MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prodfn0 Structured version   Visualization version   Unicode version

Theorem prodfn0 14626
Description: No term of a nonzero infinite product is zero. (Contributed by Scott Fenton, 14-Jan-2018.)
Hypotheses
Ref Expression
prodfn0.1  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
prodfn0.2  |-  ( (
ph  /\  k  e.  ( M ... N ) )  ->  ( F `  k )  e.  CC )
prodfn0.3  |-  ( (
ph  /\  k  e.  ( M ... N ) )  ->  ( F `  k )  =/=  0
)
Assertion
Ref Expression
prodfn0  |-  ( ph  ->  (  seq M (  x.  ,  F ) `
 N )  =/=  0 )
Distinct variable groups:    k, F    ph, k    k, M    k, N

Proof of Theorem prodfn0
Dummy variables  m  n  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prodfn0.1 . . 3  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
2 eluzfz2 12349 . . 3  |-  ( N  e.  ( ZZ>= `  M
)  ->  N  e.  ( M ... N ) )
31, 2syl 17 . 2  |-  ( ph  ->  N  e.  ( M ... N ) )
4 fveq2 6191 . . . . 5  |-  ( m  =  M  ->  (  seq M (  x.  ,  F ) `  m
)  =  (  seq M (  x.  ,  F ) `  M
) )
54neeq1d 2853 . . . 4  |-  ( m  =  M  ->  (
(  seq M (  x.  ,  F ) `  m )  =/=  0  <->  (  seq M (  x.  ,  F ) `  M )  =/=  0
) )
65imbi2d 330 . . 3  |-  ( m  =  M  ->  (
( ph  ->  (  seq M (  x.  ,  F ) `  m
)  =/=  0 )  <-> 
( ph  ->  (  seq M (  x.  ,  F ) `  M
)  =/=  0 ) ) )
7 fveq2 6191 . . . . 5  |-  ( m  =  n  ->  (  seq M (  x.  ,  F ) `  m
)  =  (  seq M (  x.  ,  F ) `  n
) )
87neeq1d 2853 . . . 4  |-  ( m  =  n  ->  (
(  seq M (  x.  ,  F ) `  m )  =/=  0  <->  (  seq M (  x.  ,  F ) `  n )  =/=  0
) )
98imbi2d 330 . . 3  |-  ( m  =  n  ->  (
( ph  ->  (  seq M (  x.  ,  F ) `  m
)  =/=  0 )  <-> 
( ph  ->  (  seq M (  x.  ,  F ) `  n
)  =/=  0 ) ) )
10 fveq2 6191 . . . . 5  |-  ( m  =  ( n  + 
1 )  ->  (  seq M (  x.  ,  F ) `  m
)  =  (  seq M (  x.  ,  F ) `  (
n  +  1 ) ) )
1110neeq1d 2853 . . . 4  |-  ( m  =  ( n  + 
1 )  ->  (
(  seq M (  x.  ,  F ) `  m )  =/=  0  <->  (  seq M (  x.  ,  F ) `  ( n  +  1
) )  =/=  0
) )
1211imbi2d 330 . . 3  |-  ( m  =  ( n  + 
1 )  ->  (
( ph  ->  (  seq M (  x.  ,  F ) `  m
)  =/=  0 )  <-> 
( ph  ->  (  seq M (  x.  ,  F ) `  (
n  +  1 ) )  =/=  0 ) ) )
13 fveq2 6191 . . . . 5  |-  ( m  =  N  ->  (  seq M (  x.  ,  F ) `  m
)  =  (  seq M (  x.  ,  F ) `  N
) )
1413neeq1d 2853 . . . 4  |-  ( m  =  N  ->  (
(  seq M (  x.  ,  F ) `  m )  =/=  0  <->  (  seq M (  x.  ,  F ) `  N )  =/=  0
) )
1514imbi2d 330 . . 3  |-  ( m  =  N  ->  (
( ph  ->  (  seq M (  x.  ,  F ) `  m
)  =/=  0 )  <-> 
( ph  ->  (  seq M (  x.  ,  F ) `  N
)  =/=  0 ) ) )
16 eluzfz1 12348 . . . 4  |-  ( N  e.  ( ZZ>= `  M
)  ->  M  e.  ( M ... N ) )
17 elfzelz 12342 . . . . . . . 8  |-  ( M  e.  ( M ... N )  ->  M  e.  ZZ )
1817adantl 482 . . . . . . 7  |-  ( (
ph  /\  M  e.  ( M ... N ) )  ->  M  e.  ZZ )
19 seq1 12814 . . . . . . 7  |-  ( M  e.  ZZ  ->  (  seq M (  x.  ,  F ) `  M
)  =  ( F `
 M ) )
2018, 19syl 17 . . . . . 6  |-  ( (
ph  /\  M  e.  ( M ... N ) )  ->  (  seq M (  x.  ,  F ) `  M
)  =  ( F `
 M ) )
21 fveq2 6191 . . . . . . . . . 10  |-  ( k  =  M  ->  ( F `  k )  =  ( F `  M ) )
2221neeq1d 2853 . . . . . . . . 9  |-  ( k  =  M  ->  (
( F `  k
)  =/=  0  <->  ( F `  M )  =/=  0 ) )
2322imbi2d 330 . . . . . . . 8  |-  ( k  =  M  ->  (
( ph  ->  ( F `
 k )  =/=  0 )  <->  ( ph  ->  ( F `  M
)  =/=  0 ) ) )
24 prodfn0.3 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( M ... N ) )  ->  ( F `  k )  =/=  0
)
2524expcom 451 . . . . . . . 8  |-  ( k  e.  ( M ... N )  ->  ( ph  ->  ( F `  k )  =/=  0
) )
2623, 25vtoclga 3272 . . . . . . 7  |-  ( M  e.  ( M ... N )  ->  ( ph  ->  ( F `  M )  =/=  0
) )
2726impcom 446 . . . . . 6  |-  ( (
ph  /\  M  e.  ( M ... N ) )  ->  ( F `  M )  =/=  0
)
2820, 27eqnetrd 2861 . . . . 5  |-  ( (
ph  /\  M  e.  ( M ... N ) )  ->  (  seq M (  x.  ,  F ) `  M
)  =/=  0 )
2928expcom 451 . . . 4  |-  ( M  e.  ( M ... N )  ->  ( ph  ->  (  seq M
(  x.  ,  F
) `  M )  =/=  0 ) )
3016, 29syl 17 . . 3  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( ph  ->  (  seq M (  x.  ,  F ) `
 M )  =/=  0 ) )
31 elfzouz 12474 . . . . . . . . 9  |-  ( n  e.  ( M..^ N
)  ->  n  e.  ( ZZ>= `  M )
)
32313ad2ant2 1083 . . . . . . . 8  |-  ( (
ph  /\  n  e.  ( M..^ N )  /\  (  seq M (  x.  ,  F ) `  n )  =/=  0
)  ->  n  e.  ( ZZ>= `  M )
)
33 seqp1 12816 . . . . . . . 8  |-  ( n  e.  ( ZZ>= `  M
)  ->  (  seq M (  x.  ,  F ) `  (
n  +  1 ) )  =  ( (  seq M (  x.  ,  F ) `  n )  x.  ( F `  ( n  +  1 ) ) ) )
3432, 33syl 17 . . . . . . 7  |-  ( (
ph  /\  n  e.  ( M..^ N )  /\  (  seq M (  x.  ,  F ) `  n )  =/=  0
)  ->  (  seq M (  x.  ,  F ) `  (
n  +  1 ) )  =  ( (  seq M (  x.  ,  F ) `  n )  x.  ( F `  ( n  +  1 ) ) ) )
35 elfzofz 12485 . . . . . . . . . 10  |-  ( n  e.  ( M..^ N
)  ->  n  e.  ( M ... N ) )
36 elfzuz 12338 . . . . . . . . . . . 12  |-  ( n  e.  ( M ... N )  ->  n  e.  ( ZZ>= `  M )
)
3736adantl 482 . . . . . . . . . . 11  |-  ( (
ph  /\  n  e.  ( M ... N ) )  ->  n  e.  ( ZZ>= `  M )
)
38 elfzuz3 12339 . . . . . . . . . . . . . . 15  |-  ( n  e.  ( M ... N )  ->  N  e.  ( ZZ>= `  n )
)
39 fzss2 12381 . . . . . . . . . . . . . . 15  |-  ( N  e.  ( ZZ>= `  n
)  ->  ( M ... n )  C_  ( M ... N ) )
4038, 39syl 17 . . . . . . . . . . . . . 14  |-  ( n  e.  ( M ... N )  ->  ( M ... n )  C_  ( M ... N ) )
4140sselda 3603 . . . . . . . . . . . . 13  |-  ( ( n  e.  ( M ... N )  /\  k  e.  ( M ... n ) )  -> 
k  e.  ( M ... N ) )
42 prodfn0.2 . . . . . . . . . . . . 13  |-  ( (
ph  /\  k  e.  ( M ... N ) )  ->  ( F `  k )  e.  CC )
4341, 42sylan2 491 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( n  e.  ( M ... N
)  /\  k  e.  ( M ... n ) ) )  ->  ( F `  k )  e.  CC )
4443anassrs 680 . . . . . . . . . . 11  |-  ( ( ( ph  /\  n  e.  ( M ... N
) )  /\  k  e.  ( M ... n
) )  ->  ( F `  k )  e.  CC )
45 mulcl 10020 . . . . . . . . . . . 12  |-  ( ( k  e.  CC  /\  x  e.  CC )  ->  ( k  x.  x
)  e.  CC )
4645adantl 482 . . . . . . . . . . 11  |-  ( ( ( ph  /\  n  e.  ( M ... N
) )  /\  (
k  e.  CC  /\  x  e.  CC )
)  ->  ( k  x.  x )  e.  CC )
4737, 44, 46seqcl 12821 . . . . . . . . . 10  |-  ( (
ph  /\  n  e.  ( M ... N ) )  ->  (  seq M (  x.  ,  F ) `  n
)  e.  CC )
4835, 47sylan2 491 . . . . . . . . 9  |-  ( (
ph  /\  n  e.  ( M..^ N ) )  ->  (  seq M
(  x.  ,  F
) `  n )  e.  CC )
49483adant3 1081 . . . . . . . 8  |-  ( (
ph  /\  n  e.  ( M..^ N )  /\  (  seq M (  x.  ,  F ) `  n )  =/=  0
)  ->  (  seq M (  x.  ,  F ) `  n
)  e.  CC )
50 fzofzp1 12565 . . . . . . . . . . 11  |-  ( n  e.  ( M..^ N
)  ->  ( n  +  1 )  e.  ( M ... N
) )
51 fveq2 6191 . . . . . . . . . . . . . 14  |-  ( k  =  ( n  + 
1 )  ->  ( F `  k )  =  ( F `  ( n  +  1
) ) )
5251eleq1d 2686 . . . . . . . . . . . . 13  |-  ( k  =  ( n  + 
1 )  ->  (
( F `  k
)  e.  CC  <->  ( F `  ( n  +  1 ) )  e.  CC ) )
5352imbi2d 330 . . . . . . . . . . . 12  |-  ( k  =  ( n  + 
1 )  ->  (
( ph  ->  ( F `
 k )  e.  CC )  <->  ( ph  ->  ( F `  (
n  +  1 ) )  e.  CC ) ) )
5442expcom 451 . . . . . . . . . . . 12  |-  ( k  e.  ( M ... N )  ->  ( ph  ->  ( F `  k )  e.  CC ) )
5553, 54vtoclga 3272 . . . . . . . . . . 11  |-  ( ( n  +  1 )  e.  ( M ... N )  ->  ( ph  ->  ( F `  ( n  +  1
) )  e.  CC ) )
5650, 55syl 17 . . . . . . . . . 10  |-  ( n  e.  ( M..^ N
)  ->  ( ph  ->  ( F `  (
n  +  1 ) )  e.  CC ) )
5756impcom 446 . . . . . . . . 9  |-  ( (
ph  /\  n  e.  ( M..^ N ) )  ->  ( F `  ( n  +  1
) )  e.  CC )
58573adant3 1081 . . . . . . . 8  |-  ( (
ph  /\  n  e.  ( M..^ N )  /\  (  seq M (  x.  ,  F ) `  n )  =/=  0
