MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hashecclwwlksn1 Structured version   Visualization version   Unicode version

Theorem hashecclwwlksn1 26954
Description: The size of every equivalence class of the equivalence relation over the set of closed walks (defined as words) with a fixed length which is a prime number is 1 or equals this length. (Contributed by Alexander van der Vekens, 17-Jun-2018.) (Revised by AV, 1-May-2021.)
Hypotheses
Ref Expression
erclwwlksn.w  |-  W  =  ( N ClWWalksN  G )
erclwwlksn.r  |-  .~  =  { <. t ,  u >.  |  ( t  e.  W  /\  u  e.  W  /\  E. n  e.  ( 0 ... N
) t  =  ( u cyclShift  n ) ) }
Assertion
Ref Expression
hashecclwwlksn1  |-  ( ( N  e.  Prime  /\  U  e.  ( W /.  .~  ) )  ->  (
( # `  U )  =  1  \/  ( # `
 U )  =  N ) )
Distinct variable groups:    t, W, u    n, N, u, t   
n, W    n, G, u    U, n, u
Allowed substitution hints:    .~ ( u, t, n)    U( t)    G( t)

Proof of Theorem hashecclwwlksn1
Dummy variables  x  y  m are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 erclwwlksn.w . . . . 5  |-  W  =  ( N ClWWalksN  G )
2 erclwwlksn.r . . . . 5  |-  .~  =  { <. t ,  u >.  |  ( t  e.  W  /\  u  e.  W  /\  E. n  e.  ( 0 ... N
) t  =  ( u cyclShift  n ) ) }
31, 2eclclwwlksn1 26952 . . . 4  |-  ( U  e.  ( W /.  .~  )  ->  ( U  e.  ( W /.  .~  ) 
<->  E. x  e.  W  U  =  { y  e.  W  |  E. n  e.  ( 0 ... N ) y  =  ( x cyclShift  n
) } ) )
4 rabeq 3192 . . . . . . . . . 10  |-  ( W  =  ( N ClWWalksN  G )  ->  { y  e.  W  |  E. n  e.  ( 0 ... N
) y  =  ( x cyclShift  n ) }  =  { y  e.  ( N ClWWalksN  G )  |  E. n  e.  ( 0 ... N ) y  =  ( x cyclShift  n
) } )
51, 4mp1i 13 . . . . . . . . 9  |-  ( ( N  e.  Prime  /\  x  e.  W )  ->  { y  e.  W  |  E. n  e.  ( 0 ... N ) y  =  ( x cyclShift  n
) }  =  {
y  e.  ( N ClWWalksN  G )  |  E. n  e.  ( 0 ... N ) y  =  ( x cyclShift  n
) } )
6 prmnn 15388 . . . . . . . . . . 11  |-  ( N  e.  Prime  ->  N  e.  NN )
76nnnn0d 11351 . . . . . . . . . 10  |-  ( N  e.  Prime  ->  N  e. 
NN0 )
81eleq2i 2693 . . . . . . . . . . 11  |-  ( x  e.  W  <->  x  e.  ( N ClWWalksN  G ) )
98biimpi 206 . . . . . . . . . 10  |-  ( x  e.  W  ->  x  e.  ( N ClWWalksN  G )
)
10 clwwlksnscsh 26940 . . . . . . . . . 10  |-  ( ( N  e.  NN0  /\  x  e.  ( N ClWWalksN  G ) )  ->  { y  e.  ( N ClWWalksN  G )  |  E. n  e.  ( 0 ... N
) y  =  ( x cyclShift  n ) }  =  { y  e. Word  (Vtx `  G )  |  E. n  e.  ( 0 ... N ) y  =  ( x cyclShift  n
) } )
117, 9, 10syl2an 494 . . . . . . . . 9  |-  ( ( N  e.  Prime  /\  x  e.  W )  ->  { y  e.  ( N ClWWalksN  G )  |  E. n  e.  ( 0 ... N
) y  =  ( x cyclShift  n ) }  =  { y  e. Word  (Vtx `  G )  |  E. n  e.  ( 0 ... N ) y  =  ( x cyclShift  n
) } )
125, 11eqtrd 2656 . . . . . . . 8  |-  ( ( N  e.  Prime  /\  x  e.  W )  ->  { y  e.  W  |  E. n  e.  ( 0 ... N ) y  =  ( x cyclShift  n
) }  =  {
