MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ressxms Structured version   Visualization version   Unicode version

Theorem ressxms 22330
Description: The restriction of a metric space is a metric space. (Contributed by Mario Carneiro, 24-Aug-2015.)
Assertion
Ref Expression
ressxms  |-  ( ( K  e.  *MetSp  /\  A  e.  V )  ->  ( Ks  A )  e.  *MetSp )

Proof of Theorem ressxms
StepHypRef Expression
1 eqid 2622 . . . . . 6  |-  ( Base `  K )  =  (
Base `  K )
2 eqid 2622 . . . . . 6  |-  ( (
dist `  K )  |`  ( ( Base `  K
)  X.  ( Base `  K ) ) )  =  ( ( dist `  K )  |`  (
( Base `  K )  X.  ( Base `  K
) ) )
31, 2xmsxmet 22261 . . . . 5  |-  ( K  e.  *MetSp  ->  (
( dist `  K )  |`  ( ( Base `  K
)  X.  ( Base `  K ) ) )  e.  ( *Met `  ( Base `  K
) ) )
43adantr 481 . . . 4  |-  ( ( K  e.  *MetSp  /\  A  e.  V )  ->  ( ( dist `  K )  |`  (
( Base `  K )  X.  ( Base `  K
) ) )  e.  ( *Met `  ( Base `  K )
) )
5 xmetres 22169 . . . 4  |-  ( ( ( dist `  K
)  |`  ( ( Base `  K )  X.  ( Base `  K ) ) )  e.  ( *Met `  ( Base `  K ) )  -> 
( ( ( dist `  K )  |`  (
( Base `  K )  X.  ( Base `  K
) ) )  |`  ( A  X.  A
) )  e.  ( *Met `  (
( Base `  K )  i^i  A ) ) )
64, 5syl 17 . . 3  |-  ( ( K  e.  *MetSp  /\  A  e.  V )  ->  ( ( (
dist `  K )  |`  ( ( Base `  K
)  X.  ( Base `  K ) ) )  |`  ( A  X.  A
) )  e.  ( *Met `  (
( Base `  K )  i^i  A ) ) )
7 resres 5409 . . . . 5  |-  ( ( ( dist `  K
)  |`  ( ( Base `  K )  X.  ( Base `  K ) ) )  |`  ( A  X.  A ) )  =  ( ( dist `  K
)  |`  ( ( (
Base `  K )  X.  ( Base `  K
) )  i^i  ( A  X.  A ) ) )
8 inxp 5254 . . . . . 6  |-  ( ( ( Base `  K
)  X.  ( Base `  K ) )  i^i  ( A  X.  A
) )  =  ( ( ( Base `  K
)  i^i  A )  X.  ( ( Base `  K
)  i^i  A )
)
98reseq2i 5393 . . . . 5  |-  ( (
dist `  K )  |`  ( ( ( Base `  K )  X.  ( Base `  K ) )  i^i  ( A  X.  A ) ) )  =  ( ( dist `  K )  |`  (
( ( Base `  K
)  i^i  A )  X.  ( ( Base `  K
)  i^i  A )
) )
107, 9eqtri 2644 . . . 4  |-  ( ( ( dist `  K
)  |`  ( ( Base `  K )  X.  ( Base `  K ) ) )  |`  ( A  X.  A ) )  =  ( ( dist `  K
)  |`  ( ( (
Base `  K )  i^i  A )  X.  (
( Base `  K )  i^i  A ) ) )
11 eqid 2622 . . . . . . 7  |-  ( Ks  A )  =  ( Ks  A )
12 eqid 2622 . . . . . . 7  |-  ( dist `  K )  =  (
dist `  K )
1311, 12ressds 16073 . . . . . 6  |-  ( A  e.  V  ->  ( dist `  K )  =  ( dist `  ( Ks  A ) ) )
1413adantl 482 . . . . 5  |-  ( ( K  e.  *MetSp  /\  A  e.  V )  ->  ( dist `  K
)  =  ( dist `  ( Ks  A ) ) )
15 incom 3805 . . . . . . 7  |-  ( (
Base `  K )  i^i  A )  =  ( A  i^i  ( Base `  K ) )
1611, 1ressbas 15930 . . . . . . . 8  |-  ( A  e.  V  ->  ( A  i^i  ( Base `  K
) )  =  (
Base `  ( Ks  A
) ) )
1716adantl 482 . . . . . . 7  |-  ( ( K  e.  *MetSp  /\  A  e.  V )  ->  ( A  i^i  ( Base `  K )
