MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prodfdiv Structured version   Visualization version   Unicode version

Theorem prodfdiv 14628
Description: The quotient of two infinite products. (Contributed by Scott Fenton, 15-Jan-2018.)
Hypotheses
Ref Expression
prodfdiv.1  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
prodfdiv.2  |-  ( (
ph  /\  k  e.  ( M ... N ) )  ->  ( F `  k )  e.  CC )
prodfdiv.3  |-  ( (
ph  /\  k  e.  ( M ... N ) )  ->  ( G `  k )  e.  CC )
prodfdiv.4  |-  ( (
ph  /\  k  e.  ( M ... N ) )  ->  ( G `  k )  =/=  0
)
prodfdiv.5  |-  ( (
ph  /\  k  e.  ( M ... N ) )  ->  ( H `  k )  =  ( ( F `  k
)  /  ( G `
 k ) ) )
Assertion
Ref Expression
prodfdiv  |-  ( ph  ->  (  seq M (  x.  ,  H ) `
 N )  =  ( (  seq M
(  x.  ,  F
) `  N )  /  (  seq M (  x.  ,  G ) `
 N ) ) )
Distinct variable groups:    k, F    k, G    k, H    ph, k    k, M    k, N

Proof of Theorem prodfdiv
Dummy variables  x  n are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prodfdiv.1 . . . 4  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
2 prodfdiv.3 . . . 4  |-  ( (
ph  /\  k  e.  ( M ... N ) )  ->  ( G `  k )  e.  CC )
3 prodfdiv.4 . . . 4  |-  ( (
ph  /\  k  e.  ( M ... N ) )  ->  ( G `  k )  =/=  0
)
4 fveq2 6191 . . . . . . 7  |-  ( n  =  k  ->  ( G `  n )  =  ( G `  k ) )
54oveq2d 6666 . . . . . 6  |-  ( n  =  k  ->  (
1  /  ( G `
 n ) )  =  ( 1  / 
( G `  k
) ) )
6 eqid 2622 . . . . . 6  |-  ( n  e.  ( M ... N )  |->  ( 1  /  ( G `  n ) ) )  =  ( n  e.  ( M ... N
)  |->  ( 1  / 
( G `  n
) ) )
7 ovex 6678 . . . . . 6  |-  ( 1  /  ( G `  k ) )  e. 
_V
85, 6, 7fvmpt 6282 . . . . 5  |-  ( k  e.  ( M ... N )  ->  (
( n  e.  ( M ... N ) 
|->  ( 1  /  ( G `  n )
) ) `  k
)  =  ( 1  /  ( G `  k ) ) )
98adantl 482 . . . 4  |-  ( (
ph  /\  k  e.  ( M ... N ) )  ->  ( (
n  e.  ( M ... N )  |->  ( 1  /  ( G `
 n ) ) ) `  k )  =  ( 1  / 
( G `  k
) ) )
101, 2, 3, 9prodfrec 14627 . . 3  |-  ( ph  ->  (  seq M (  x.  ,  ( n  e.  ( M ... N )  |->  ( 1  /  ( G `  n ) ) ) ) `  N )  =  ( 1  / 
(  seq M (  x.  ,  G ) `  N ) ) )
1110oveq2d 6666 . 2  |-  ( ph  ->  ( (  seq M
(  x.  ,  F
) `  N )  x.  (  seq M (  x.  ,  ( n  e.  ( M ... N )  |->  ( 1  /  ( G `  n ) ) ) ) `  N ) )  =  ( (  seq M (  x.  ,  F ) `  N )  x.  (
1  /  (  seq M (  x.  ,  G ) `  N
) ) ) )
12 prodfdiv.2 . . 3  |-  ( (
ph  /\  k  e.  ( M ... N ) )  ->  ( F `  k )  e.  CC )
13 eleq1 2689 . . . . . . . . 9  |-  ( k  =  n  ->  (
k  e.  ( M ... N )  <->  n  e.  ( M ... N ) ) )
1413anbi2d 740 . . . . . . . 8  |-  ( k  =  n  ->  (
( ph  /\  k  e.  ( M ... N
) )  <->  ( ph  /\  n  e.  ( M ... N ) ) ) )
15 fveq2 6191 . . . . . . . . 9  |-  ( k  =  n  ->  ( G `  k )  =  ( G `  n ) )
1615eleq1d 2686 . . . . . . . 8  |-  ( k  =  n  ->  (
( G `  k
)  e.  CC  <->  ( G `  n )  e.  CC ) )
1714, 16imbi12d 334 . . . . . . 7  |-  ( k  =  n  ->  (
( ( ph  /\  k  e.  ( M ... N ) )  -> 
( G `  k
)  e.  CC )  <-> 
( ( ph  /\  n  e.  ( M ... N ) )  -> 
( G `  n
)  e.  CC ) ) )
1817, 2chvarv 2263 . . . . . 6  |-  ( (
ph  /\  n  e.  ( M ... N ) )  ->  ( G `  n )  e.  CC )
1915neeq1d 2853 . . . . . . . 8  |-  ( k  =  n  ->  (
( G `  k
)  =/=  0  <->  ( G `  n )  =/=  0 ) )
2014, 19imbi12d 334 . . . . . . 7  |-  ( k  =  n  ->  (
( ( ph  /\  k  e.  ( M ... N ) )  -> 
( G `  k
)  =/=  0 )  <-> 
( ( ph  /\  n  e.  ( M ... N ) )  -> 
( G `  n
)  =/=  0 ) ) )
2120, 3chvarv 2263 . . . . . 6  |-  ( (
ph  /\  n  e.  ( M ... N ) )  ->  ( G `  n )  =/=  0
)
2218, 21reccld 10794 . . . . 5  |-  ( (
ph  /\  n  e.  ( M ... N ) )  ->  ( 1  /  ( G `  n ) )  e.  CC )
2322, 6fmptd 6385 . . . 4  |-  ( ph  ->  ( n  e.  ( M ... N ) 
|->  ( 1  /  ( G `  n )
) ) : ( M ... N ) --> CC )
2423ffvelrnda 6359 . . 3  |-  ( (
ph  /\  k  e.  ( M ... N ) )  ->  ( (
n  e.  ( M ... N )  |->  ( 1  /  ( G `
 n ) ) ) `  k )  e.  CC )
2512, 2, 3divrecd 10804 . . . 4  |-  ( (
ph  /\  k  e.  ( M ... N ) )  ->  ( ( F `  k )  /  ( G `  k ) )  =  ( ( F `  k )  x.  (
1  /  ( G `
 k ) ) ) )
26 prodfdiv.5 . . . 4  |-  ( (
ph  /\  k  e.  ( M ... N ) )  ->  ( H `  k )  =  ( ( F `  k
)  /  ( G `
 k ) ) )
279oveq2d 6666 . . . 4  |-  ( (
ph  /\  k  e.  ( M ... N ) )  ->  ( ( F `  k )  x.  ( ( n  e.  ( M ... N
)  |->  ( 1  / 
( G `  n
) ) ) `  k ) )  =  ( ( F `  k )  x.  (
1  /  ( G `
 k ) ) ) )
2825, 26, 273eqtr4d 2666 . . 3  |-  ( (
ph  /\  k  e.  ( M ... N ) )  ->  ( H `  k )  =  ( ( F `  k
)  x.  ( ( n  e.  ( M ... N )  |->  ( 1  /  ( G `
 n ) ) ) `  k ) ) )
291, 12, 24, 28prodfmul 14622 . 2  |-  ( ph  ->  (  seq M (  x.  ,  H ) `
 N )  =  ( (  seq M
(  x.  ,  F
) `  N )  x.  (  seq M (  x.  ,  ( n  e.  ( M ... N )  |->  ( 1  /  ( G `  n ) ) ) ) `  N ) ) )
30 mulcl 10020 . . . . 5  |-  ( ( k  e.  CC  /\  x  e.  CC )  ->  ( k  x.  x
)  e.  CC )
3130adantl 482 . . . 4  |-  ( (
ph  /\  ( k  e.  CC  /\  x  e.  CC ) )  -> 
( k  x.  x
)  e.  CC )
321, 12, 31seqcl 12821 . . 3  |-  ( ph  ->  (  seq M (  x.  ,  F ) `
 N )  e.  CC )
331, 2, 31seqcl 12821 . . 3  |-  ( ph  ->  (  seq M (  x.  ,  G ) `
 N )  e.  CC )
341, 2, 3prodfn0 14626 . . 3  |-  ( ph  ->  (  seq M (  x.  ,  G ) `
 N )  =/=  0 )
3532, 33, 34divrecd 10804 . 2  |-  ( ph  ->  ( (  seq M
(  x.  ,  F
) `  N )  /  (  seq M (  x.  ,  G ) `
 N ) )  =  ( (  seq M (  x.  ,  F ) `  N
)  x.  ( 1  /  (  seq M
(  x.  ,  G
) `  N )
) ) )
3611, 29, 353eqtr4d 2666 1  |-  ( ph  ->  (  seq M (  x.  ,  H ) `
 N )  =  ( (  seq M
(  x.  ,  F
) `  N )  /  (  seq M (  x.  ,  G ) `
 N ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794    |-> cmpt 4729   ` cfv 5888  (class class class)co 6650   CCcc 9934   0cc0 9936   1c1 9937    x. cmul 9941    / cdiv 10684   ZZ>=cuz 11687   ...cfz 12326    seqcseq 12801
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466  df-seq 12802
This theorem is referenced by:  fproddiv  14691
  Copyright terms: Public domain W3C validator