Proof of Theorem lgsqrlem1
Step | Hyp | Ref
| Expression |
1 | | lgsqr.t |
. . . . 5
        |
2 | 1 | fveq2i 6194 |
. . . 4
             
  |
3 | 2 | fveq1i 6192 |
. . 3
                                |
4 | | lgsqr.o |
. . . . 5
eval1   |
5 | | lgsqr.s |
. . . . 5
Poly1   |
6 | | eqid 2622 |
. . . . 5
         |
7 | | lgsqr.b |
. . . . 5
     |
8 | | lgsqr.1 |
. . . . . . . . 9
       |
9 | 8 | eldifad 3586 |
. . . . . . . 8
   |
10 | | lgsqr.y |
. . . . . . . . 9
ℤ/nℤ   |
11 | 10 | znfld 19909 |
. . . . . . . 8

Field |
12 | 9, 11 | syl 17 |
. . . . . . 7
 Field |
13 | | fldidom 19305 |
. . . . . . 7
 Field IDomn |
14 | 12, 13 | syl 17 |
. . . . . 6
 IDomn |
15 | | isidom 19304 |
. . . . . . 7
 IDomn  Domn  |
16 | 15 | simplbi 476 |
. . . . . 6
 IDomn   |
17 | 14, 16 | syl 17 |
. . . . 5
   |
18 | | crngring 18558 |
. . . . . . . . 9

  |
19 | 17, 18 | syl 17 |
. . . . . . . 8
   |
20 | | lgsqr.l |
. . . . . . . . 9
 RHom   |
21 | 20 | zrhrhm 19860 |
. . . . . . . 8

ℤring RingHom    |
22 | 19, 21 | syl 17 |
. . . . . . 7
 ℤring
RingHom    |
23 | | zringbas 19824 |
. . . . . . . 8
  ℤring |
24 | 23, 6 | rhmf 18726 |
. . . . . . 7
 ℤring RingHom            |
25 | 22, 24 | syl 17 |
. . . . . 6
           |
26 | | lgsqrlem1.3 |
. . . . . 6
   |
27 | 25, 26 | ffvelrnd 6360 |
. . . . 5
           |
28 | | lgsqr.x |
. . . . . . . 8
var1   |
29 | 4, 28, 6, 5, 7, 17,
27 | evl1vard 19701 |
. . . . . . 7
                     |
30 | | lgsqr.e |
. . . . . . 7
.g mulGrp    |
31 | | eqid 2622 |
. . . . . . 7
.g mulGrp   .g mulGrp    |
32 | | oddprm 15515 |
. . . . . . . . 9
           |
33 | 8, 32 | syl 17 |
. . . . . . . 8
       |
34 | 33 | nnnn0d 11351 |
. . . . . . 7
       |
35 | 4, 5, 6, 7, 17, 27, 29, 30, 31, 34 | evl1expd 19709 |
. . . . . 6
                                .g mulGrp            |
36 | | zringmpg 19840 |
. . . . . . . . . . . 12
 mulGrp ℂfld ↾s 
mulGrp ℤring |
37 | | eqid 2622 |
. . . . . . . . . . . 12
mulGrp  mulGrp   |
38 | 36, 37 | rhmmhm 18722 |
. . . . . . . . . . 11
 ℤring RingHom    mulGrp ℂfld ↾s  MndHom mulGrp     |
39 | 22, 38 | syl 17 |
. . . . . . . . . 10
   mulGrp ℂfld
↾s  MndHom mulGrp     |
40 | 36, 23 | mgpbas 18495 |
. . . . . . . . . . 11
    mulGrp ℂfld ↾s    |
41 | | eqid 2622 |
. . . . . . . . . . 11
.g  mulGrp ℂfld
↾s   .g  mulGrp ℂfld ↾s    |
42 | 40, 41, 31 | mhmmulg 17583 |
. . . . . . . . . 10
    mulGrp ℂfld
↾s  MndHom mulGrp      
          .g  mulGrp ℂfld ↾s            .g mulGrp           |
43 | 39, 34, 26, 42 | syl3anc 1326 |
. . . . . . . . 9
          .g  mulGrp ℂfld ↾s            .g mulGrp           |
44 | | zsubrg 19799 |
. . . . . . . . . . . . . 14
SubRing ℂfld |
45 | | eqid 2622 |
. . . . . . . . . . . . . . 15
mulGrp ℂfld mulGrp ℂfld |
46 | 45 | subrgsubm 18793 |
. . . . . . . . . . . . . 14
 SubRing ℂfld
SubMnd mulGrp ℂfld   |
47 | 44, 46 | mp1i 13 |
. . . . . . . . . . . . 13
 SubMnd mulGrp ℂfld   |
48 | | eqid 2622 |
. . . . . . . . . . . . . 14
.g mulGrp ℂfld .g mulGrp ℂfld  |
49 | | eqid 2622 |
. . . . . . . . . . . . . 14
 mulGrp ℂfld ↾s 
 mulGrp ℂfld
↾s   |
50 | 48, 49, 41 | submmulg 17586 |
. . . . . . . . . . . . 13
  SubMnd mulGrp ℂfld    
       .g mulGrp ℂfld         .g  mulGrp ℂfld
↾s       |
51 | 47, 34, 26, 50 | syl3anc 1326 |
. . . . . . . . . . . 12
       .g mulGrp ℂfld         .g  mulGrp ℂfld
↾s       |
52 | 26 | zcnd 11483 |
. . . . . . . . . . . . 13
   |
53 | | cnfldexp 19779 |
. . . . . . . . . . . . 13
             .g mulGrp ℂfld             |
54 | 52, 34, 53 | syl2anc 693 |
. . . . . . . . . . . 12
       .g mulGrp ℂfld             |
55 | 51, 54 | eqtr3d 2658 |
. . . . . . . . . . 11
       .g  mulGrp ℂfld
↾s               |
56 | 55 | fveq2d 6195 |
. . . . . . . . . 10
          .g  mulGrp ℂfld ↾s                    |
57 | | lgsqrlem1.4 |
. . . . . . . . . . . 12
               |
58 | | prmnn 15388 |
. . . . . . . . . . . . . 14

