MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  scshwfzeqfzo Structured version   Visualization version   Unicode version

Theorem scshwfzeqfzo 13572
Description: For a nonempty word the sets of shifted words, expressd by a finite interval of integers or by a half-open integer range are identical. (Contributed by Alexander van der Vekens, 15-Jun-2018.)
Assertion
Ref Expression
scshwfzeqfzo  |-  ( ( X  e. Word  V  /\  X  =/=  (/)  /\  N  =  ( # `  X
) )  ->  { y  e. Word  V  |  E. n  e.  ( 0 ... N ) y  =  ( X cyclShift  n ) }  =  { y  e. Word  V  |  E. n  e.  ( 0..^ N ) y  =  ( X cyclShift  n ) } )
Distinct variable groups:    n, N, y    n, V, y    n, X, y

Proof of Theorem scshwfzeqfzo
StepHypRef Expression
1 lencl 13324 . . . . . . . . . . . 12  |-  ( X  e. Word  V  ->  ( # `
 X )  e. 
NN0 )
2 elnn0uz 11725 . . . . . . . . . . . 12  |-  ( (
# `  X )  e.  NN0  <->  ( # `  X
)  e.  ( ZZ>= ` 
0 ) )
31, 2sylib 208 . . . . . . . . . . 11  |-  ( X  e. Word  V  ->  ( # `
 X )  e.  ( ZZ>= `  0 )
)
43adantr 481 . . . . . . . . . 10  |-  ( ( X  e. Word  V  /\  N  =  ( # `  X
) )  ->  ( # `
 X )  e.  ( ZZ>= `  0 )
)
5 eleq1 2689 . . . . . . . . . . 11  |-  ( N  =  ( # `  X
)  ->  ( N  e.  ( ZZ>= `  0 )  <->  (
# `  X )  e.  ( ZZ>= `  0 )
) )
65adantl 482 . . . . . . . . . 10  |-  ( ( X  e. Word  V  /\  N  =  ( # `  X
) )  ->  ( N  e.  ( ZZ>= ` 
0 )  <->  ( # `  X
)  e.  ( ZZ>= ` 
0 ) ) )
74, 6mpbird 247 . . . . . . . . 9  |-  ( ( X  e. Word  V  /\  N  =  ( # `  X
) )  ->  N  e.  ( ZZ>= `  0 )
)
873adant2 1080 . . . . . . . 8  |-  ( ( X  e. Word  V  /\  X  =/=  (/)  /\  N  =  ( # `  X
) )  ->  N  e.  ( ZZ>= `  0 )
)
98adantr 481 . . . . . . 7  |-  ( ( ( X  e. Word  V  /\  X  =/=  (/)  /\  N  =  ( # `  X
) )  /\  y  e. Word  V )  ->  N  e.  ( ZZ>= `  0 )
)
10 fzisfzounsn 12580 . . . . . . 7  |-  ( N  e.  ( ZZ>= `  0
)  ->  ( 0 ... N )  =  ( ( 0..^ N )  u.  { N } ) )
119, 10syl 17 . . . . . 6  |-  ( ( ( X  e. Word  V  /\  X  =/=  (/)  /\  N  =  ( # `  X
) )  /\  y  e. Word  V )  ->  (
0 ... N )  =  ( ( 0..^ N )  u.  { N } ) )
1211rexeqdv 3145 . . . . 5  |-  ( ( ( X  e. Word  V  /\  X  =/=  (/)  /\  N  =  ( # `  X
) )  /\  y  e. Word  V )  ->  ( E. n  e.  (
0 ... N ) y  =  ( X cyclShift  n )  <->  E. n  e.  (
( 0..^ N )  u.  { N }
) y  =  ( X cyclShift  n ) ) )
13 rexun 3793 . . . . 5  |-  ( E. n  e.  ( ( 0..^ N )  u. 