)  =  ( Base `  ( Ks  A ) ) )
1815, 17syl5eq 2668 . . . . . 6  |-  ( ( K  e.  *MetSp  /\  A  e.  V )  ->  ( ( Base `  K )  i^i  A
)  =  ( Base `  ( Ks  A ) ) )
1918sqxpeqd 5141 . . . . 5  |-  ( ( K  e.  *MetSp  /\  A  e.  V )  ->  ( ( (
Base `  K )  i^i  A )  X.  (
( Base `  K )  i^i  A ) )  =  ( ( Base `  ( Ks  A ) )  X.  ( Base `  ( Ks  A ) ) ) )
2014, 19reseq12d 5397 . . . 4  |-  ( ( K  e.  *MetSp  /\  A  e.  V )  ->  ( ( dist `  K )  |`  (
( ( Base `  K
)  i^i  A )  X.  ( ( Base `  K
)  i^i  A )
) )  =  ( ( dist `  ( Ks  A ) )  |`  ( ( Base `  ( Ks  A ) )  X.  ( Base `  ( Ks  A ) ) ) ) )
2110, 20syl5eq 2668 . . 3  |-  ( ( K  e.  *MetSp  /\  A  e.  V )  ->  ( ( (
dist `  K )  |`  ( ( Base `  K
)  X.  ( Base `  K ) ) )  |`  ( A  X.  A
) )  =  ( ( dist `  ( Ks  A ) )  |`  ( ( Base `  ( Ks  A ) )  X.  ( Base `  ( Ks  A ) ) ) ) )
2218fveq2d 6195 . . 3  |-  ( ( K  e.  *MetSp  /\  A  e.  V )  ->  ( *Met `  ( ( Base `  K
)  i^i  A )
)  =  ( *Met `  ( Base `  ( Ks  A ) ) ) )
236, 21, 223eltr3d 2715 . 2  |-  ( ( K  e.  *MetSp  /\  A  e.  V )  ->  ( ( dist `  ( Ks  A ) )  |`  ( ( Base `  ( Ks  A ) )  X.  ( Base `  ( Ks  A ) ) ) )  e.  ( *Met `  ( Base `  ( Ks  A ) ) ) )
24 eqid 2622 . . . . . . 7  |-  ( TopOpen `  K )  =  (
TopOpen `  K )
2524, 1, 2xmstopn 22256 . . . . . 6  |-  ( K  e.  *MetSp  ->  ( TopOpen
`  K )  =  ( MetOpen `  ( ( dist `  K )  |`  ( ( Base `  K
)  X.  ( Base `  K ) ) ) ) )
2625adantr 481 . . . . 5  |-  ( ( K  e.  *MetSp  /\  A  e.  V )  ->  ( TopOpen `  K
)  =  ( MetOpen `  ( ( dist `  K
)  |`  ( ( Base `  K )  X.  ( Base `  K ) ) ) ) )
2726oveq1d 6665 . . . 4  |-  ( ( K  e.  *MetSp  /\  A  e.  V )  ->  ( ( TopOpen `  K )t  ( ( Base `  K )  i^i  A
) )  =  ( ( MetOpen `  ( ( dist `  K )  |`  ( ( Base `  K
)  X.  ( Base `  K ) ) ) )t  ( ( Base `  K
)  i^i  A )
) )
28 inss1 3833 . . . . 5  |-  ( (
Base `  K )  i^i  A )  C_  ( Base `  K )
29 xpss12 5225 . . . . . . . . 9  |-  ( ( ( ( Base `  K
)  i^i  A )  C_  ( Base `  K
)  /\  ( ( Base `  K )  i^i 
A )  C_  ( Base `  K ) )  ->  ( ( (
Base `  K )  i^i  A )  X.  (
( Base `  K )  i^i  A ) )  C_  ( ( Base `  K
)  X.  ( Base `  K ) ) )
3028, 28, 29mp2an 708 . . . . . . . 8  |-  ( ( ( Base `  K
)  i^i  A )  X.  ( ( Base `  K
)  i^i  A )
)  C_  ( ( Base `  K )  X.  ( Base `  K
) )
31 resabs1 5427 . . . . . . . 8  |-  ( ( ( ( Base `  K
)  i^i  A )  X.  ( ( Base `  K
)  i^i  A )
)  C_  ( ( Base `  K )  X.  ( Base `  K
) )  ->  (
( ( dist `  K
)  |`  ( ( Base `  K )  X.  ( Base `  K ) ) )  |`  ( (
( Base `  K )  i^i  A )  X.  (
( Base `  K )  i^i  A ) ) )  =  ( ( dist `  K )  |`  (
( ( Base `  K
)  i^i  A )  X.  ( ( Base `  K
)  i^i  A )
) ) )
3230, 31ax-mp 5 . . . . . . 7  |-  ( ( ( dist `  K
)  |`  ( ( Base `  K )  X.  ( Base `  K ) ) )  |`  ( (
( Base `  K )  i^i  A )  X.  (
( Base `  K )  i^i  A ) ) )  =  ( ( dist `  K )  |`  (
( ( Base `  K
)  i^i  A )  X.  ( ( Base `  K
)  i^i  A )
) )
3310, 32eqtr4i 2647 . . . . . 6  |-  ( ( ( dist `  K
)  |`  ( ( Base `  K )  X.  ( Base `  K ) ) )  |`  ( A  X.  A ) )  =  ( ( ( dist `  K )  |`  (
( Base `  K )  X.  ( Base `  K
) ) )  |`  ( ( ( Base `  K )  i^i  A
)  X.  ( (
Base `  K )  i^i  A ) ) )
34 eqid 2622 . . . . . 6  |-  ( MetOpen `  ( ( dist `  K
)  |`  ( ( Base `  K )  X.  ( Base `  K ) ) ) )  =  (
MetOpen `  ( ( dist `  K )  |`  (
( Base `  K )  X.  ( Base `  K
) ) ) )
35 eqid 2622 . . . . . 6  |-  ( MetOpen `  ( ( ( dist `  K )  |`  (
( Base `  K )  X.  ( Base `  K
) ) )  |`  ( A  X.  A
) ) )  =  ( MetOpen `  ( (
( dist `  K )  |`  ( ( Base `  K
)  X.  ( Base `  K ) ) )  |`  ( A  X.  A
) ) )
3633, 34, 35metrest 22329 . . . . 5  |-  ( ( ( ( dist `  K
)  |`  ( ( Base `  K )  X.  ( Base `  K ) ) )  e.  ( *Met `  ( Base `  K ) )  /\  ( ( Base `  K
)  i^i  A )  C_  ( Base `  K
) )  ->  (
( MetOpen `  ( ( dist `  K )  |`  ( ( Base `  K
)  X.  ( Base `  K ) ) ) )t  ( ( Base `  K
)  i^i  A )
)  =  ( MetOpen `  ( ( ( dist `  K )  |`  (
( Base `  K )  X.  ( Base `  K
) ) )  |`  ( A  X.  A
) ) ) )
374, 28, 36sylancl 694 . . . 4  |-  ( ( K  e.  *MetSp  /\  A  e.  V )  ->  ( ( MetOpen `  ( ( dist `  K
)  |`  ( ( Base `  K )  X.  ( Base `  K ) ) ) )t  ( ( Base `  K )  i^i  A
) )  =  (
MetOpen `  ( ( (
dist `  K )  |`  ( ( Base `  K
)  X.  ( Base `  K ) ) )  |`  ( A  X.  A
) ) ) )
3827, 37eqtrd 2656 . . 3  |-  ( ( K  e.  *MetSp  /\  A  e.  V )  ->  ( ( TopOpen `  K )t  ( ( Base `  K )  i^i  A
) )  =  (
MetOpen `  ( ( (
dist `  K )  |`  ( ( Base `  K
)  X.  ( Base `  K ) ) )  |`  ( A  X.  A
) ) ) )
39 xmstps 22258 . . . . . . . . 9  |-  ( K  e.  *MetSp  ->  K  e.  TopSp )
401, 24tpsuni 20740 . . . . . . . . 9  |-  ( K  e.  TopSp  ->  ( Base `  K )  =  U. ( TopOpen `  K )
)
4139, 40syl 17 . . . . . . . 8  |-  ( K  e.  *MetSp  ->  ( Base `  K )  = 
U. ( TopOpen `  K
) )
4241adantr 481 . . . . . . 7  |-  ( ( K  e.  *MetSp  /\  A  e.  V )  ->  ( Base `  K
)  =  U. ( TopOpen
`  K ) )
4342ineq2d 3814 . . . . . 6  |-  ( ( K  e.  *MetSp  /\  A  e.  V )  ->  ( A  i^i  ( Base `  K )
)  =  ( A  i^i  U. ( TopOpen `  K ) ) )
4415, 43syl5eq 2668 . . . . 5  |-  ( ( K  e.  *MetSp  /\  A  e.  V )  ->  ( ( Base `  K )  i^i  A
)  =  ( A  i^i  U. ( TopOpen `  K ) ) )
4544oveq2d 6666 . . . 4  |-  ( ( K  e.  *MetSp  /\  A  e.  V )  ->  ( ( TopOpen `  K )t  ( ( Base `  K )  i^i  A
) )  =  ( ( TopOpen `  K )t  ( A  i^i  U. ( TopOpen `  K ) ) ) )
461, 24istps 20738 . . . . . 6  |-  ( K  e.  TopSp 