y  e. Word  (Vtx `  G
)  |  E. n  e.  ( 0 ... N
) y  =  ( x cyclShift  n ) } )
1312eqeq2d 2632 . . . . . . 7  |-  ( ( N  e.  Prime  /\  x  e.  W )  ->  ( U  =  { y  e.  W  |  E. n  e.  ( 0 ... N ) y  =  ( x cyclShift  n
) }  <->  U  =  { y  e. Word  (Vtx `  G )  |  E. n  e.  ( 0 ... N ) y  =  ( x cyclShift  n
) } ) )
14 simpll 790 . . . . . . . . . . . . . . . 16  |-  ( ( ( x  e. Word  (Vtx `  G )  /\  ( # `
 x )  =  N )  /\  N  e.  NN )  ->  x  e. Word  (Vtx `  G )
)
15 elnnne0 11306 . . . . . . . . . . . . . . . . . 18  |-  ( N  e.  NN  <->  ( N  e.  NN0  /\  N  =/=  0 ) )
16 eqeq1 2626 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( N  =  ( # `  x
)  ->  ( N  =  0  <->  ( # `  x
)  =  0 ) )
1716eqcoms 2630 . . . . . . . . . . . . . . . . . . . . 21  |-  ( (
# `  x )  =  N  ->  ( N  =  0  <->  ( # `  x
)  =  0 ) )
18 hasheq0 13154 . . . . . . . . . . . . . . . . . . . . 21  |-  ( x  e. Word  (Vtx `  G
)  ->  ( ( # `
 x )  =  0  <->  x  =  (/) ) )
1917, 18sylan9bbr 737 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( x  e. Word  (Vtx `  G )  /\  ( # `
 x )  =  N )  ->  ( N  =  0  <->  x  =  (/) ) )
2019necon3bid 2838 . . . . . . . . . . . . . . . . . . 19  |-  ( ( x  e. Word  (Vtx `  G )  /\  ( # `
 x )  =  N )  ->  ( N  =/=  0  <->  x  =/=  (/) ) )
2120biimpcd 239 . . . . . . . . . . . . . . . . . 18  |-  ( N  =/=  0  ->  (
( x  e. Word  (Vtx `  G )  /\  ( # `
 x )  =  N )  ->  x  =/=  (/) ) )
2215, 21simplbiim 659 . . . . . . . . . . . . . . . . 17  |-  ( N  e.  NN  ->  (
( x  e. Word  (Vtx `  G )  /\  ( # `
 x )  =  N )  ->  x  =/=  (/) ) )
2322impcom 446 . . . . . . . . . . . . . . . 16  |-  ( ( ( x  e. Word  (Vtx `  G )  /\  ( # `
 x )  =  N )  /\  N  e.  NN )  ->  x  =/=  (/) )
24 simplr 792 . . . . . . . . . . . . . . . . 17  |-  ( ( ( x  e. Word  (Vtx `  G )  /\  ( # `
 x )  =  N )  /\  N  e.  NN )  ->  ( # `
 x )  =  N )
2524eqcomd 2628 . . . . . . . . . . . . . . . 16  |-  ( ( ( x  e. Word  (Vtx `  G )  /\  ( # `
 x )  =  N )  /\  N  e.  NN )  ->  N  =  ( # `  x
) )
2614, 23, 253jca 1242 . . . . . . . . . . . . . . 15  |-  ( ( ( x  e. Word  (Vtx `  G )  /\  ( # `
 x )  =  N )  /\  N  e.  NN )  ->  (
x  e. Word  (Vtx `  G
)  /\  x  =/=  (/) 
/\  N  =  (
# `  x )
) )
2726ex 450 . . . . . . . . . . . . . 14  |-  ( ( x  e. Word  (Vtx `  G )  /\  ( # `
 x )  =  N )  ->  ( N  e.  NN  ->  ( x  e. Word  (Vtx `  G )  /\  x  =/=  (/)  /\  N  =  ( # `  x
) ) ) )
28 eqid 2622 . . . . . . . . . . . . . . 15  |-  (Vtx `  G )  =  (Vtx
`  G )
2928clwwlknbp 26885 . . . . . . . . . . . . . 14  |-  ( x  e.  ( N ClWWalksN  G )  ->  ( x  e. Word 
(Vtx `  G )  /\  ( # `  x
)  =  N ) )
3027, 29syl11 33 . . . . . . . . . . . . 13  |-  ( N  e.  NN  ->  (
x  e.  ( N ClWWalksN  G )  ->  (
x  e. Word  (Vtx `  G
)  /\  x  =/=  (/) 
/\  N  =  (
# `  x )
) ) )
