| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > obslbs | Structured version Visualization version Unicode version | ||
| Description: An orthogonal basis is a linear basis iff the span of the basis elements is closed (which is usually not true). (Contributed by Mario Carneiro, 29-Oct-2015.) |
| Ref | Expression |
|---|---|
| obslbs.j |
|
| obslbs.n |
|
| obslbs.c |
|
| Ref | Expression |
|---|---|
| obslbs |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | obsrcl 20067 |
. . . . . 6
| |
| 2 | eqid 2622 |
. . . . . . 7
| |
| 3 | 2 | obsss 20068 |
. . . . . 6
|
| 4 | eqid 2622 |
. . . . . . 7
| |
| 5 | obslbs.n |
. . . . . . 7
| |
| 6 | 2, 4, 5 | ocvlsp 20020 |
. . . . . 6
|
| 7 | 1, 3, 6 | syl2anc 693 |
. . . . 5
|
| 8 | 7 | fveq2d 6195 |
. . . 4
|
| 9 | 4, 2 | obs2ocv 20071 |
. . . 4
|
| 10 | 8, 9 | eqtrd 2656 |
. . 3
|
| 11 | 10 | eqeq2d 2632 |
. 2
|
| 12 | obslbs.c |
. . . 4
| |
| 13 | 4, 12 | iscss 20027 |
. . 3
|
| 14 | 1, 13 | syl 17 |
. 2
|
| 15 | phllvec 19974 |
. . . 4
| |
| 16 | 1, 15 | syl 17 |
. . 3
|
| 17 | pssnel 4039 |
. . . . . . 7
| |
| 18 | 17 | adantl 482 |
. . . . . 6
|
| 19 | simpll 790 |
. . . . . . . . . . 11
| |
| 20 | pssss 3702 |
. . . . . . . . . . . 12
| |
| 21 | 20 | ad2antlr 763 |
. . . . . . . . . . 11
|
| 22 | simpr 477 |
. . . . . . . . . . 11
| |
| 23 | 4 | obselocv 20072 |
. . . . . . . . . . 11
|
| 24 | 19, 21, 22, 23 | syl3anc 1326 |
. . . . . . . . . 10
|
| 25 | eqid 2622 |
. . . . . . . . . . . . . 14
| |
| 26 | 25 | obsne0 20069 |
. . . . . . . . . . . . 13
|
| 27 | 19, 22, 26 | syl2anc 693 |
. . . . . . . . . . . 12
|
| 28 | nelsn 4212 |
. . . . . . . . . . . 12
| |
| 29 | 27, 28 | syl 17 |
. . . . . . . . . . 11
|
| 30 | nelne1 2890 |
. . . . . . . . . . . 12
| |
| 31 | 30 | expcom 451 |
. . . . . . . . . . 11
|
| 32 | 29, 31 | syl 17 |
. . . . . . . . . 10
|
| 33 | 24, 32 | sylbird 250 |
. . . . . . . . 9
|
| 34 | npss 3717 |
. . . . . . . . . . 11
| |
| 35 | phllmod 19975 |
. . . . . . . . . . . . . . 15
| |
| 36 | 1, 35 | syl 17 |
. . . . . . . . . . . . . 14
|
| 37 | 36 | ad2antrr 762 |
. . . . . . . . . . . . 13
|
| 38 | 3 | ad2antrr 762 |
. . . . . . . . . . . . . 14
|
| 39 | 21, 38 | sstrd 3613 |
. . . . . . . . . . . . 13
|
| 40 | 2, 5 | lspssv 18983 |
. . . . . . . . . . . . 13
|
| 41 | 37, 39, 40 | syl2anc 693 |
. . . . . . . . . . . 12
|
| 42 | fveq2 6191 |
. . . . . . . . . . . . 13
| |
| 43 | 1 | ad2antrr 762 |
. . . . . . . . . . . . . . 15
|
| 44 | 2, 4, 5 | ocvlsp 20020 |
. . . . . . . . . . . . . . 15
|
| 45 | 43, 39, 44 | syl2anc 693 |
. . . . . . . . . . . . . 14
|
| 46 | 2, 4, 25 | ocv1 20023 |
. . . . . . . . . . . . . . 15
|
| 47 | 43, 46 | syl 17 |
. . . . . . . . . . . . . 14
|
| 48 | 45, 47 | eqeq12d 2637 |
. . . . . . . . . . . . 13
|
| 49 | 42, 48 | syl5ib 234 |
. . . . . . . . . . . 12
|
| 50 | 41, 49 | embantd 59 |
. . . . . . . . . . 11
|
| 51 | 34, 50 | syl5bi 232 |
. . . . . . . . . 10
|
| 52 | 51 | necon1ad 2811 |
. . . . . . . . 9
|
| 53 | 33, 52 | syld 47 |
. . . . . . . 8
|
| 54 | 53 | expimpd 629 |
. . . . . . 7
|
| 55 | 54 | exlimdv 1861 |
. . . . . 6
|
| 56 | 18, 55 | mpd 15 |
. . . . 5
|
| 57 | 56 | ex 450 |
. . . 4
|
| 58 | 57 | alrimiv 1855 |
. . 3
|
| 59 | obslbs.j |
. . . . . 6
| |
| 60 | 2, 59, 5 | islbs3 19155 |
. . . . 5
|
| 61 | 3anan32 1050 |
. . . . 5
| |
| 62 | 60, 61 | syl6bb 276 |
. . . 4
|
| 63 | 62 | baibd 948 |
. . 3
|
| 64 | 16, 3, 58, 63 | syl12anc 1324 |
. 2
|
| 65 | 11, 14, 64 | 3bitr4rd 301 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-int 4476 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-1st 7168 df-2nd 7169 df-tpos 7352 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-er 7742 df-map 7859 df-en 7956 df-dom 7957 df-sdom 7958 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-nn 11021 df-2 11079 df-3 11080 df-4 11081 df-5 11082 df-6 11083 df-7 11084 df-8 11085 df-ndx 15860 df-slot 15861 df-base 15863 df-sets 15864 df-ress 15865 df-plusg 15954 df-mulr 15955 df-sca 15957 df-vsca 15958 df-ip 15959 df-0g 16102 df-mgm 17242 df-sgrp 17284 df-mnd 17295 df-mhm 17335 df-grp 17425 df-minusg 17426 df-sbg 17427 df-ghm 17658 df-mgp 18490 df-ur 18502 df-ring 18549 df-oppr 18623 df-dvdsr 18641 df-unit 18642 df-invr 18672 df-rnghom 18715 df-drng 18749 df-staf 18845 df-srng 18846 df-lmod 18865 df-lss 18933 df-lsp 18972 df-lmhm 19022 df-lbs 19075 df-lvec 19103 df-sra 19172 df-rgmod 19173 df-phl 19971 df-ocv 20007 df-css 20008 df-obs 20049 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |