Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  smflimsuplem6 Structured version   Visualization version   Unicode version

Theorem smflimsuplem6 41031
Description: The superior limit of a sequence of sigma-measurable functions is sigma-measurable. Proposition 121F (d) of [Fremlin1] p. 39 . (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
smflimsuplem6.a  |-  F/ n ph
smflimsuplem6.b  |-  F/ m ph
smflimsuplem6.m  |-  ( ph  ->  M  e.  ZZ )
smflimsuplem6.z  |-  Z  =  ( ZZ>= `  M )
smflimsuplem6.s  |-  ( ph  ->  S  e. SAlg )
smflimsuplem6.f  |-  ( ph  ->  F : Z --> (SMblFn `  S ) )
smflimsuplem6.e  |-  E  =  ( n  e.  Z  |->  { x  e.  |^|_ m  e.  ( ZZ>= `  n
) dom  ( F `  m )  |  sup ( ran  ( m  e.  ( ZZ>= `  n )  |->  ( ( F `  m ) `  x
) ) ,  RR* ,  <  )  e.  RR } )
smflimsuplem6.h  |-  H  =  ( n  e.  Z  |->  ( x  e.  ( E `  n ) 
|->  sup ( ran  (
m  e.  ( ZZ>= `  n )  |->  ( ( F `  m ) `
 x ) ) ,  RR* ,  <  )
) )
smflimsuplem6.r  |-  ( ph  ->  ( limsup `  ( m  e.  Z  |->  ( ( F `  m ) `
 X ) ) )  e.  RR )
smflimsuplem6.n  |-  ( ph  ->  N  e.  Z )
smflimsuplem6.x  |-  ( ph  ->  X  e.  |^|_ m  e.  ( ZZ>= `  N ) dom  ( F `  m
) )
Assertion
Ref Expression
smflimsuplem6  |-  ( ph  ->  ( n  e.  Z  |->  ( ( H `  n ) `  X
) )  e.  dom  ~~>  )
Distinct variable groups:    n, F, x    m, M    m, N, n    m, X, n    m, Z, n, x
Allowed substitution hints:    ph( x, m, n)    S( x, m, n)    E( x, m, n)    F( m)    H( x, m, n)    M( x, n)    N( x)    X( x)

Proof of Theorem smflimsuplem6
StepHypRef Expression
1 smflimsuplem6.z . . . . 5  |-  Z  =  ( ZZ>= `  M )
21fvexi 6202 . . . 4  |-  Z  e. 
_V
32a1i 11 . . 3  |-  ( ph  ->  Z  e.  _V )
43mptexd 6487 . 2  |-  ( ph  ->  ( n  e.  Z  |->  ( ( H `  n ) `  X
) )  e.  _V )
5 fvexd 6203 . 2  |-  ( ph  ->  ( limsup `  ( m  e.  ( ZZ>= `  N )  |->  ( ( F `  m ) `  X
) ) )  e. 
_V )
6 smflimsuplem6.a . . . 4  |-  F/ n ph
7 smflimsuplem6.b . . . 4  |-  F/ m ph
8 smflimsuplem6.m . . . 4  |-  ( ph  ->  M  e.  ZZ )
9 smflimsuplem6.s . . . 4  |-  ( ph  ->  S  e. SAlg )
10 smflimsuplem6.f . . . 4  |-  ( ph  ->  F : Z --> (SMblFn `  S ) )
11 smflimsuplem6.e . . . 4  |-  E  =  ( n  e.  Z  |->  { x  e.  |^|_ m  e.  ( ZZ>= `  n
) dom  ( F `  m )  |  sup ( ran  ( m  e.  ( ZZ>= `  n )  |->  ( ( F `  m ) `  x
) ) ,  RR* ,  <  )  e.  RR } )
12 smflimsuplem6.h . . . 4  |-  H  =  ( n  e.  Z  |->  ( x  e.  ( E `  n ) 
|->  sup ( ran  (
m  e.  ( ZZ>= `  n )  |->  ( ( F `  m ) `
 x ) ) ,  RR* ,  <  )
) )
13 smflimsuplem6.r . . . 4  |-  ( ph  ->  ( limsup `  ( m  e.  Z  |->  ( ( F `  m ) `
 X ) ) )  e.  RR )
14 smflimsuplem6.n . . . 4  |-  ( ph  ->  N  e.  Z )
15 smflimsuplem6.x . . . 4  |-  ( ph  ->  X  e.  |^|_ m  e.  ( ZZ>= `  N ) dom  ( F `  m
) )
166, 7, 8, 1, 9, 10, 11, 12, 13, 14, 15smflimsuplem5 41030 . . 3  |-  ( ph  ->  ( n  e.  (