318, 30syl5bi 232 . . . . . . . . . . . 12  |-  ( N  e.  NN  ->  (
x  e.  W  -> 
( x  e. Word  (Vtx `  G )  /\  x  =/=  (/)  /\  N  =  ( # `  x
) ) ) )
326, 31syl 17 . . . . . . . . . . 11  |-  ( N  e.  Prime  ->  ( x  e.  W  ->  (
x  e. Word  (Vtx `  G
)  /\  x  =/=  (/) 
/\  N  =  (
# `  x )
) ) )
3332imp 445 . . . . . . . . . 10  |-  ( ( N  e.  Prime  /\  x  e.  W )  ->  (
x  e. Word  (Vtx `  G
)  /\  x  =/=  (/) 
/\  N  =  (
# `  x )
) )
34 scshwfzeqfzo 13572 . . . . . . . . . 10  |-  ( ( x  e. Word  (Vtx `  G )  /\  x  =/=  (/)  /\  N  =  ( # `  x
) )  ->  { y  e. Word  (Vtx `  G
)  |  E. n  e.  ( 0 ... N
) y  =  ( x cyclShift  n ) }  =  { y  e. Word  (Vtx `  G )  |  E. n  e.  ( 0..^ N ) y  =  ( x cyclShift  n ) } )
3533, 34syl 17 . . . . . . . . 9  |-  ( ( N  e.  Prime  /\  x  e.  W )  ->  { y  e. Word  (Vtx `  G
)  |  E. n  e.  ( 0 ... N
) y  =  ( x cyclShift  n ) }  =  { y  e. Word  (Vtx `  G )  |  E. n  e.  ( 0..^ N ) y  =  ( x cyclShift  n ) } )
3635eqeq2d 2632 . . . . . . . 8  |-  ( ( N  e.  Prime  /\  x  e.  W )  ->  ( U  =  { y  e. Word  (Vtx `  G )  |  E. n  e.  ( 0 ... N ) y  =  ( x cyclShift  n ) }  <->  U  =  { y  e. Word  (Vtx `  G )  |  E. n  e.  ( 0..^ N ) y  =  ( x cyclShift  n ) } ) )
37 oveq2 6658 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( n  =  m  ->  (
x cyclShift  n )  =  ( x cyclShift  m ) )
3837eqeq2d 2632 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( n  =  m  ->  (
y  =  ( x cyclShift  n )  <->  y  =  ( x cyclShift  m ) ) )
3938cbvrexv 3172 . . . . . . . . . . . . . . . . . . . . 21  |-  ( E. n  e.  ( 0..^ ( # `  x
) ) y  =  ( x cyclShift  n )  <->  E. m  e.  ( 0..^ ( # `  x
) ) y  =  ( x cyclShift  m )
)
40 eqeq1 2626 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( y  =  u  ->  (
y  =  ( x cyclShift  m )  <->  u  =  ( x cyclShift  m ) ) )
41 eqcom 2629 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( u  =  ( x cyclShift  m
)  <->  ( x cyclShift  m
)  =  u )
4240, 41syl6bb 276 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( y  =  u  ->  (
y  =  ( x cyclShift  m )  <->  ( x cyclShift  m )  =  u ) )
4342rexbidv 3052 . . . . . . . . . . . . . . . . . . . . 21  |-  ( y  =  u  ->  ( E. m  e.  (
0..^ ( # `  x
) ) y  =  ( x cyclShift  m )  <->  E. m  e.  ( 0..^ ( # `  x
) ) ( x cyclShift  m )  =  u ) )
4439, 43syl5bb 272 . . . . . . . . . . . . . . . . . . . 20  |-  ( y  =  u  ->  ( E. n  e.  (
0..^ ( # `  x
) ) y  =  ( x cyclShift  n )  <->  E. m  e.  ( 0..^ ( # `  x
) ) ( x cyclShift  m )  =  u ) )
4544cbvrabv 3199 . . . . . . . . . . . . . . . . . . 19  |-  { y  e. Word  (Vtx `  G
)  |  E. n  e.  ( 0..^ ( # `  x ) ) y  =  ( x cyclShift  n
) }  =  {
u  e. Word  (Vtx `  G
)  |  E. m  e.  ( 0..^ ( # `  x ) ) ( x cyclShift  m )  =  u }
4645cshwshash 15811 . . . . . . . . . . . . . . . . . 18  |-  ( ( x  e. Word  (Vtx `  G )  /\  ( # `
 x )  e. 
Prime )  ->  ( (
# `  { y  e. Word  (Vtx `  G )  |  E. n  e.  ( 0..^ ( # `  x
) ) y  =  ( x cyclShift  n ) } )  =  (
# `  x )  \/  ( # `  {
y  e. Word  (Vtx `  G
)  |  E. n  e.  ( 0..^ ( # `  x ) ) y  =  ( x cyclShift  n
) } )  =  1 ) )
4746adantr 481 . . . . . . . . . . . . . . . . 17  |-  ( ( ( x  e. Word  (Vtx `  G )  /\  ( # `
 x )  e. 
Prime )  /\  U  =  { y  e. Word  (Vtx `  G )  |  E. n  e.  ( 0..^ ( # `  x
) ) y  =  ( x cyclShift  n ) } )  ->  (
( # `  { y  e. Word  (Vtx `  G
)  |  E. n  e.  ( 0..^ ( # `  x ) ) y  =  ( x cyclShift  n
) } )  =  ( # `  x
)  \/  ( # `  { y  e. Word  (Vtx `  G )  |  E. n  e.  ( 0..^ ( # `  x
) ) y  =  ( x cyclShift  n ) } )  =  1 ) )
4847orcomd 403 . . . . . . . . . . . . . . . 16  |-  ( ( ( x  e. Word  (Vtx `  G )  /\  ( # `
 x )  e. 
Prime )  /\  U  =  { y  e. Word  (Vtx `  G )  |  E. n  e.  ( 0..^ ( # `  x
) ) y  =  ( x cyclShift  n ) } )  ->  (
( # `  { y  e. Word  (Vtx `  G
)  |  E. n  e.  ( 0..^ ( # `  x ) ) y  =  ( x cyclShift  n
) } )  =  1  \/  ( # `  { y  e. Word  (Vtx `  G )  |  E. n  e.  ( 0..^ ( # `  x
) ) y  =  ( x cyclShift  n ) } )  =  (
# `  x )
) )
49 fveq2 6191 . . . . . . . . . . . . . . . . . . 19  |-  ( U  =  { y  e. Word 
(Vtx `  G )  |  E. n  e.  ( 0..^ ( # `  x
) ) y  =  ( x cyclShift  n ) }  ->  ( # `  U
)  =  ( # `  { y  e. Word  (Vtx `  G )  |  E. n  e.  ( 0..^ ( # `  x
) ) y  =  ( x cyclShift  n ) } ) )
5049eqeq1d 2624 . . . . . . . . . . . . . . . . . 18  |-  ( U  =  { y  e. Word 
(Vtx `  G )  |  E. n  e.  ( 0..^ ( # `  x
) ) y  =  ( x cyclShift  n ) }  ->  ( ( # `  U )  =  1  <-> 
( # `  { y  e. Word  (Vtx `  G
)  |  E. n  e.  ( 0..^ ( # `  x ) ) y  =  ( x cyclShift  n
) } )  =  1 ) )
5149eqeq1d 2624 . . . . . . . . . . . . . . . . . 18  |-  ( U  =  { y  e. Word 
(Vtx `  G )  |  E. n  e.  ( 0..^ ( # `  x
) ) y  =  ( x cyclShift  n ) }  ->  ( ( # `  U )  =  (
# `  x )  <->  (
# `  { y  e. Word  (Vtx `  G )  |  E. n  e.  ( 0..^ ( # `  x
) ) y  =  ( x cyclShift  n ) } )  =  (
# `  x )
) )
5250, 51orbi12d 746 . . . . . . . . . . . . . . . . 17  |-  ( U  =  { y  e. Word 
(Vtx `  G )  |  E. n  e.  ( 0..^ ( # `  x
) ) y  =  ( x cyclShift  n ) }  ->  ( ( (
# `  U )  =  1  \/  ( # `
 U )  =  ( # `  x
) )  <->  ( ( # `
 { y  e. Word 
(Vtx `  G )  |  E. n  e.  ( 0..^ ( # `  x
) ) y  =  ( x cyclShift  n ) } )  =  1  \/  ( # `  {
y  e. Word  (Vtx `  G
)  |  E. n  e.  ( 0..^ ( # `  x ) ) y  =  ( x cyclShift  n
) } )  =  ( # `  x
) ) ) )
5352adantl 482 . . . . . . . . . . . . . . . 16  |-  ( ( ( x  e. Word  (Vtx `  G )  /\  ( # `
 x )  e. 