  |
59 | 9, 58 | syl 17 |
. . . . . . . . . . . . 13
   |
60 | | zexpcl 12875 |
. . . . . . . . . . . . . 14
                 |
61 | 26, 34, 60 | syl2anc 693 |
. . . . . . . . . . . . 13
           |
62 | | 1zzd 11408 |
. . . . . . . . . . . . 13
   |
63 | | moddvds 14991 |
. . . . . . . . . . . . 13
                       
             |
64 | 59, 61, 62, 63 | syl3anc 1326 |
. . . . . . . . . . . 12
             
             |
65 | 57, 64 | mpbid 222 |
. . . . . . . . . . 11
             |
66 | 59 | nnnn0d 11351 |
. . . . . . . . . . . 12
   |
67 | 10, 20 | zndvds 19898 |
. . . . . . . . . . . 12
                           
             |
68 | 66, 61, 62, 67 | syl3anc 1326 |
. . . . . . . . . . 11
                 
             |
69 | 65, 68 | mpbird 247 |
. . . . . . . . . 10
                   |
70 | | zring1 19829 |
. . . . . . . . . . . 12
  ℤring |
71 | | eqid 2622 |
. . . . . . . . . . . 12
         |
72 | 70, 71 | rhm1 18730 |
. . . . . . . . . . 11
 ℤring RingHom            |
73 | 22, 72 | syl 17 |
. . . . . . . . . 10
           |
74 | 56, 69, 73 | 3eqtrd 2660 |
. . . . . . . . 9
          .g  mulGrp ℂfld ↾s            |
75 | 43, 74 | eqtr3d 2658 |
. . . . . . . 8
       .g mulGrp               |
76 | 75 | eqeq2d 2632 |
. . . . . . 7
                          .g mulGrp                                  |
77 | 76 | anbi2d 740 |
. . . . . 6
                                 .g mulGrp         
     

        
                 |
78 | 35, 77 | mpbid 222 |
. . . . 5
                                 |
79 | | eqid 2622 |
. . . . . . 7
algSc  algSc   |
80 | 6, 71 | ringidcl 18568 |
. . . . . . . 8

          |
81 | 19, 80 | syl 17 |
. . . . . . 7
           |
82 | 4, 5, 6, 79, 7, 17, 81, 27 | evl1scad 19699 |
. . . . . 6
   algSc              algSc                        |
83 | | lgsqr.u |
. . . . . . . . . 10
     |
84 | 5, 79, 71, 83 | ply1scl1 19662 |
. . . . . . . . 9

 algSc          |
85 | 19, 84 | syl 17 |
. . . . . . . 8
  algSc          |
86 | 85 | eleq1d 2686 |
. . . . . . 7
   algSc        
   |
87 | 85 | fveq2d 6195 |
. . . . . . . . 9
     algSc              |
88 | 87 | fveq1d 6193 |
. . . . . . . 8
      algSc                             |
89 | 88 | eqeq1d 2624 |
. . . . . . 7
       algSc                    
                 |
90 | 86, 89 | anbi12d 747 |
. . . . . 6
    algSc              algSc                                        |
91 | 82, 90 | mpbid 222 |
. . . . 5
                  |
92 | | lgsqr.m |
. . . . 5
     |
93 | | eqid 2622 |
. . . . 5
         |
94 | 4, 5, 6, 7, 17, 27, 78, 91, 92, 93 | evl1subd 19706 |
. . . 4
        
                                      |
95 | 94 | simprd 479 |
. . 3
                                      |
96 | 3, 95 | syl5eq 2668 |
. 2
                               |
97 | | ringgrp 18552 |
. . . 4

  |
98 | 19, 97 | syl 17 |
. . 3
   |
99 | | eqid 2622 |
. . . 4
         |
100 | 6, 99, 93 | grpsubid 17499 |
. . 3
                                 |
101 | 98, 81, 100 | syl2anc 693 |
. 2
                       |
102 | 96, 101 | eqtrd 2656 |
1
                   |