Proof of Theorem lgsqrlem1
| Step | Hyp | Ref
| Expression |
| 1 | | lgsqr.t |
. . . . 5
        |
| 2 | 1 | fveq2i 6194 |
. . . 4
             
  |
| 3 | 2 | fveq1i 6192 |
. . 3
                                |
| 4 | | lgsqr.o |
. . . . 5
eval1   |
| 5 | | lgsqr.s |
. . . . 5
Poly1   |
| 6 | | eqid 2622 |
. . . . 5
         |
| 7 | | lgsqr.b |
. . . . 5
     |
| 8 | | lgsqr.1 |
. . . . . . . . 9
       |
| 9 | 8 | eldifad 3586 |
. . . . . . . 8
   |
| 10 | | lgsqr.y |
. . . . . . . . 9
ℤ/nℤ   |
| 11 | 10 | znfld 19909 |
. . . . . . . 8

Field |
| 12 | 9, 11 | syl 17 |
. . . . . . 7
 Field |
| 13 | | fldidom 19305 |
. . . . . . 7
 Field IDomn |
| 14 | 12, 13 | syl 17 |
. . . . . 6
 IDomn |
| 15 | | isidom 19304 |
. . . . . . 7
 IDomn  Domn  |
| 16 | 15 | simplbi 476 |
. . . . . 6
 IDomn   |
| 17 | 14, 16 | syl 17 |
. . . . 5
   |
| 18 | | crngring 18558 |
. . . . . . . . 9

  |
| 19 | 17, 18 | syl 17 |
. . . . . . . 8
   |
| 20 | | lgsqr.l |
. . . . . . . . 9
 RHom   |
| 21 | 20 | zrhrhm 19860 |
. . . . . . . 8

ℤring RingHom    |
| 22 | 19, 21 | syl 17 |
. . . . . . 7
 ℤring
RingHom    |
| 23 | | zringbas 19824 |
. . . . . . . 8
  ℤring |
| 24 | 23, 6 | rhmf 18726 |
. . . . . . 7
 ℤring RingHom            |
| 25 | 22, 24 | syl 17 |
. . . . . 6
           |
| 26 | | lgsqrlem1.3 |
. . . . . 6
   |
| 27 | 25, 26 | ffvelrnd 6360 |
. . . . 5
           |
| 28 | | lgsqr.x |
. . . . . . . 8
var1   |
| 29 | 4, 28, 6, 5, 7, 17,
27 | evl1vard 19701 |
. . . . . . 7
                     |
| 30 | | lgsqr.e |
. . . . . . 7
.g mulGrp    |
| 31 | | eqid 2622 |
. . . . . . 7
.g mulGrp   .g mulGrp    |
| 32 | | oddprm 15515 |
. . . . . . . . 9
           |
| 33 | 8, 32 | syl 17 |
. . . . . . . 8
       |
| 34 | 33 | nnnn0d 11351 |
. . . . . . 7
       |
| 35 | 4, 5, 6, 7, 17, 27, 29, 30, 31, 34 | evl1expd 19709 |
. . . . . 6
                                .g mulGrp            |
| 36 | | zringmpg 19840 |
. . . . . . . . . . . 12
 mulGrp ℂfld ↾s 
mulGrp ℤring |
| 37 | | eqid 2622 |
. . . . . . . . . . . 12
mulGrp  mulGrp   |
| 38 | 36, 37 | rhmmhm 18722 |
. . . . . . . . . . 11
 ℤring RingHom    mulGrp ℂfld ↾s  MndHom mulGrp     |
| 39 | 22, 38 | syl 17 |
. . . . . . . . . 10
   mulGrp ℂfld
↾s  MndHom mulGrp     |
| 40 | 36, 23 | mgpbas 18495 |
. . . . . . . . . . 11
    mulGrp ℂfld ↾s    |
| 41 | | eqid 2622 |
. . . . . . . . . . 11
.g  mulGrp ℂfld
↾s   .g  mulGrp ℂfld ↾s    |
| 42 | 40, 41, 31 | mhmmulg 17583 |
. . . . . . . . . 10
    mulGrp ℂfld
↾s  MndHom mulGrp      
          .g  mulGrp ℂfld ↾s            .g mulGrp           |
| 43 | 39, 34, 26, 42 | syl3anc 1326 |
. . . . . . . . 9
          .g  mulGrp ℂfld ↾s            .g mulGrp           |
| 44 | | zsubrg 19799 |
. . . . . . . . . . . . . 14
SubRing ℂfld |
| 45 | | eqid 2622 |
. . . . . . . . . . . . . . 15
mulGrp ℂfld mulGrp ℂfld |
| 46 | 45 | subrgsubm 18793 |
. . . . . . . . . . . . . 14
 SubRing ℂfld
SubMnd mulGrp ℂfld   |
| 47 | 44, 46 | mp1i 13 |
. . . . . . . . . . . . 13
 SubMnd mulGrp ℂfld   |
| 48 | | eqid 2622 |
. . . . . . . . . . . . . 14
.g mulGrp ℂfld .g mulGrp ℂfld  |
| 49 | | eqid 2622 |
. . . . . . . . . . . . . 14
 mulGrp ℂfld ↾s 
 mulGrp ℂfld
↾s   |
| 50 | 48, 49, 41 | submmulg 17586 |
. . . . . . . . . . . . 13
  SubMnd mulGrp ℂfld    
       .g mulGrp ℂfld         .g  mulGrp ℂfld
↾s       |
| 51 | 47, 34, 26, 50 | syl3anc 1326 |
. . . . . . . . . . . 12
       .g mulGrp ℂfld         .g  mulGrp ℂfld
↾s       |
| 52 | 26 | zcnd 11483 |
. . . . . . . . . . . . 13
   |
| 53 | | cnfldexp 19779 |
. . . . . . . . . . . . 13
             .g mulGrp ℂfld             |
| 54 | 52, 34, 53 | syl2anc 693 |
. . . . . . . . . . . 12
       .g mulGrp ℂfld             |
| 55 | 51, 54 | eqtr3d 2658 |
. . . . . . . . . . 11
       .g  mulGrp ℂfld
↾s               |
| 56 | 55 | fveq2d 6195 |
. . . . . . . . . 10
          .g  mulGrp ℂfld ↾s                    |
| 57 | | lgsqrlem1.4 |
. . . . . . . . . . . 12
               |
| 58 | | prmnn 15388 |
. . . . . . . . . . . . . 14

