MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ncvs1 Structured version   Visualization version   Unicode version

Theorem ncvs1 22957
Description: From any nonzero vector, construct a vector whose norm is one. (Contributed by NM, 6-Dec-2007.) (Revised by AV, 8-Oct-2021.)
Hypotheses
Ref Expression
ncvs1.x  |-  X  =  ( Base `  G
)
ncvs1.n  |-  N  =  ( norm `  G
)
ncvs1.z  |-  .0.  =  ( 0g `  G )
ncvs1.s  |-  .x.  =  ( .s `  G )
ncvs1.f  |-  F  =  (Scalar `  G )
ncvs1.k  |-  K  =  ( Base `  F
)
Assertion
Ref Expression
ncvs1  |-  ( ( G  e.  (NrmVec  i^i CVec )  /\  ( A  e.  X  /\  A  =/= 
.0.  )  /\  (
1  /  ( N `
 A ) )  e.  K )  -> 
( N `  (
( 1  /  ( N `  A )
)  .x.  A )
)  =  1 )

Proof of Theorem ncvs1
StepHypRef Expression
1 simp1 1061 . . 3  |-  ( ( G  e.  (NrmVec  i^i CVec )  /\  ( A  e.  X  /\  A  =/= 
.0.  )  /\  (
1  /  ( N `
 A ) )  e.  K )  ->  G  e.  (NrmVec  i^i CVec )
)
2 simp3 1063 . . . 4  |-  ( ( G  e.  (NrmVec  i^i CVec )  /\  ( A  e.  X  /\  A  =/= 
.0.  )  /\  (
1  /  ( N `
 A ) )  e.  K )  -> 
( 1  /  ( N `  A )
)  e.  K )
3 elin 3796 . . . . . . . . 9  |-  ( G  e.  (NrmVec  i^i CVec )  <->  ( G  e. NrmVec  /\  G  e. CVec
) )
4 nvcnlm 22500 . . . . . . . . . . 11  |-  ( G  e. NrmVec  ->  G  e. NrmMod )
5 nlmngp 22481 . . . . . . . . . . 11  |-  ( G  e. NrmMod  ->  G  e. NrmGrp )
64, 5syl 17 . . . . . . . . . 10  |-  ( G  e. NrmVec  ->  G  e. NrmGrp )
76adantr 481 . . . . . . . . 9  |-  ( ( G  e. NrmVec  /\  G  e. CVec
)  ->  G  e. NrmGrp )
83, 7sylbi 207 . . . . . . . 8  |-  ( G  e.  (NrmVec  i^i CVec )  ->  G  e. NrmGrp )
9 simpl 473 . . . . . . . 8  |-  ( ( A  e.  X  /\  A  =/=  .0.  )  ->  A  e.  X )
108, 9anim12i 590 . . . . . . 7  |-  ( ( G  e.  (NrmVec  i^i CVec )  /\  ( A  e.  X  /\  A  =/= 
.0.  ) )  -> 
( G  e. NrmGrp  /\  A  e.  X ) )
11 ncvs1.x . . . . . . . 8  |-  X  =  ( Base `  G
)
12 ncvs1.n . . . . . . . 8  |-  N  =  ( norm `  G
)
1311, 12nmcl 22420 . . . . . . 7  |-  ( ( G  e. NrmGrp  /\  A  e.  X )  ->  ( N `  A )  e.  RR )
1410, 13syl 17 . . . . . 6  |-  ( ( G  e.  (NrmVec  i^i CVec )  /\  ( A  e.  X  /\  A  =/= 
.0.  ) )  -> 
( N `  A
)  e.  RR )
15 ncvs1.z . . . . . . . . . . . 12  |-  .0.  =  ( 0g `  G )
1611, 12, 15nmeq0 22422 . . . . . . . . . . 11  |-  ( ( G  e. NrmGrp  /\  A  e.  X )  ->  (
( N `  A
)  =  0  <->  A  =  .0.  ) )
1716bicomd 213 . . . . . . . . . 10  |-  ( ( G  e. NrmGrp  /\  A  e.  X )  ->  ( A  =  .0.  <->  ( N `  A )  =  0 ) )
188, 17sylan 488 . . . . . . . . 9  |-  ( ( G  e.  (NrmVec  i^i CVec )  /\  A  e.  X
)  ->  ( A  =  .0.  <->  ( N `  A )  =  0 ) )
