B )  =  -e
( m (.g `  RR*s
) B ) )
97 nnre 11027 . . . . . . . . . 10  |-  ( m  e.  NN  ->  m  e.  RR )
9897adantl 482 . . . . . . . . 9  |-  ( ( B  e.  RR*  /\  m  e.  NN )  ->  m  e.  RR )
99 rexneg 12042 . . . . . . . . 9  |-  ( m  e.  RR  ->  -e
m  =  -u m
)
10098, 99syl 17 . . . . . . . 8  |-  ( ( B  e.  RR*  /\  m  e.  NN )  ->  -e
m  =  -u m
)
101100oveq1d 6665 . . . . . . 7  |-  ( ( B  e.  RR*  /\  m  e.  NN )  ->  (  -e m xe B )  =  (
-u m xe B ) )
102 nnssre 11024 . . . . . . . . . 10  |-  NN  C_  RR
103102, 53sstri 3612 . . . . . . . . 9  |-  NN  C_  RR*
104 simpr 477 . . . . . . . . 9  |-  ( ( B  e.  RR*  /\  m  e.  NN )  ->  m  e.  NN )
105103, 104sseldi 3601 . . . . . . . 8  |-  ( ( B  e.  RR*  /\  m  e.  NN )  ->  m  e.  RR* )
106 simpl 473 . . . . . . . 8  |-  ( ( B  e.  RR*  /\  m  e.  NN )  ->  B  e.  RR* )
107 xmulneg1 12099 . . . . . . . 8  |-  ( ( m  e.  RR*  /\  B  e.  RR* )  ->  (  -e m xe B )  =  -e ( m xe B ) )
108105, 106, 107syl2anc 693 . . . . . . 7  |-  ( ( B  e.  RR*  /\  m  e.  NN )  ->  (  -e m xe B )  =  -e ( m xe B ) )
109101, 108eqtr3d 2658 . . . . . 6  |-  ( ( B  e.  RR*  /\  m  e.  NN )  ->  ( -u m xe B )  =  -e
( m xe B ) )
110109adantr 481 . . . . 5  |-  ( ( ( B  e.  RR*  /\  m  e.  NN )  /\  ( m (.g ` 
RR*s ) B )  =  ( m xe B ) )  ->  ( -u m xe B )  =  -e ( m xe B ) )
11179, 96, 1103eqtr4d 2666 . . . 4  |-  ( ( ( B  e.  RR*  /\  m  e.  NN )  /\  ( m (.g ` 
RR*s ) B )  =  ( m xe B ) )  ->  ( -u m
(.g `  RR*s ) B )  =  ( -u m xe B ) )
112111exp31 630 . . 3  |-  ( B  e.  RR*  ->  ( m  e.  NN  ->  (
( m (.g `  RR*s
) B )  =  ( m xe B )  ->  ( -u m (.g `  RR*s ) B )  =  ( -u m xe B ) ) ) )
1133, 6, 9, 12, 15, 21, 77, 112zindd 11478 . 2  |-  ( B  e.  RR*  ->  ( A  e.  ZZ  ->  ( A (.g `  RR*s ) B )  =  ( A xe B ) ) )
114113impcom 446 1  |-  ( ( A  e.  ZZ  /\  B  e.  RR* )  -> 
( A (.g `  RR*s
) B )  =  ( A xe B ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    \/ wo 383    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   _Vcvv 3200    C_ wss 3574   class class class wbr 4653   ` cfv 5888  (class class class)co 6650   RRcr 9935   0cc0 9936   1c1 9937    + caddc 9939   RR*cxr 10073    <_ cle 10075   -ucneg 10267   NNcn 11020   NN0cn0 11292   ZZcz 11377    -ecxne 11943   +ecxad 11944   xecxmu 11945   RR*scxrs 16160   invgcminusg 17423  .gcmg 17540
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-fz 12327  df-seq 12802  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-plusg 15954  df-mulr 15955  df-tset 15960  df-ple 15961  df-ds 15964  df-0g 16102  df-xrs 16162  df-minusg 17426  df-mulg 17541
This theorem is referenced by:  xrge0mulgnn0  29689  pnfinf  29737
  Copyright terms: Public domain W3C validator