{ N } ) y  =  ( X cyclShift  n )  <->  ( E. n  e.  ( 0..^ N ) y  =  ( X cyclShift  n )  \/  E. n  e.  { N } y  =  ( X cyclShift  n ) ) )
1412, 13syl6bb 276 . . . 4  |-  ( ( ( X  e. Word  V  /\  X  =/=  (/)  /\  N  =  ( # `  X
) )  /\  y  e. Word  V )  ->  ( E. n  e.  (
0 ... N ) y  =  ( X cyclShift  n )  <-> 
( E. n  e.  ( 0..^ N ) y  =  ( X cyclShift  n )  \/  E. n  e.  { N } y  =  ( X cyclShift  n ) ) ) )
15 ax-1 6 . . . . . 6  |-  ( E. n  e.  ( 0..^ N ) y  =  ( X cyclShift  n )  ->  ( ( ( X  e. Word  V  /\  X  =/=  (/)  /\  N  =  ( # `  X
) )  /\  y  e. Word  V )  ->  E. n  e.  ( 0..^ N ) y  =  ( X cyclShift  n ) ) )
16 fvex 6201 . . . . . . . . . . . 12  |-  ( # `  X )  e.  _V
17 eleq1 2689 . . . . . . . . . . . 12  |-  ( N  =  ( # `  X
)  ->  ( N  e.  _V  <->  ( # `  X
)  e.  _V )
)
1816, 17mpbiri 248 . . . . . . . . . . 11  |-  ( N  =  ( # `  X
)  ->  N  e.  _V )
19 oveq2 6658 . . . . . . . . . . . . 13  |-  ( n  =  N  ->  ( X cyclShift  n )  =  ( X cyclShift  N ) )
2019eqeq2d 2632 . . . . . . . . . . . 12  |-  ( n  =  N  ->  (
y  =  ( X cyclShift  n )  <->  y  =  ( X cyclShift  N ) ) )
2120rexsng 4219 . . . . . . . . . . 11  |-  ( N  e.  _V  ->  ( E. n  e.  { N } y  =  ( X cyclShift  n )  <->  y  =  ( X cyclShift  N ) ) )
2218, 21syl 17 . . . . . . . . . 10  |-  ( N  =  ( # `  X
)  ->  ( E. n  e.  { N } y  =  ( X cyclShift  n )  <->  y  =  ( X cyclShift  N ) ) )
23223ad2ant3 1084 . . . . . . . . 9  |-  ( ( X  e. Word  V  /\  X  =/=  (/)  /\  N  =  ( # `  X
) )  ->  ( E. n  e.  { N } y  =  ( X cyclShift  n )  <->  y  =  ( X cyclShift  N ) ) )
2423adantr 481 . . . . . . . 8  |-  ( ( ( X  e. Word  V  /\  X  =/=  (/)  /\  N  =  ( # `  X
) )  /\  y  e. Word  V )  ->  ( E. n  e.  { N } y  =  ( X cyclShift  n )  <->  y  =  ( X cyclShift  N ) ) )
25 oveq2 6658 . . . . . . . . . . . . 13  |-  ( N  =  ( # `  X
)  ->  ( X cyclShift  N )  =  ( X cyclShift  ( # `  X ) ) )
26253ad2ant3 1084 . . . . . . . . . . . 12  |-  ( ( X  e. Word  V  /\  X  =/=  (/)  /\  N  =  ( # `  X
) )  ->  ( X cyclShift  N )  =  ( X cyclShift  ( # `  X
) ) )
27 cshwn 13543 . . . . . . . . . . . . 13  |-  ( X  e. Word  V  ->  ( X cyclShift  ( # `  X
) )  =  X )
28273ad2ant1 1082 . . . . . . . . . . . 12  |-  ( ( X  e. Word  V  /\  X  =/=  (/)  /\  N  =  ( # `  X
) )  ->  ( X cyclShift  ( # `  X
) )  =  X )
2926, 28eqtrd 2656 . . . . . . . . . . 11  |-  ( ( X  e. Word  V  /\  X  =/=  (/)  /\  N  =  ( # `  X
) )  ->  ( X cyclShift  N )  =  X )