Prime )  /\  U  =  { y  e. Word  (Vtx `  G )  |  E. n  e.  ( 0..^ ( # `  x
) ) y  =  ( x cyclShift  n ) } )  ->  (
( ( # `  U
)  =  1  \/  ( # `  U
)  =  ( # `  x ) )  <->  ( ( # `
 { y  e. Word 
(Vtx `  G )  |  E. n  e.  ( 0..^ ( # `  x
) ) y  =  ( x cyclShift  n ) } )  =  1  \/  ( # `  {
y  e. Word  (Vtx `  G
)  |  E. n  e.  ( 0..^ ( # `  x ) ) y  =  ( x cyclShift  n
) } )  =  ( # `  x
) ) ) )
5448, 53mpbird 247 . . . . . . . . . . . . . . 15  |-  ( ( ( x  e. Word  (Vtx `  G )  /\  ( # `
 x )  e. 
Prime )  /\  U  =  { y  e. Word  (Vtx `  G )  |  E. n  e.  ( 0..^ ( # `  x
) ) y  =  ( x cyclShift  n ) } )  ->  (
( # `  U )  =  1  \/  ( # `
 U )  =  ( # `  x
) ) )
5554ex 450 . . . . . . . . . . . . . 14  |-  ( ( x  e. Word  (Vtx `  G )  /\  ( # `
 x )  e. 
Prime )  ->  ( U  =  { y  e. Word 
(Vtx `  G )  |  E. n  e.  ( 0..^ ( # `  x
) ) y  =  ( x cyclShift  n ) }  ->  ( ( # `  U )  =  1  \/  ( # `  U
)  =  ( # `  x ) ) ) )
5655ex 450 . . . . . . . . . . . . 13  |-  ( x  e. Word  (Vtx `  G
)  ->  ( ( # `
 x )  e. 
Prime  ->  ( U  =  { y  e. Word  (Vtx `  G )  |  E. n  e.  ( 0..^ ( # `  x
) ) y  =  ( x cyclShift  n ) }  ->  ( ( # `  U )  =  1  \/  ( # `  U
)  =  ( # `  x ) ) ) ) )
5756adantr 481 . . . . . . . . . . . 12  |-  ( ( x  e. Word  (Vtx `  G )  /\  ( # `
 x )  =  N )  ->  (
( # `  x )  e.  Prime  ->  ( U  =  { y  e. Word 
(Vtx `  G )  |  E. n  e.  ( 0..^ ( # `  x
) ) y  =  ( x cyclShift  n ) }  ->  ( ( # `  U )  =  1  \/  ( # `  U
)  =  ( # `  x ) ) ) ) )
58 eleq1 2689 . . . . . . . . . . . . . . 15  |-  ( N  =  ( # `  x
)  ->  ( N  e.  Prime 
<->  ( # `  x
)  e.  Prime )
)
59 oveq2 6658 . . . . . . . . . . . . . . . . . . 19  |-  ( N  =  ( # `  x
)  ->  ( 0..^ N )  =  ( 0..^ ( # `  x
) ) )
6059rexeqdv 3145 . . . . . . . . . . . . . . . . . 18  |-  ( N  =  ( # `  x
)  ->  ( E. n  e.  ( 0..^ N ) y  =  ( x cyclShift  n )  <->  E. n  e.  ( 0..^ ( # `  x
) ) y  =  ( x cyclShift  n )
) )
6160rabbidv 3189 . . . . . . . . . . . . . . . . 17  |-  ( N  =  ( # `  x
)  ->  { y  e. Word  (Vtx `  G )  |  E. n  e.  ( 0..^ N ) y  =  ( x cyclShift  n
) }  =  {
y  e. Word  (Vtx `  G
)  |  E. n  e.  ( 0..^ ( # `  x ) ) y  =  ( x cyclShift  n
) } )
6261eqeq2d 2632 . . . . . . . . . . . . . . . 16  |-  ( N  =  ( # `  x
)  ->  ( U  =  { y  e. Word  (Vtx `  G )  |  E. n  e.  ( 0..^ N ) y  =  ( x cyclShift  n ) } 
<->  U  =  { y  e. Word  (Vtx `  G