)  ->  ( F `  ( n  +  1 ) )  e.  CC )
59 simp3 1063 . . . . . . . 8  |-  ( (
ph  /\  n  e.  ( M..^ N )  /\  (  seq M (  x.  ,  F ) `  n )  =/=  0
)  ->  (  seq M (  x.  ,  F ) `  n
)  =/=  0 )
6051neeq1d 2853 . . . . . . . . . . . . 13  |-  ( k  =  ( n  + 
1 )  ->  (
( F `  k
)  =/=  0  <->  ( F `  ( n  +  1 ) )  =/=  0 ) )
6160imbi2d 330 . . . . . . . . . . . 12  |-  ( k  =  ( n  + 
1 )  ->  (
( ph  ->  ( F `
 k )  =/=  0 )  <->  ( ph  ->  ( F `  (
n  +  1 ) )  =/=  0 ) ) )
6261, 25vtoclga 3272 . . . . . . . . . . 11  |-  ( ( n  +  1 )  e.  ( M ... N )  ->  ( ph  ->  ( F `  ( n  +  1
) )  =/=  0
) )
6362impcom 446 . . . . . . . . . 10  |-  ( (
ph  /\  ( n  +  1 )  e.  ( M ... N
) )  ->  ( F `  ( n  +  1 ) )  =/=  0 )
6450, 63sylan2 491 . . . . . . . . 9  |-  ( (
ph  /\  n  e.  ( M..^ N ) )  ->  ( F `  ( n  +  1
) )  =/=  0
)
65643adant3 1081 . . . . . . . 8  |-  ( (
ph  /\  n  e.  ( M..^ N )  /\  (  seq M (  x.  ,  F ) `  n )  =/=  0
)  ->  ( F `  ( n  +  1 ) )  =/=  0
)
6649, 58, 59, 65mulne0d 10679 . . . . . . 7  |-  ( (
ph  /\  n  e.  ( M..^ N )  /\  (  seq M (  x.  ,  F ) `  n )  =/=  0
)  ->  ( (  seq M (  x.  ,  F ) `  n
)  x.  ( F `
 ( n  + 
1 ) ) )  =/=  0 )
6734, 66eqnetrd 2861 . . . . . 6  |-  ( (
ph  /\  n  e.  ( M..^ N )  /\  (  seq M (  x.  ,  F ) `  n )  =/=  0
)  ->  (  seq M (  x.  ,  F ) `  (
n  +  1 ) )  =/=  0 )
68673exp 1264 . . . . 5  |-  ( ph  ->  ( n  e.  ( M..^ N )  -> 
( (  seq M
(  x.  ,  F
) `  n )  =/=  0  ->  (  seq M (  x.  ,  F ) `  (
n  +  1 ) )  =/=  0 ) ) )
6968com12 32 . . . 4  |-  ( n  e.  ( M..^ N
)  ->  ( ph  ->  ( (  seq M
(  x.  ,  F
) `  n )  =/=  0  ->  (  seq M (  x.  ,  F ) `  (
n  +  1 ) )  =/=  0 ) ) )
7069a2d 29 . . 3  |-  ( n  e.  ( M..^ N
)  ->  ( ( ph  ->  (  seq M
(  x.  ,  F
) `  n )  =/=  0 )  ->  ( ph  ->  (  seq M
(  x.  ,  F
) `  ( n  +  1 ) )  =/=  0 ) ) )
716, 9, 12, 15, 30, 70fzind2 12586 . 2  |-  ( N  e.  ( M ... N )  ->  ( ph  ->  (  seq M
(  x.  ,  F
) `  N )  =/=  0 ) )
723, 71mpcom 38 1  |-  ( ph  ->  (  seq M (  x.  ,  F ) `
 N )  =/=  0 )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794    C_ wss 3574   ` cfv 5888  (class class class)co 6650   CCcc 9934   0cc0 9936   1c1 9937    + caddc 9939    x. cmul 9941   ZZcz 11377   ZZ>=cuz 11687   ...cfz 12326  ..^cfzo 12465    seqcseq 12801
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466  df-seq 12802
This theorem is referenced by:  prodfrec  14627  prodfdiv  14628  fprodn0  14709
  Copyright terms: Public domain W3C validator