MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0ramcl Structured version   Visualization version   Unicode version

Theorem 0ramcl 15727
Description: Lemma for ramcl 15733: Existence of the Ramsey number when  M  =  0. (Contributed by Mario Carneiro, 23-Apr-2015.)
Assertion
Ref Expression
0ramcl  |-  ( ( R  e.  Fin  /\  F : R --> NN0 )  ->  ( 0 Ramsey  F )  e.  NN0 )

Proof of Theorem 0ramcl
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ffn 6045 . . . . . . . 8  |-  ( F : R --> NN0  ->  F  Fn  R )
2 dffn4 6121 . . . . . . . 8  |-  ( F  Fn  R  <->  F : R -onto-> ran  F )
31, 2sylib 208 . . . . . . 7  |-  ( F : R --> NN0  ->  F : R -onto-> ran  F
)
43ad2antlr 763 . . . . . 6  |-  ( ( ( R  e.  Fin  /\  F : R --> NN0 )  /\  R  =  (/) )  ->  F : R -onto-> ran  F
)
5 foeq2 6112 . . . . . . 7  |-  ( R  =  (/)  ->  ( F : R -onto-> ran  F  <->  F : (/) -onto-> ran  F ) )
65adantl 482 . . . . . 6  |-  ( ( ( R  e.  Fin  /\  F : R --> NN0 )  /\  R  =  (/) )  -> 
( F : R -onto-> ran  F  <->  F : (/) -onto-> ran  F
) )
74, 6mpbid 222 . . . . 5  |-  ( ( ( R  e.  Fin  /\  F : R --> NN0 )  /\  R  =  (/) )  ->  F : (/) -onto-> ran  F )
8 fo00 6172 . . . . . 6  |-  ( F : (/) -onto-> ran  F  <->  ( F  =  (/)  /\  ran  F  =  (/) ) )
98simplbi 476 . . . . 5  |-  ( F : (/) -onto-> ran  F  ->  F  =  (/) )
107, 9syl 17 . . . 4  |-  ( ( ( R  e.  Fin  /\  F : R --> NN0 )  /\  R  =  (/) )  ->  F  =  (/) )
1110oveq2d 6666 . . 3  |-  ( ( ( R  e.  Fin  /\  F : R --> NN0 )  /\  R  =  (/) )  -> 
( 0 Ramsey  F )  =  ( 0 Ramsey  (/) ) )
12 0nn0 11307 . . . . 5  |-  0  e.  NN0
13 ram0 15726 . . . . 5  |-  ( 0  e.  NN0  ->  ( 0 Ramsey  (/) )  =  0 )
1412, 13ax-mp 5 . . . 4  |-  ( 0 Ramsey  (/) )  =  0
1514, 12eqeltri 2697 . . 3  |-  ( 0 Ramsey  (/) )  e.  NN0
1611, 15syl6eqel 2709 . 2  |-  ( ( ( R  e.  Fin  /\  F : R --> NN0 )  /\  R  =  (/) )  -> 
( 0 Ramsey  F )  e.  NN0 )
17 0ram2 15725 . . . . 5  |-  ( ( R  e.  Fin  /\  R  =/=  (/)  /\  F : R
--> NN0 )  ->  (
0 Ramsey  F )  =  sup ( ran  F ,  RR ,  <  ) )
18 frn 6053 . . . . . . 7  |-  ( F : R --> NN0  ->  ran 
F  C_  NN0 )
19183ad2ant3 1084 . . . . . 6  |-  ( ( R  e.  Fin  /\  R  =/=  (/)  /\  F : R
--> NN0 )  ->  ran  F 
C_  NN0 )
20 nn0ssz 11398 . . . . . . . 8  |-  NN0  C_  ZZ
2119, 20syl6ss 3615 . . . . . . 7  |-  ( ( R  e.  Fin  /\  R  =/=  (/)  /\  F : R
--> NN0 )  ->  ran  F 
C_  ZZ )
22 fdm 6051 . . . . . . . . . 10  |-  ( F : R --> NN0  ->  dom 
F  =  R )
23223ad2ant3 1084 . . . . . . . . 9  |-  ( ( R  e.  Fin  /\  R  =/=  (/)  /\  F : R
--> NN0 )  ->  dom  F  =  R )
24 simp2 1062 . . . . . . . . 9  |-  ( ( R  e.  Fin  /\  R  =/=  (/)  /\  F : R
--> NN0 )  ->  R  =/=  (/) )
2523, 24eqnetrd 2861 . . . . . . . 8  |-  ( ( R  e.  Fin  /\  R  =/=  (/)  /\  F : R
--> NN0 )  ->  dom  F  =/=  (/) )
26 dm0rn0 5342 . . . . . . . . 9  |-  ( dom 
F  =  (/)  <->  ran  F  =  (/) )
2726necon3bii 2846 . . . . . . . 8  |-  ( dom 
F  =/=  (/)  <->  ran  F  =/=  (/) )
2825, 27sylib 208 . . . . . . 7  |-  ( ( R  e.  Fin  /\  R  =/=  (/)  /\  F : R
--> NN0 )  ->  ran  F  =/=  (/) )
29 nn0ssre 11296 . . . . . . . . . 10  |-  NN0  C_  RR
3019, 29syl6ss 3615 . . . . . . . . 9  |-  ( ( R  e.  Fin  /\  R  =/=  (/)  /\  F : R
--> NN0 )  ->  ran  F 
C_  RR )
31 simp1 1061 . . . . . . . . . 10  |-  ( ( R  e.  Fin  /\  R  =/=  (/)  /\  F : R
--> NN0 )  ->  R  e.  Fin )
3233ad2ant3 1084 . . . . . . . . . 10  |-  ( ( R  e.  Fin  /\  R  =/=  (/)  /\  F : R
--> NN0 )  ->  F : R -onto-> ran  F )
33 fofi 8252 . . . . . . . . . 10  |-  ( ( R  e.  Fin  /\  F : R -onto-> ran  F
)  ->  ran  F  e. 
Fin )
3431, 32, 33syl2anc 693 . . . . . . . . 9  |-  ( ( R  e.  Fin  /\  R  =/=  (/)  /\  F : R
--> NN0 )  ->  ran  F  e.  Fin )
35 fimaxre 10968 . . . . . . . . 9  |-  ( ( ran  F  C_  RR  /\ 
ran  F  e.  Fin  /\ 
ran  F  =/=  (/) )  ->  E. x  e.  ran  F A. y  e.  ran  F  y  <_  x )
3630, 34, 28, 35syl3anc 1326 . . . . . . . 8  |-  ( ( R  e.  Fin  /\  R  =/=  (/)  /\  F : R
--> NN0 )  ->  E. x  e.  ran  F A. y  e.  ran  F  y  <_  x )
37 ssrexv 3667 . . . . . . . 8  |-  ( ran 
F  C_  ZZ  ->  ( E. x  e.  ran  F A. y  e.  ran  F  y  <_  x  ->  E. x  e.  ZZ  A. y  e.  ran  F  y  <_  x ) )
3821, 36, 37sylc 65 . . . . . . 7  |-  ( ( R  e.  Fin  /\  R  =/=  (/)  /\  F : R
--> NN0 )  ->  E. x  e.  ZZ  A. y  e. 
ran  F  y  <_  x )
39 suprzcl2 11778 . . . . . . 7  |-  ( ( ran  F  C_  ZZ  /\ 
ran  F  =/=  (/)  /\  E. x  e.  ZZ  A. y  e.  ran  F  y  <_  x )  ->  sup ( ran  F ,  RR ,  <  )  e.  ran  F )
4021, 28, 38, 39syl3anc 1326 . . . . . 6  |-  ( ( R  e.  Fin  /\  R  =/=  (/)  /\  F : R
--> NN0 )  ->  sup ( ran  F ,  RR ,  <  )  e.  ran  F )
4119, 40sseldd 3604 . . . . 5  |-  ( ( R  e.  Fin  /\  R  =/=  (/)  /\  F : R
--> NN0 )  ->  sup ( ran  F ,  RR ,  <  )  e.  NN0 )
4217, 41eqeltrd 2701 . . . 4  |-  ( ( R  e.  Fin  /\  R  =/=  (/)  /\  F : R
--> NN0 )  ->  (
0 Ramsey  F )  e.  NN0 )
43423expa 1265 . . 3  |-  ( ( ( R  e.  Fin  /\  R  =/=  (/) )  /\  F : R --> NN0 )  ->  ( 0 Ramsey  F )  e.  NN0 )
4443an32s 846 . 2  |-  ( ( ( R  e.  Fin  /\  F : R --> NN0 )  /\  R  =/=  (/) )  -> 
( 0 Ramsey  F )  e.  NN0 )
4516, 44pm2.61dane 2881 1  |-  ( ( R  e.  Fin  /\  F : R --> NN0 )  ->  ( 0 Ramsey  F )  e.  NN0 )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   A.wral 2912   E.wrex 2913    C_ wss 3574   (/)c0 3915   class class class wbr 4653   dom cdm 5114   ran crn 5115    Fn wfn 5883   -->wf 5884   -onto->wfo 5886  (class class class)co 6650   Fincfn 7955   supcsup 8346   RRcr 9935   0cc0 9936    < clt 10074    <_ cle 10075   NN0cn0 11292   ZZcz 11377   Ramsey cram 15703
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-n0 11293  df-xnn0 11364  df-z 11378  df-uz 11688  df-rp 11833  df-fz 12327  df-seq 12802  df-fac 13061  df-bc 13090  df-hash 13118  df-ram 15705
This theorem is referenced by:  ramcl  15733
  Copyright terms: Public domain W3C validator