ZZ>= `  N )  |->  ( ( H `  n
) `  X )
)  ~~>  ( limsup `  (
m  e.  ( ZZ>= `  N )  |->  ( ( F `  m ) `
 X ) ) ) )
17 fvexd 6203 . . . 4  |-  ( ph  ->  ( ZZ>= `  N )  e.  _V )
181eluzelz2 39627 . . . . 5  |-  ( N  e.  Z  ->  N  e.  ZZ )
1914, 18syl 17 . . . 4  |-  ( ph  ->  N  e.  ZZ )
20 eqid 2622 . . . 4  |-  ( ZZ>= `  N )  =  (
ZZ>= `  N )
211eleq2i 2693 . . . . . . . 8  |-  ( N  e.  Z  <->  N  e.  ( ZZ>= `  M )
)
2221biimpi 206 . . . . . . 7  |-  ( N  e.  Z  ->  N  e.  ( ZZ>= `  M )
)
23 uzss 11708 . . . . . . 7  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( ZZ>= `  N )  C_  ( ZZ>=
`  M ) )
2422, 23syl 17 . . . . . 6  |-  ( N  e.  Z  ->  ( ZZ>=
`  N )  C_  ( ZZ>= `  M )
)
2524, 1syl6sseqr 3652 . . . . 5  |-  ( N  e.  Z  ->  ( ZZ>=
`  N )  C_  Z )
2614, 25syl 17 . . . 4  |-  ( ph  ->  ( ZZ>= `  N )  C_  Z )
27 ssid 3624 . . . . 5  |-  ( ZZ>= `  N )  C_  ( ZZ>=
`  N )
2827a1i 11 . . . 4  |-  ( ph  ->  ( ZZ>= `  N )  C_  ( ZZ>= `  N )
)
29 fvexd 6203 . . . 4  |-  ( (
ph  /\  n  e.  ( ZZ>= `  N )
)  ->  ( ( H `  n ) `  X )  e.  _V )
306, 3, 17, 19, 20, 26, 28, 29climeqmpt 39929 . . 3  |-  ( ph  ->  ( ( n  e.  Z  |->  ( ( H `
 n ) `  X ) )  ~~>  ( limsup `  ( m  e.  (
ZZ>= `  N )  |->  ( ( F `  m
) `  X )
) )  <->  ( n  e.  ( ZZ>= `  N )  |->  ( ( H `  n ) `  X
) )  ~~>  ( limsup `  ( m  e.  (
ZZ>= `  N )  |->  ( ( F `  m
) `  X )
) ) ) )
3116, 30mpbird 247 . 2  |-  ( ph  ->  ( n  e.  Z  |->  ( ( H `  n ) `  X
) )  ~~>  ( limsup `  ( m  e.  (
ZZ>= `  N )  |->  ( ( F `  m
) `  X )
) ) )
32 breldmg 5330 . 2  |-  ( ( ( n  e.  Z  |->  ( ( H `  n ) `  X
) )  e.  _V  /\  ( limsup `  ( m  e.  ( ZZ>= `  N )  |->  ( ( F `  m ) `  X
) ) )  e. 
_V  /\  ( n  e.  Z  |->  ( ( H `  n ) `
 X ) )  ~~>  ( limsup `  ( m  e.  ( ZZ>= `  N )  |->  ( ( F `  m ) `  X
) ) ) )  ->  ( n  e.  Z  |->  ( ( H `
 n ) `  X ) )  e. 
dom 
~~>  )
334, 5, 31, 32syl3anc 1326 1  |-  ( ph  ->  ( n  e.  Z  |->  ( ( H `  n ) `  X
) )  e.  dom  ~~>  )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483   F/wnf 1708    e. wcel 1990   {crab 2916   _Vcvv 3200    C_ wss 3574   |^|_ciin 4521   class class class wbr 4653    |-> cmpt 4729   dom cdm 5114   ran crn 5115   -->wf 5884   ` cfv 5888   supcsup 8346   RRcr 9935   RR*cxr 10073    < clt 10074   ZZcz 11377   ZZ>=cuz 11687   limsupclsp 14201    ~~> cli 14215  SAlgcsalg 40528  SMblFncsmblfn 40909
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-q 11789  df-rp 11833  df-ioo 12179  df-ico 12181  df-fz 12327  df-fl 12593  df-ceil 12594  df-seq 12802  df-exp 12861  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-limsup 14202  df-clim 14219  df-smblfn 40910
This theorem is referenced by:  smflimsuplem7  41032
  Copyright terms: Public domain W3C validator