)  |  E. n  e.  ( 0..^ ( # `  x ) ) y  =  ( x cyclShift  n
) } ) )
63 eqeq2 2633 . . . . . . . . . . . . . . . . 17  |-  ( N  =  ( # `  x
)  ->  ( ( # `
 U )  =  N  <->  ( # `  U
)  =  ( # `  x ) ) )
6463orbi2d 738 . . . . . . . . . . . . . . . 16  |-  ( N  =  ( # `  x
)  ->  ( (
( # `  U )  =  1  \/  ( # `
 U )  =  N )  <->  ( ( # `
 U )  =  1  \/  ( # `  U )  =  (
# `  x )
) ) )
6562, 64imbi12d 334 . . . . . . . . . . . . . . 15  |-  ( N  =  ( # `  x
)  ->  ( ( U  =  { y  e. Word  (Vtx `  G )  |  E. n  e.  ( 0..^ N ) y  =  ( x cyclShift  n
) }  ->  (
( # `  U )  =  1  \/  ( # `
 U )  =  N ) )  <->  ( U  =  { y  e. Word  (Vtx `  G )  |  E. n  e.  ( 0..^ ( # `  x
) ) y  =  ( x cyclShift  n ) }  ->  ( ( # `  U )  =  1  \/  ( # `  U
)  =  ( # `  x ) ) ) ) )
6658, 65imbi12d 334 . . . . . . . . . . . . . 14  |-  ( N  =  ( # `  x
)  ->  ( ( N  e.  Prime  ->  ( U  =  { y  e. Word  (Vtx `  G )  |  E. n  e.  ( 0..^ N ) y  =  ( x cyclShift  n
) }  ->  (
( # `  U )  =  1  \/  ( # `
 U )  =  N ) ) )  <-> 
( ( # `  x
)  e.  Prime  ->  ( U  =  { y  e. Word  (Vtx `  G
)  |  E. n  e.  ( 0..^ ( # `  x ) ) y  =  ( x cyclShift  n
) }  ->  (
( # `  U )  =  1  \/  ( # `
 U )  =  ( # `  x
) ) ) ) ) )
6766eqcoms 2630 . . . . . . . . . . . . 13  |-  ( (
# `  x )  =  N  ->  ( ( N  e.  Prime  ->  ( U  =  { y  e. Word  (Vtx `  G
)  |  E. n  e.  ( 0..^ N ) y  =  ( x cyclShift  n ) }  ->  ( ( # `  U
)  =  1  \/  ( # `  U
)  =  N ) ) )  <->  ( ( # `
 x )  e. 
Prime  ->  ( U  =  { y  e. Word  (Vtx `  G )  |  E. n  e.  ( 0..^ ( # `  x
) ) y  =  ( x cyclShift  n ) }  ->  ( ( # `  U )  =  1  \/  ( # `  U
)  =  ( # `  x ) ) ) ) ) )
6867adantl 482 . . . . . . . . . . . 12  |-  ( ( x  e. Word  (Vtx `  G )  /\  ( # `
 x )  =  N )  ->  (
( N  e.  Prime  -> 
( U  =  {
y  e. Word  (Vtx `  G
)  |  E. n  e.  ( 0..^ N ) y  =  ( x cyclShift  n ) }  ->  ( ( # `  U
)  =  1  \/  ( # `  U
)  =  N ) ) )  <->  ( ( # `
 x )  e. 
Prime  ->  ( U  =  { y  e. Word  (Vtx `  G )  |  E. n  e.  ( 0..^ ( # `  x
) ) y  =  ( x cyclShift  n ) }  ->  ( ( # `  U )  =  1  \/  ( # `  U
)  =  ( # `  x ) ) ) ) ) )
6957, 68mpbird 247 . . . . . . . . . . 11  |-  ( ( x  e. Word  (Vtx `  G )  /\  ( # `
 x )  =  N )  ->  ( N  e.  Prime  ->  ( U  =  { y  e. Word  (Vtx `  G )  |  E. n  e.  ( 0..^ N ) y  =  ( x cyclShift  n
) }  ->  (
( # `  U )  =  1  \/  ( # `
 U )  =  N ) ) ) )
7029, 69syl 17 . . . . . . . . . 10  |-  ( x  e.  ( N ClWWalksN  G )  ->  ( N  e. 