3029eqeq2d 2632 . . . . . . . . . 10  |-  ( ( X  e. Word  V  /\  X  =/=  (/)  /\  N  =  ( # `  X
) )  ->  (
y  =  ( X cyclShift  N )  <->  y  =  X ) )
3130adantr 481 . . . . . . . . 9  |-  ( ( ( X  e. Word  V  /\  X  =/=  (/)  /\  N  =  ( # `  X
) )  /\  y  e. Word  V )  ->  (
y  =  ( X cyclShift  N )  <->  y  =  X ) )
32 cshw0 13540 . . . . . . . . . . . . . . 15  |-  ( X  e. Word  V  ->  ( X cyclShift  0 )  =  X )
33323ad2ant1 1082 . . . . . . . . . . . . . 14  |-  ( ( X  e. Word  V  /\  X  =/=  (/)  /\  N  =  ( # `  X
) )  ->  ( X cyclShift  0 )  =  X )
34 lennncl 13325 . . . . . . . . . . . . . . . . . 18  |-  ( ( X  e. Word  V  /\  X  =/=  (/) )  ->  ( # `
 X )  e.  NN )
35343adant3 1081 . . . . . . . . . . . . . . . . 17  |-  ( ( X  e. Word  V  /\  X  =/=  (/)  /\  N  =  ( # `  X
) )  ->  ( # `
 X )  e.  NN )
36 eleq1 2689 . . . . . . . . . . . . . . . . . 18  |-  ( N  =  ( # `  X
)  ->  ( N  e.  NN  <->  ( # `  X
)  e.  NN ) )
37363ad2ant3 1084 . . . . . . . . . . . . . . . . 17  |-  ( ( X  e. Word  V  /\  X  =/=  (/)  /\  N  =  ( # `  X
) )  ->  ( N  e.  NN  <->  ( # `  X
)  e.  NN ) )
3835, 37mpbird 247 . . . . . . . . . . . . . . . 16  |-  ( ( X  e. Word  V  /\  X  =/=  (/)  /\  N  =  ( # `  X
) )  ->  N  e.  NN )
39 lbfzo0 12507 . . . . . . . . . . . . . . . 16  |-  ( 0  e.  ( 0..^ N )  <->  N  e.  NN )
4038, 39sylibr 224 . . . . . . . . . . . . . . 15  |-  ( ( X  e. Word  V  /\  X  =/=  (/)  /\  N  =  ( # `  X
) )  ->  0  e.  ( 0..^ N ) )
41 oveq2 6658 . . . . . . . . . . . . . . . . . . . 20  |-  ( 0  =  n  ->  ( X cyclShift  0 )  =  ( X cyclShift  n ) )
4241eqeq1d 2624 . . . . . . . . . . . . . . . . . . 19  |-  ( 0  =  n  ->  (
( X cyclShift  0 )  =  X  <->  ( X cyclShift  n )  =  X ) )
4342eqcoms 2630 . . . . . . . . . . . . . . . . . 18  |-  ( n  =  0  ->  (
( X cyclShift  0 )  =  X  <->  ( X cyclShift  n )  =  X ) )
44 eqcom 2629 . . . . . . . . . . . . . . . . . 18  |-  ( ( X cyclShift  n )  =  X  <-> 
X  =  ( X cyclShift  n ) )
4543, 44syl6bb 276 . . . . . . . . . . . . . . . . 17  |-  ( n  =  0  ->  (
( X cyclShift  0 )  =  X  <->  X  =  ( X cyclShift  n ) ) )
4645adantl 482 . . . . . . . . . . . . . . . 16  |-  ( ( ( X  e. Word  V  /\  X  =/=  (/)  /\  N  =  ( # `  X
) )  /\  n  =  0 )  -> 
( ( X cyclShift  0
)  =  X  <->  X  =  ( X cyclShift  n ) ) )
4746biimpd 219 . . . . . . . . . . . . . . 15  |-  ( ( ( X  e. Word  V  /\  X  =/=  (/)  /\  N  =  ( # `  X
) )  /\  n  =  0 )  -> 
( ( X cyclShift  0
)  =  X  ->  X  =  ( X cyclShift  n ) ) )
4840, 47rspcimedv 3311 . . . . . . . . . . . . . 14  |-  ( ( X  e. Word  V  /\  X  =/=  (/)  /\  N  =  ( # `  X
) )  ->  (
( X cyclShift  0 )  =  X  ->  E. n  e.  ( 0..^ N ) X  =  ( X cyclShift  n ) ) )
4933, 48mpd 15 . . . . . . . . . . . . 13  |-  ( ( X  e. Word  V  /\  X  =/=  (/)  /\  N  =  ( # `  X
) )  ->  E. n  e.  ( 0..^ N ) X  =  ( X cyclShift  n ) )
5049adantr 481 . . . . . . . . . . . 12  |-  ( ( ( X  e. Word  V  /\  X  =/=  (/)  /\  N  =  ( # `  X
) )  /\  y  e. Word  V )  ->  E. n  e.  ( 0..^ N ) X  =  ( X cyclShift  n ) )
5150adantr 481 . . . . . . . . . . 11  |-  ( ( ( ( X  e. Word  V  /\  X  =/=  (/)  /\  N  =  ( # `  X
) )  /\  y  e. Word  V )  /\  y  =  X )  ->  E. n  e.  ( 0..^ N ) X  =  ( X cyclShift  n ) )
52 eqeq1 2626 . . . . . . . . . . . . 13  |-  ( y  =  X  ->  (
y  =  ( X cyclShift  n )  <->  X  =  ( X cyclShift  n ) ) )
5352adantl 482 . . . . . . . . . . . 12  |-  ( ( ( ( X  e. Word  V  /\  X  =/=  (/)  /\  N  =  ( # `  X
) )  /\  y  e. Word  V )  /\  y  =  X )  ->  (
y  =  ( X cyclShift  n )  <->  X  =  ( X cyclShift  n ) ) )
5453rexbidv 3052 . . . . . . . . . . 11  |-  ( ( ( ( X  e. Word  V  /\  X  =/=  (/)  /\  N  =  ( # `  X
) )  /\  y  e. Word  V )  /\  y  =  X )  ->  ( E. n  e.  (
0..^ N ) y  =  ( X cyclShift  n )  <->  E. n  e.  (
0..^ N ) X  =  ( X cyclShift  n ) ) )
5551, 54mpbird 247 . . . . . . . . . 10  |-  ( ( ( ( X  e. Word  V  /\  X  =/=  (/)  /\  N  =  ( # `  X
) )  /\  y  e. Word  V )  /\  y  =  X )  ->  E. n  e.  ( 0..^ N ) y  =  ( X cyclShift  n ) )
5655ex 450 . . . . . . . . 9  |-  ( ( ( X  e. Word  V  /\  X  =/=  (/)  /\  N  =  ( # `  X
) )  /\  y  e. Word  V )  ->  (
y  =  X  ->  E. n  e.  (
0..^ N ) y  =  ( X cyclShift  n ) ) )
5731, 56sylbid 230 . . . . . . . 8  |-  ( ( ( X  e. Word  V  /\  X  =/=  (/)  /\  N  =  ( # `  X
) )  /\  y  e. Word  V )  ->  (
y  =  ( X cyclShift  N )  ->  E. n  e.  ( 0..^ N ) y  =  ( X cyclShift  n ) ) )
5824, 57sylbid 230 . . . . . . 7  |-  ( ( ( X  e. Word  V  /\  X  =/=  (/)  /\  N  =  ( # `  X
) )  /\  y  e. Word  V )  ->  ( E. n  e.  { N } y  =  ( X cyclShift  n )  ->  E. n  e.  ( 0..^ N ) y  =  ( X cyclShift  n ) ) )
5958com12 32 . . . . . 6  |-  ( E. n  e.  { N } y  =  ( X cyclShift  n )  ->  (
( ( X  e. Word  V  /\  X  =/=  (/)  /\  N  =  ( # `  X
) )  /\  y  e. Word  V )  ->  E. n  e.  ( 0..^ N ) y  =  ( X cyclShift  n ) ) )
6015, 59jaoi 394 . . . . 5  |-  ( ( E. n  e.  ( 0..^ N ) y  =  ( X cyclShift  n )  \/  E. n  e. 
{ N } y  =  ( X cyclShift  n ) )  ->  ( (
( X  e. Word  V  /\  X  =/=  (/)  /\  N  =  ( # `  X
) )  /\  y  e. Word  V )  ->  E. n  e.  ( 0..^ N ) y  =  ( X cyclShift  n ) ) )
6160com12 32 . . . 4  |-  ( ( ( X  e. Word  V  /\  X  =/=  (/)  /\  N  =  ( # `  X
) )  /\  y  e. Word  V )  ->  (
( E. n  e.  ( 0..^ N ) y  =  ( X cyclShift  n )  \/  E. n  e.  { N } y  =  ( X cyclShift  n ) )  ->  E. n  e.  (
0..^ N ) y  =  ( X cyclShift  n ) ) )
6214, 61sylbid 230 . . 3  |-  ( ( ( X  e. Word  V  /\  X  =/=  (/)  /\  N  =  ( # `  X
) )  /\  y  e. Word  V )  ->  ( E. n  e.  (
0 ... N ) y  =  ( X cyclShift  n )  ->  E. n  e.  ( 0..^ N ) y  =  ( X cyclShift  n ) ) )
63 fzossfz 12488 . . . 4  |-  ( 0..^ N )  C_  (
0 ... N )
64 ssrexv 3667 . . . 4  |-  ( ( 0..^ N )  C_  ( 0 ... N
)  ->  ( E. n  e.  ( 0..^ N ) y  =  ( X cyclShift  n )  ->  E. n  e.  ( 0 ... N ) y  =  ( X cyclShift  n ) ) )
6563, 64mp1i 13 . . 3  |-  ( ( ( X  e. Word  V  /\  X  =/=  (/)  /\  N  =  ( # `  X
) )  /\  y  e. Word  V )  ->  ( E. n  e.  (
0..^ N ) y  =  ( X cyclShift  n )  ->  E. n  e.  ( 0 ... N ) y  =  ( X cyclShift  n ) ) )
6662, 65impbid 202 . 2  |-  ( ( ( X  e. Word  V  /\  X  =/=  (/)  /\  N  =  ( # `  X
) )  /\  y  e. Word  V )  ->  ( E. n  e.  (
0 ... N ) y  =  ( X cyclShift  n )  <->  E. n  e.  (
0..^ N ) y  =  ( X cyclShift  n ) ) )
6766rabbidva 3188 1  |-  ( ( X  e. Word  V  /\  X  =/=  (/)  /\  N  =  ( # `  X
) )  ->  { y  e. Word  V  |  E. n  e.  ( 0 ... N ) y  =  ( X cyclShift  n ) }  =  { y  e. Word  V  |  E. n  e.  ( 0..^ N ) y  =  ( X cyclShift  n ) } )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    \/ wo 383    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   E.wrex 2913   {crab 2916   _Vcvv 3200    u. cun 3572    C_ wss 3574   (/)c0 3915   {csn 4177   ` cfv 5888  (class class class)co 6650   0cc0 9936   NNcn 11020   NN0cn0 11292   ZZ>=cuz 11687   ...cfz 12326  ..^cfzo 12465   #chash 13117  Word cword 13291   cyclShift ccsh 13534
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-fz 12327  df-fzo 12466  df-fl 12593  df-mod 12669  df-hash 13118  df-word 13299  df-concat 13301  df-substr 13303  df-csh 13535
This theorem is referenced by:  hashecclwwlksn1  26954  umgrhashecclwwlk  26955
  Copyright terms: Public domain W3C validator