  |
| 59 | 9, 58 | syl 17 |
. . . . . . . . . . . . 13
   |
| 60 | | zexpcl 12875 |
. . . . . . . . . . . . . 14
                 |
| 61 | 26, 34, 60 | syl2anc 693 |
. . . . . . . . . . . . 13
           |
| 62 | | 1zzd 11408 |
. . . . . . . . . . . . 13
   |
| 63 | | moddvds 14991 |
. . . . . . . . . . . . 13
                       
             |
| 64 | 59, 61, 62, 63 | syl3anc 1326 |
. . . . . . . . . . . 12
             
             |
| 65 | 57, 64 | mpbid 222 |
. . . . . . . . . . 11
             |
| 66 | 59 | nnnn0d 11351 |
. . . . . . . . . . . 12
   |
| 67 | 10, 20 | zndvds 19898 |
. . . . . . . . . . . 12
                           
             |
| 68 | 66, 61, 62, 67 | syl3anc 1326 |
. . . . . . . . . . 11
                 
             |
| 69 | 65, 68 | mpbird 247 |
. . . . . . . . . 10
                   |
| 70 | | zring1 19829 |
. . . . . . . . . . . 12
  ℤring |
| 71 | | eqid 2622 |
. . . . . . . . . . . 12
         |
| 72 | 70, 71 | rhm1 18730 |
. . . . . . . . . . 11
 ℤring RingHom            |
| 73 | 22, 72 | syl 17 |
. . . . . . . . . 10
           |
| 74 | 56, 69, 73 | 3eqtrd 2660 |
. . . . . . . . 9
          .g  mulGrp ℂfld ↾s            |
| 75 | 43, 74 | eqtr3d 2658 |
. . . . . . . 8
       .g mulGrp               |
| 76 | 75 | eqeq2d 2632 |
. . . . . . 7
                          .g mulGrp                                  |
| 77 | 76 | anbi2d 740 |
. . . . . 6
                                 .g mulGrp         
     

        
                 |
| 78 | 35, 77 | mpbid 222 |
. . . . 5
                                 |
| 79 | | eqid 2622 |
. . . . . . 7
algSc  algSc   |
| 80 | 6, 71 | ringidcl 18568 |
. . . . . . . 8

          |
| 81 | 19, 80 | syl 17 |
. . . . . . 7
           |
| 82 | 4, 5, 6, 79, 7, 17, 81, 27 | evl1scad 19699 |
. . . . . 6
   algSc              algSc                        |
| 83 | | lgsqr.u |
. . . . . . . . . 10
     |
| 84 | 5, 79, 71, 83 | ply1scl1 19662 |
. . . . . . . . 9

 algSc          |
| 85 | 19, 84 | syl 17 |
. . . . . . . 8
  algSc          |
| 86 | 85 | eleq1d 2686 |
. . . . . . 7
   algSc        
   |
| 87 | 85 | fveq2d 6195 |
. . . . . . . . 9
     algSc              |
| 88 | 87 | fveq1d 6193 |
. . . . . . . 8
      algSc                             |
| 89 | 88 | eqeq1d 2624 |
. . . . . . 7
       algSc                    
                 |
| 90 | 86, 89 | anbi12d 747 |
. . . . . 6
    algSc              algSc                                        |
| 91 | 82, 90 | mpbid 222 |
. . . . 5
                  |
| 92 | | lgsqr.m |
. . . . 5
     |
| 93 | | eqid 2622 |
. . . . 5
         |
| 94 | 4, 5, 6, 7, 17, 27, 78, 91, 92, 93 | evl1subd 19706 |
. . . 4
        
                                      |
| 95 | 94 | simprd 479 |
. . 3
                                      |
| 96 | 3, 95 | syl5eq 2668 |
. 2
                               |
| 97 | | ringgrp 18552 |
. . . 4

  |
| 98 | 19, 97 | syl 17 |
. . 3
   |
| 99 | | eqid 2622 |
. . . 4
         |
| 100 | 6, 99, 93 | grpsubid 17499 |
. . 3
                                 |
| 101 | 98, 81, 100 | syl2anc 693 |
. 2
                       |
| 102 | 96, 101 | eqtrd 2656 |
1
                   |