1918necon3bid 2838 . . . . . . . 8  |-  ( ( G  e.  (NrmVec  i^i CVec )  /\  A  e.  X
)  ->  ( A  =/=  .0.  <->  ( N `  A )  =/=  0
) )
2019biimpd 219 . . . . . . 7  |-  ( ( G  e.  (NrmVec  i^i CVec )  /\  A  e.  X
)  ->  ( A  =/=  .0.  ->  ( N `  A )  =/=  0
) )
2120impr 649 . . . . . 6  |-  ( ( G  e.  (NrmVec  i^i CVec )  /\  ( A  e.  X  /\  A  =/= 
.0.  ) )  -> 
( N `  A
)  =/=  0 )
2214, 21rereccld 10852 . . . . 5  |-  ( ( G  e.  (NrmVec  i^i CVec )  /\  ( A  e.  X  /\  A  =/= 
.0.  ) )  -> 
( 1  /  ( N `  A )
)  e.  RR )
23223adant3 1081 . . . 4  |-  ( ( G  e.  (NrmVec  i^i CVec )  /\  ( A  e.  X  /\  A  =/= 
.0.  )  /\  (
1  /  ( N `
 A ) )  e.  K )  -> 
( 1  /  ( N `  A )
)  e.  RR )
242, 23elind 3798 . . 3  |-  ( ( G  e.  (NrmVec  i^i CVec )  /\  ( A  e.  X  /\  A  =/= 
.0.  )  /\  (
1  /  ( N `
 A ) )  e.  K )  -> 
( 1  /  ( N `  A )
)  e.  ( K  i^i  RR ) )
25 1re 10039 . . . . . . . 8  |-  1  e.  RR
26 0le1 10551 . . . . . . . 8  |-  0  <_  1
2725, 26pm3.2i 471 . . . . . . 7  |-  ( 1  e.  RR  /\  0  <_  1 )
2827a1i 11 . . . . . 6  |-  ( ( G  e.  (NrmVec  i^i CVec )  /\  ( A  e.  X  /\  A  =/= 
.0.  ) )  -> 
( 1  e.  RR  /\  0  <_  1 ) )
29 simprr 796 . . . . . . 7  |-  ( ( G  e.  (NrmVec  i^i CVec )  /\  ( A  e.  X  /\  A  =/= 
.0.  ) )  ->  A  =/=  .0.  )
3011, 12, 15nmgt0 22434 . . . . . . . 8  |-  ( ( G  e. NrmGrp  /\  A  e.  X )  ->  ( A  =/=  .0.  <->  0  <  ( N `  A ) ) )
3110, 30syl 17 . . . . . . 7  |-  ( ( G  e.  (NrmVec  i^i CVec )  /\  ( A  e.  X  /\  A  =/= 
.0.  ) )  -> 
( A  =/=  .0.  <->  0  <  ( N `  A ) ) )
3229, 31mpbid 222 . . . . . 6  |-  ( ( G  e.  (NrmVec  i^i CVec )  /\  ( A  e.  X  /\  A  =/= 
.0.  ) )  -> 
0  <  ( N `  A ) )
3328, 14, 32jca32 558 . . . . 5  |-  ( ( G  e.  (NrmVec  i^i CVec )  /\  ( A  e.  X  /\  A  =/= 
.0.  ) )  -> 
( ( 1  e.  RR  /\  0  <_ 
1 )  /\  (
( N `  A
)  e.  RR  /\  0  <  ( N `  A ) ) ) )
34333adant3 1081 . . . 4  |-  ( ( G  e.  (NrmVec  i^i CVec )  /\  ( A  e.  X  /\  A  =/= 
.0.  )  /\  (
1  /  ( N `
 A ) )  e.  K )  -> 
( ( 1  e.  RR  /\  0  <_ 
1 )  /\  (
( N `  A
)  e.  RR  /\  0  <  ( N `  A ) ) ) )
35 divge0 10892 . . . 4  |-  ( ( ( 1  e.  RR  /\  0  <_  1 )  /\  ( ( N `
 A )  e.  RR  /\  0  < 
( N `  A
) ) )  -> 
0  <_  ( 1  /  ( N `  A ) ) )
3634, 35syl 17 . . 3  |-  ( ( G  e.  (NrmVec  i^i CVec )  /\  ( A  e.  X  /\  A  =/= 
.0.  )  /\  (
1  /  ( N `
 A ) )  e.  K )  -> 
0  <_  ( 1  /  ( N `  A ) ) )
37 simp2l 1087 . . 3  |-  ( ( G  e.  (NrmVec  i^i CVec )  /\  ( A  e.  X  /\  A  =/= 
.0.  )  /\  (
1  /  ( N `
 A ) )  e.  K )  ->  A  e.  X )
38 ncvs1.s . . . 4  |-  .x.  =  ( .s `  G )