<->  ( TopOpen `  K )  e.  (TopOn `  ( Base `  K ) ) )
4739, 46sylib 208 . . . . 5  |-  ( K  e.  *MetSp  ->  ( TopOpen
`  K )  e.  (TopOn `  ( Base `  K ) ) )
48 eqid 2622 . . . . . 6  |-  U. ( TopOpen
`  K )  = 
U. ( TopOpen `  K
)
4948restin 20970 . . . . 5  |-  ( ( ( TopOpen `  K )  e.  (TopOn `  ( Base `  K ) )  /\  A  e.  V )  ->  ( ( TopOpen `  K
)t 
A )  =  ( ( TopOpen `  K )t  ( A  i^i  U. ( TopOpen `  K ) ) ) )
5047, 49sylan 488 . . . 4  |-  ( ( K  e.  *MetSp  /\  A  e.  V )  ->  ( ( TopOpen `  K )t  A )  =  ( ( TopOpen `  K )t  ( A  i^i  U. ( TopOpen `  K ) ) ) )
5145, 50eqtr4d 2659 . . 3  |-  ( ( K  e.  *MetSp  /\  A  e.  V )  ->  ( ( TopOpen `  K )t  ( ( Base `  K )  i^i  A
) )  =  ( ( TopOpen `  K )t  A
) )
5221fveq2d 6195 . . 3  |-  ( ( K  e.  *MetSp  /\  A  e.  V )  ->  ( MetOpen `  (
( ( dist `  K
)  |`  ( ( Base `  K )  X.  ( Base `  K ) ) )  |`  ( A  X.  A ) ) )  =  ( MetOpen `  (
( dist `  ( Ks  A
) )  |`  (
( Base `  ( Ks  A
) )  X.  ( Base `  ( Ks  A ) ) ) ) ) )
5338, 51, 523eqtr3d 2664 . 2  |-  ( ( K  e.  *MetSp  /\  A  e.  V )  ->  ( ( TopOpen `  K )t  A )  =  (
MetOpen `  ( ( dist `  ( Ks  A ) )  |`  ( ( Base `  ( Ks  A ) )  X.  ( Base `  ( Ks  A ) ) ) ) ) )
5411, 24resstopn 20990 . . 3  |-  ( (
TopOpen `  K )t  A )  =  ( TopOpen `  ( Ks  A ) )
55 eqid 2622 . . 3  |-  ( Base `  ( Ks  A ) )  =  ( Base `  ( Ks  A ) )
56 eqid 2622 . . 3  |-  ( (
dist `  ( Ks  A
) )  |`  (
( Base `  ( Ks  A
) )  X.  ( Base `  ( Ks  A ) ) ) )  =  ( ( dist `  ( Ks  A ) )  |`  ( ( Base `  ( Ks  A ) )  X.  ( Base `  ( Ks  A ) ) ) )
5754, 55, 56isxms2 22253 . 2  |-  ( ( Ks  A )  e.  *MetSp  <-> 
( ( ( dist `  ( Ks  A ) )  |`  ( ( Base `  ( Ks  A ) )  X.  ( Base `  ( Ks  A ) ) ) )  e.  ( *Met `  ( Base `  ( Ks  A ) ) )  /\  ( ( TopOpen `  K )t  A )  =  (
MetOpen `  ( ( dist `  ( Ks  A ) )  |`  ( ( Base `  ( Ks  A ) )  X.  ( Base `  ( Ks  A ) ) ) ) ) ) )
5823, 53, 57sylanbrc 698 1  |-  ( ( K  e.  *MetSp  /\  A  e.  V )  ->  ( Ks  A )  e.  *MetSp )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990    i^i cin 3573    C_ wss 3574   U.cuni 4436    X. cxp 5112    |` cres 5116   ` cfv 5888  (class class class)co 6650   Basecbs 15857   ↾s cress 15858   distcds 15950   ↾t crest 16081   TopOpenctopn 16082   *Metcxmt 19731   MetOpencmopn 19736  TopOnctopon 20715   TopSpctps 20736   *MetSpcxme 22122
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-tset 15960  df-ds 15964  df-rest 16083  df-topn 16084  df-topgen 16104  df-psmet 19738  df-xmet 19739  df-bl 19741  df-mopn 19742  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-xms 22125
This theorem is referenced by:  ressms  22331  qqhcn  30035  qqhucn  30036
  Copyright terms: Public domain W3C validator