Prime  ->  ( U  =  { y  e. Word  (Vtx `  G )  |  E. n  e.  ( 0..^ N ) y  =  ( x cyclShift  n ) }  ->  ( ( # `  U )  =  1  \/  ( # `  U
)  =  N ) ) ) )
7170, 1eleq2s 2719 . . . . . . . . 9  |-  ( x  e.  W  ->  ( N  e.  Prime  ->  ( U  =  { y  e. Word  (Vtx `  G )  |  E. n  e.  ( 0..^ N ) y  =  ( x cyclShift  n
) }  ->  (
( # `  U )  =  1  \/  ( # `
 U )  =  N ) ) ) )
7271impcom 446 . . . . . . . 8  |-  ( ( N  e.  Prime  /\  x  e.  W )  ->  ( U  =  { y  e. Word  (Vtx `  G )  |  E. n  e.  ( 0..^ N ) y  =  ( x cyclShift  n
) }  ->  (
( # `  U )  =  1  \/  ( # `
 U )  =  N ) ) )
7336, 72sylbid 230 . . . . . . 7  |-  ( ( N  e.  Prime  /\  x  e.  W )  ->  ( U  =  { y  e. Word  (Vtx `  G )  |  E. n  e.  ( 0 ... N ) y  =  ( x cyclShift  n ) }  ->  ( ( # `  U
)  =  1  \/  ( # `  U
)  =  N ) ) )
7413, 73sylbid 230 . . . . . 6  |-  ( ( N  e.  Prime  /\  x  e.  W )  ->  ( U  =  { y  e.  W  |  E. n  e.  ( 0 ... N ) y  =  ( x cyclShift  n
) }  ->  (
( # `  U )  =  1  \/  ( # `
 U )  =  N ) ) )
7574rexlimdva 3031 . . . . 5  |-  ( N  e.  Prime  ->  ( E. x  e.  W  U  =  { y  e.  W  |  E. n  e.  ( 0 ... N ) y  =  ( x cyclShift  n ) }  ->  ( ( # `  U
)  =  1  \/  ( # `  U
)  =  N ) ) )
7675com12 32 . . . 4  |-  ( E. x  e.  W  U  =  { y  e.  W  |  E. n  e.  ( 0 ... N ) y  =  ( x cyclShift  n ) }  ->  ( N  e.  Prime  ->  ( ( # `  U
)  =  1  \/  ( # `  U
)  =  N ) ) )
773, 76syl6bi 243 . . 3  |-  ( U  e.  ( W /.  .~  )  ->  ( U  e.  ( W /.  .~  )  ->  ( N  e. 
Prime  ->  ( ( # `  U )  =  1  \/  ( # `  U
)  =  N ) ) ) )
7877pm2.43i 52 . 2  |-  ( U  e.  ( W /.  .~  )  ->  ( N  e.  Prime  ->  ( ( # `
 U )  =  1  \/  ( # `  U )  =  N ) ) )
7978impcom 446 1  |-  ( ( N  e.  Prime  /\  U  e.  ( W /.  .~  ) )  ->  (
( # `  U )  =  1  \/  ( # `
 U )  =  N ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    \/ wo 383    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   E.wrex 2913   {crab 2916   (/)c0 3915   {copab 4712   ` cfv 5888  (class class class)co 6650   /.cqs 7741   0cc0 9936   1c1 9937   NNcn 11020   NN0cn0 11292   ...cfz 12326  ..^cfzo 12465   #chash 13117  Word cword 13291   cyclShift ccsh 13534   Primecprime 15385  Vtxcvtx 25874   ClWWalksN cclwwlksn 26876
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-disj 4621  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-ec 7744  df-qs 7748  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-xnn0 11364  df-z 11378  df-uz 11688  df-rp 11833  df-ico 12181  df-fz 12327  df-fzo 12466  df-fl 12593  df-mod 12669  df-seq 12802  df-exp 12861  df-hash 13118  df-word 13299  df-lsw 13300  df-concat 13301  df-substr 13303  df-reps 13306  df-csh 13535  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-sum 14417  df-dvds 14984  df-gcd 15217  df-prm 15386  df-phi 15471  df-clwwlks 26877  df-clwwlksn 26878
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator