Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dignn0flhalf Structured version   Visualization version   Unicode version

Theorem dignn0flhalf 42412
Description: The digits of the rounded half of a nonnegative integer are the digits of the integer shifted by 1. (Contributed by AV, 7-Jun-2010.)
Assertion
Ref Expression
dignn0flhalf  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  I  e.  NN0 )  ->  (
( I  +  1 ) (digit `  2
) A )  =  ( I (digit ` 
2 ) ( |_
`  ( A  / 
2 ) ) ) )

Proof of Theorem dignn0flhalf
StepHypRef Expression
1 eluzge2nn0 11727 . . . 4  |-  ( A  e.  ( ZZ>= `  2
)  ->  A  e.  NN0 )
2 nn0eo 42322 . . . 4  |-  ( A  e.  NN0  ->  ( ( A  /  2 )  e.  NN0  \/  (
( A  +  1 )  /  2 )  e.  NN0 ) )
31, 2syl 17 . . 3  |-  ( A  e.  ( ZZ>= `  2
)  ->  ( ( A  /  2 )  e. 
NN0  \/  ( ( A  +  1 )  /  2 )  e. 
NN0 ) )
4 dignn0ehalf 42411 . . . . . . 7  |-  ( ( ( A  /  2
)  e.  NN0  /\  A  e.  NN0  /\  I  e.  NN0 )  ->  (
( I  +  1 ) (digit `  2
) A )  =  ( I (digit ` 
2 ) ( A  /  2 ) ) )
51, 4syl3an2 1360 . . . . . 6  |-  ( ( ( A  /  2
)  e.  NN0  /\  A  e.  ( ZZ>= ` 
2 )  /\  I  e.  NN0 )  ->  (
( I  +  1 ) (digit `  2
) A )  =  ( I (digit ` 
2 ) ( A  /  2 ) ) )
6 eluzelz 11697 . . . . . . . . . 10  |-  ( A  e.  ( ZZ>= `  2
)  ->  A  e.  ZZ )
7 nn0z 11400 . . . . . . . . . 10  |-  ( ( A  /  2 )  e.  NN0  ->  ( A  /  2 )  e.  ZZ )
8 zefldiv2 42324 . . . . . . . . . 10  |-  ( ( A  e.  ZZ  /\  ( A  /  2
)  e.  ZZ )  ->  ( |_ `  ( A  /  2
) )  =  ( A  /  2 ) )
96, 7, 8syl2anr 495 . . . . . . . . 9  |-  ( ( ( A  /  2
)  e.  NN0  /\  A  e.  ( ZZ>= ` 
2 ) )  -> 
( |_ `  ( A  /  2 ) )  =  ( A  / 
2 ) )
109eqcomd 2628 . . . . . . . 8  |-  ( ( ( A  /  2
)  e.  NN0  /\  A  e.  ( ZZ>= ` 
2 ) )  -> 
( A  /  2
)  =  ( |_
`  ( A  / 
2 ) ) )
11103adant3 1081 . . . . . . 7  |-  ( ( ( A  /  2
)  e.  NN0  /\  A  e.  ( ZZ>= ` 
2 )  /\  I  e.  NN0 )  ->  ( A  /  2 )  =  ( |_ `  ( A  /  2 ) ) )
1211oveq2d 6666 . . . . . 6  |-  ( ( ( A  /  2
)  e.  NN0  /\  A  e.  ( ZZ>= ` 
2 )  /\  I  e.  NN0 )  ->  (
I (digit `  2
) ( A  / 
2 ) )  =  ( I (digit ` 
2 ) ( |_
`  ( A  / 
2 ) ) ) )
135, 12eqtrd 2656 . . . . 5  |-  ( ( ( A  /  2
)  e.  NN0  /\  A  e.  ( ZZ>= ` 
2 )  /\  I  e.  NN0 )  ->  (
( I  +  1 ) (digit `  2
) A )  =  ( I (digit ` 
2 ) ( |_
`  ( A  / 
2 ) ) ) )
14133exp 1264 . . . 4  |-  ( ( A  /  2 )  e.  NN0  ->  ( A  e.  ( ZZ>= `  2
)  ->  ( I  e.  NN0  ->  ( (
I  +  1 ) (digit `  2 ) A )  =  ( I (digit `  2
) ( |_ `  ( A  /  2
) ) ) ) ) )
1563ad2ant2 1083 . . . . . . . 8  |-  ( ( ( ( A  + 
1 )  /  2
)  e.  NN0  /\  A  e.  ( ZZ>= ` 
2 )  /\  I  e.  NN0 )  ->  A  e.  ZZ )
16 simp2 1062 . . . . . . . . 9  |-  ( ( ( ( A  + 
1 )  /  2
)  e.  NN0  /\  A  e.  ( ZZ>= ` 
2 )  /\  I  e.  NN0 )  ->  A  e.  ( ZZ>= `  2 )
)
17 simp1 1061 . . . . . . . . 9  |-  ( ( ( ( A  + 
1 )  /  2
)  e.  NN0  /\  A  e.  ( ZZ>= ` 
2 )  /\  I  e.  NN0 )  ->  (
( A  +  1 )  /  2 )  e.  NN0 )
18 nno 15098 . . . . . . . . 9  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  (
( A  +  1 )  /  2 )  e.  NN0 )  -> 
( ( A  - 
1 )  /  2
)  e.  NN )
1916, 17, 18syl2anc 693 . . . . . . . 8  |-  ( ( ( ( A  + 
1 )  /  2
)  e.  NN0  /\  A  e.  ( ZZ>= ` 
2 )  /\  I  e.  NN0 )  ->  (
( A  -  1 )  /  2 )  e.  NN )
20 simp3 1063 . . . . . . . 8  |-  ( ( ( ( A  + 
1 )  /  2
)  e.  NN0  /\  A  e.  ( ZZ>= ` 
2 )  /\  I  e.  NN0 )  ->  I  e.  NN0 )
21 dignn0flhalflem2 42410 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  ( ( A  - 
1 )  /  2
)  e.  NN  /\  I  e.  NN0 )  -> 
( |_ `  ( A  /  ( 2 ^ ( I  +  1 ) ) ) )  =  ( |_ `  ( ( |_ `  ( A  /  2
) )  /  (
2 ^ I ) ) ) )
2215, 19, 20, 21syl3anc 1326 . . . . . . 7  |-  ( ( ( ( A  + 
1 )  /  2
)  e.  NN0  /\  A  e.  ( ZZ>= ` 
2 )  /\  I  e.  NN0 )  ->  ( |_ `  ( A  / 
( 2 ^ (
I  +  1 ) ) ) )  =  ( |_ `  (
( |_ `  ( A  /  2 ) )  /  ( 2 ^ I ) ) ) )
2322oveq1d 6665 . . . . . 6  |-  ( ( ( ( A  + 
1 )  /  2
)  e.  NN0  /\  A  e.  ( ZZ>= ` 
2 )  /\  I  e.  NN0 )  ->  (
( |_ `  ( A  /  ( 2 ^ ( I  +  1 ) ) ) )  mod  2 )  =  ( ( |_ `  ( ( |_ `  ( A  /  2
) )  /  (
2 ^ I ) ) )  mod  2
) )
24 2nn 11185 . . . . . . . 8  |-  2  e.  NN
2524a1i 11 . . . . . . 7  |-  ( ( ( ( A  + 
1 )  /  2
)  e.  NN0  /\  A  e.  ( ZZ>= ` 
2 )  /\  I  e.  NN0 )  ->  2  e.  NN )
26 peano2nn0 11333 . . . . . . . 8  |-  ( I  e.  NN0  ->  ( I  +  1 )  e. 
NN0 )
27263ad2ant3 1084 . . . . . . 7  |-  ( ( ( ( A  + 
1 )  /  2
)  e.  NN0  /\  A  e.  ( ZZ>= ` 
2 )  /\  I  e.  NN0 )  ->  (
I  +  1 )  e.  NN0 )
28 nn0rp0 12279 . . . . . . . . 9  |-  ( A  e.  NN0  ->  A  e.  ( 0 [,) +oo ) )
291, 28syl 17 . . . . . . . 8  |-  ( A  e.  ( ZZ>= `  2
)  ->  A  e.  ( 0 [,) +oo ) )
30293ad2ant2 1083 . . . . . . 7  |-  ( ( ( ( A  + 
1 )  /  2
)  e.  NN0  /\  A  e.  ( ZZ>= ` 
2 )  /\  I  e.  NN0 )  ->  A  e.  ( 0 [,) +oo ) )
31 nn0digval 42394 . . . . . . 7  |-  ( ( 2  e.  NN  /\  ( I  +  1
)  e.  NN0  /\  A  e.  ( 0 [,) +oo ) )  ->  ( ( I  +  1 ) (digit `  2 ) A )  =  ( ( |_ `  ( A  /  ( 2 ^ ( I  +  1 ) ) ) )  mod  2 ) )
3225, 27, 30, 31syl3anc 1326 . . . . . 6  |-  ( ( ( ( A  + 
1 )  /  2
)  e.  NN0  /\  A  e.  ( ZZ>= ` 
2 )  /\  I  e.  NN0 )  ->  (
( I  +  1 ) (digit `  2
) A )  =  ( ( |_ `  ( A  /  (
2 ^ ( I  +  1 ) ) ) )  mod  2
) )
33 eluzelre 11698 . . . . . . . . . . 11  |-  ( A  e.  ( ZZ>= `  2
)  ->  A  e.  RR )
3433rehalfcld 11279 . . . . . . . . . 10  |-  ( A  e.  ( ZZ>= `  2
)  ->  ( A  /  2 )  e.  RR )
351nn0ge0d 11354 . . . . . . . . . . 11  |-  ( A  e.  ( ZZ>= `  2
)  ->  0  <_  A )
36 2re 11090 . . . . . . . . . . . . 13  |-  2  e.  RR
37 2pos 11112 . . . . . . . . . . . . 13  |-  0  <  2
3836, 37pm3.2i 471 . . . . . . . . . . . 12  |-  ( 2  e.  RR  /\  0  <  2 )
3938a1i 11 . . . . . . . . . . 11  |-  ( A  e.  ( ZZ>= `  2
)  ->  ( 2  e.  RR  /\  0  <  2 ) )
40 divge0 10892 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( 2  e.  RR  /\  0  <  2 ) )  ->  0  <_  ( A  /  2 ) )
4133, 35, 39, 40syl21anc 1325 . . . . . . . . . 10  |-  ( A  e.  ( ZZ>= `  2
)  ->  0  <_  ( A  /  2 ) )
42 flge0nn0 12621 . . . . . . . . . 10  |-  ( ( ( A  /  2
)  e.  RR  /\  0  <_  ( A  / 
2 ) )  -> 
( |_ `  ( A  /  2 ) )  e.  NN0 )
4334, 41, 42syl2anc 693 . . . . . . . . 9  |-  ( A  e.  ( ZZ>= `  2
)  ->  ( |_ `  ( A  /  2
) )  e.  NN0 )
44433ad2ant2 1083 . . . . . . . 8  |-  ( ( ( ( A  + 
1 )  /  2
)  e.  NN0  /\  A  e.  ( ZZ>= ` 
2 )  /\  I  e.  NN0 )  ->  ( |_ `  ( A  / 
2 ) )  e. 
NN0 )
45 nn0rp0 12279 . . . . . . . 8  |-  ( ( |_ `  ( A  /  2 ) )  e.  NN0  ->  ( |_
`  ( A  / 
2 ) )  e.  ( 0 [,) +oo ) )
4644, 45syl 17 . . . . . . 7  |-  ( ( ( ( A  + 
1 )  /  2
)  e.  NN0  /\  A  e.  ( ZZ>= ` 
2 )  /\  I  e.  NN0 )  ->  ( |_ `  ( A  / 
2 ) )  e.  ( 0 [,) +oo ) )
47 nn0digval 42394 . . . . . . 7  |-  ( ( 2  e.  NN  /\  I  e.  NN0  /\  ( |_ `  ( A  / 
2 ) )  e.  ( 0 [,) +oo ) )  ->  (
I (digit `  2
) ( |_ `  ( A  /  2
) ) )  =  ( ( |_ `  ( ( |_ `  ( A  /  2
) )  /  (
2 ^ I ) ) )  mod  2
) )
4825, 20, 46, 47syl3anc 1326 . . . . . 6  |-  ( ( ( ( A  + 
1 )  /  2
)  e.  NN0  /\  A  e.  ( ZZ>= ` 
2 )  /\  I  e.  NN0 )  ->  (
I (digit `  2
) ( |_ `  ( A  /  2
) ) )  =  ( ( |_ `  ( ( |_ `  ( A  /  2
) )  /  (
2 ^ I ) ) )  mod  2
) )
4923, 32, 483eqtr4d 2666 . . . . 5  |-  ( ( ( ( A  + 
1 )  /  2
)  e.  NN0  /\  A  e.  ( ZZ>= ` 
2 )  /\  I  e.  NN0 )  ->  (
( I  +  1 ) (digit `  2
) A )  =  ( I (digit ` 
2 ) ( |_
`  ( A  / 
2 ) ) ) )
50493exp 1264 . . . 4  |-  ( ( ( A  +  1 )  /  2 )  e.  NN0  ->  ( A  e.  ( ZZ>= `  2
)  ->  ( I  e.  NN0  ->  ( (
I  +  1 ) (digit `  2 ) A )  =  ( I (digit `  2
) ( |_ `  ( A  /  2
) ) ) ) ) )
5114, 50jaoi 394 . . 3  |-  ( ( ( A  /  2
)  e.  NN0  \/  ( ( A  + 
1 )  /  2
)  e.  NN0 )  ->  ( A  e.  (
ZZ>= `  2 )  -> 
( I  e.  NN0  ->  ( ( I  + 
1 ) (digit ` 
2 ) A )  =  ( I (digit `  2 ) ( |_ `  ( A  /  2 ) ) ) ) ) )
523, 51mpcom 38 . 2  |-  ( A  e.  ( ZZ>= `  2
)  ->  ( I  e.  NN0  ->  ( (
I  +  1 ) (digit `  2 ) A )  =  ( I (digit `  2
) ( |_ `  ( A  /  2
) ) ) ) )
5352imp 445 1  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  I  e.  NN0 )  ->  (
( I  +  1 ) (digit `  2
) A )  =  ( I (digit ` 
2 ) ( |_
`  ( A  / 
2 ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    \/ wo 383    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   class class class wbr 4653   ` cfv 5888  (class class class)co 6650   RRcr 9935   0cc0 9936   1c1 9937    + caddc 9939   +oocpnf 10071    < clt 10074    <_ cle 10075    - cmin 10266    / cdiv 10684   NNcn 11020   2c2 11070   NN0cn0 11292   ZZcz 11377   ZZ>=cuz 11687   [,)cico 12177   |_cfl 12591    mod cmo 12668   ^cexp 12860  digitcdig 42389
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-ico 12181  df-fz 12327  df-fzo 12466  df-fl 12593  df-mod 12669  df-seq 12802  df-exp 12861  df-dig 42390
This theorem is referenced by:  nn0sumshdiglemB  42414
  Copyright terms: Public domain W3C validator