39 ncvs1.f . . . 4  |-  F  =  (Scalar `  G )
40 ncvs1.k . . . 4  |-  K  =  ( Base `  F
)
4111, 12, 38, 39, 40ncvsge0 22953 . . 3  |-  ( ( G  e.  (NrmVec  i^i CVec )  /\  ( ( 1  /  ( N `  A ) )  e.  ( K  i^i  RR )  /\  0  <_  (
1  /  ( N `
 A ) ) )  /\  A  e.  X )  ->  ( N `  ( (
1  /  ( N `
 A ) ) 
.x.  A ) )  =  ( ( 1  /  ( N `  A ) )  x.  ( N `  A
) ) )
421, 24, 36, 37, 41syl121anc 1331 . 2  |-  ( ( G  e.  (NrmVec  i^i CVec )  /\  ( A  e.  X  /\  A  =/= 
.0.  )  /\  (
1  /  ( N `
 A ) )  e.  K )  -> 
( N `  (
( 1  /  ( N `  A )
)  .x.  A )
)  =  ( ( 1  /  ( N `
 A ) )  x.  ( N `  A ) ) )
43103adant3 1081 . . . . 5  |-  ( ( G  e.  (NrmVec  i^i CVec )  /\  ( A  e.  X  /\  A  =/= 
.0.  )  /\  (
1  /  ( N `
 A ) )  e.  K )  -> 
( G  e. NrmGrp  /\  A  e.  X ) )
4443, 13syl 17 . . . 4  |-  ( ( G  e.  (NrmVec  i^i CVec )  /\  ( A  e.  X  /\  A  =/= 
.0.  )  /\  (
1  /  ( N `
 A ) )  e.  K )  -> 
( N `  A
)  e.  RR )
4544recnd 10068 . . 3  |-  ( ( G  e.  (NrmVec  i^i CVec )  /\  ( A  e.  X  /\  A  =/= 
.0.  )  /\  (
1  /  ( N `
 A ) )  e.  K )  -> 
( N `  A
)  e.  CC )
46213adant3 1081 . . 3  |-  ( ( G  e.  (NrmVec  i^i CVec )  /\  ( A  e.  X  /\  A  =/= 
.0.  )  /\  (
1  /  ( N `
 A ) )  e.  K )  -> 
( N `  A
)  =/=  0 )
4745, 46recid2d 10797 . 2  |-  ( ( G  e.  (NrmVec  i^i CVec )  /\  ( A  e.  X  /\  A  =/= 
.0.  )  /\  (
1  /  ( N `
 A ) )  e.  K )  -> 
( ( 1  / 
( N `  A
) )  x.  ( N `  A )
)  =  1 )
4842, 47eqtrd 2656 1  |-  ( ( G  e.  (NrmVec  i^i CVec )  /\  ( A  e.  X  /\  A  =/= 
.0.  )  /\  (
1  /  ( N `
 A ) )  e.  K )  -> 
( N `  (
( 1  /  ( N `  A )
)  .x.  A )
)  =  1 )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794    i^i cin 3573   class class class wbr 4653   ` cfv 5888  (class class class)co 6650   RRcr 9935   0cc0 9936   1c1 9937    x. cmul 9941    < clt 10074    <_ cle 10075    / cdiv 10684   Basecbs 15857  Scalarcsca 15944   .scvsca 15945   0gc0g 16100   normcnm 22381  NrmGrpcngp 22382  NrmModcnlm 22385  NrmVeccnvc 22386  CVecccvs 22923
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-fz 12327  df-seq 12802  df-exp 12861  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-0g 16102  df-topgen 16104  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-grp 17425  df-subg 17591  df-cmn 18195  df-mgp 18490  df-ring 18549  df-cring 18550  df-subrg 18778  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-cnfld 19747  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-xms 22125  df-ms 22126  df-nm 22387  df-ngp 22388  df-nlm 22391  df-nvc 22392  df-clm 22863  df-cvs 22924
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator