MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  swrdccat2 Structured version   Visualization version   Unicode version

Theorem swrdccat2 13458
Description: Recover the right half of a concatenated word. (Contributed by Mario Carneiro, 27-Sep-2015.)
Assertion
Ref Expression
swrdccat2  |-  ( ( S  e. Word  B  /\  T  e. Word  B )  ->  ( ( S ++  T
) substr  <. ( # `  S
) ,  ( (
# `  S )  +  ( # `  T
) ) >. )  =  T )

Proof of Theorem swrdccat2
Dummy variable  k is distinct from all other variables.
StepHypRef Expression
1 ccatcl 13359 . . . 4  |-  ( ( S  e. Word  B  /\  T  e. Word  B )  ->  ( S ++  T )  e. Word  B )
2 swrdcl 13419 . . . 4  |-  ( ( S ++  T )  e. Word  B  ->  ( ( S ++  T ) substr  <. ( # `
 S ) ,  ( ( # `  S
)  +  ( # `  T ) ) >.
)  e. Word  B )
3 wrdf 13310 . . . 4  |-  ( ( ( S ++  T ) substr  <. ( # `  S
) ,  ( (
# `  S )  +  ( # `  T
) ) >. )  e. Word  B  ->  ( ( S ++  T ) substr  <. ( # `
 S ) ,  ( ( # `  S
)  +  ( # `  T ) ) >.
) : ( 0..^ ( # `  (
( S ++  T ) substr  <. ( # `  S
) ,  ( (
# `  S )  +  ( # `  T
) ) >. )
) ) --> B )
4 ffn 6045 . . . 4  |-  ( ( ( S ++  T ) substr  <. ( # `  S
) ,  ( (
# `  S )  +  ( # `  T
) ) >. ) : ( 0..^ (
# `  ( ( S ++  T ) substr  <. ( # `
 S ) ,  ( ( # `  S
)  +  ( # `  T ) ) >.
) ) ) --> B  ->  ( ( S ++  T ) substr  <. ( # `
 S ) ,  ( ( # `  S
)  +  ( # `  T ) ) >.
)  Fn  ( 0..^ ( # `  (
( S ++  T ) substr  <. ( # `  S
) ,  ( (
# `  S )  +  ( # `  T
) ) >. )
) ) )
51, 2, 3, 44syl 19 . . 3  |-  ( ( S  e. Word  B  /\  T  e. Word  B )  ->  ( ( S ++  T
) substr  <. ( # `  S
) ,  ( (
# `  S )  +  ( # `  T
) ) >. )  Fn  ( 0..^ ( # `  ( ( S ++  T
) substr  <. ( # `  S
) ,  ( (
# `  S )  +  ( # `  T
) ) >. )
) ) )
6 lencl 13324 . . . . . . . . . 10  |-  ( S  e. Word  B  ->  ( # `
 S )  e. 
NN0 )
76adantr 481 . . . . . . . . 9  |-  ( ( S  e. Word  B  /\  T  e. Word  B )  ->  ( # `  S
)  e.  NN0 )
8 nn0uz 11722 . . . . . . . . 9  |-  NN0  =  ( ZZ>= `  0 )
97, 8syl6eleq 2711 . . . . . . . 8  |-  ( ( S  e. Word  B  /\  T  e. Word  B )  ->  ( # `  S
)  e.  ( ZZ>= ` 
0 ) )
107nn0zd 11480 . . . . . . . . . 10  |-  ( ( S  e. Word  B  /\  T  e. Word  B )  ->  ( # `  S
)  e.  ZZ )
11 uzid 11702 . . . . . . . . . 10  |-  ( (
# `  S )  e.  ZZ  ->  ( # `  S
)  e.  ( ZZ>= `  ( # `  S ) ) )
1210, 11syl 17 . . . . . . . . 9  |-  ( ( S  e. Word  B  /\  T  e. Word  B )  ->  ( # `  S
)  e.  ( ZZ>= `  ( # `  S ) ) )
13 lencl 13324 . . . . . . . . . 10  |-  ( T  e. Word  B  ->  ( # `
 T )  e. 
NN0 )
1413adantl 482 . . . . . . . . 9  |-  ( ( S  e. Word  B  /\  T  e. Word  B )  ->  ( # `  T
)  e.  NN0 )
15 uzaddcl 11744 . . . . . . . . 9  |-  ( ( ( # `  S
)  e.  ( ZZ>= `  ( # `  S ) )  /\  ( # `  T )  e.  NN0 )  ->  ( ( # `  S )  +  (
# `  T )
)  e.  ( ZZ>= `  ( # `  S ) ) )
1612, 14, 15syl2anc 693 . . . . . . . 8  |-  ( ( S  e. Word  B  /\  T  e. Word  B )  ->  ( ( # `  S
)  +  ( # `  T ) )  e.  ( ZZ>= `  ( # `  S
) ) )
17 elfzuzb 12336 . . . . . . . 8  |-  ( (
# `  S )  e.  ( 0 ... (
( # `  S )  +  ( # `  T
) ) )  <->  ( ( # `
 S )  e.  ( ZZ>= `  0 )  /\  ( ( # `  S
)  +  ( # `  T ) )  e.  ( ZZ>= `  ( # `  S
) ) ) )
189, 16, 17sylanbrc 698 . . . . . . 7  |-  ( ( S  e. Word  B  /\  T  e. Word  B )  ->  ( # `  S
)  e.  ( 0 ... ( ( # `  S )  +  (
# `  T )
) ) )
197, 14nn0addcld 11355 . . . . . . . . . 10  |-  ( ( S  e. Word  B  /\  T  e. Word  B )  ->  ( ( # `  S
)  +  ( # `  T ) )  e. 
NN0 )
2019, 8syl6eleq 2711 . . . . . . . . 9  |-  ( ( S  e. Word  B  /\  T  e. Word  B )  ->  ( ( # `  S
)  +  ( # `  T ) )  e.  ( ZZ>= `  0 )
)
2119nn0zd 11480 . . . . . . . . . 10  |-  ( ( S  e. Word  B  /\  T  e. Word  B )  ->  ( ( # `  S
)  +  ( # `  T ) )  e.  ZZ )
22 uzid 11702 . . . . . . . . . 10  |-  ( ( ( # `  S
)  +  ( # `  T ) )  e.  ZZ  ->  ( ( # `
 S )  +  ( # `  T
) )  e.  (
ZZ>= `  ( ( # `  S )  +  (
# `  T )
) ) )
2321, 22syl 17 . . . . . . . . 9  |-  ( ( S  e. Word  B  /\  T  e. Word  B )  ->  ( ( # `  S
)  +  ( # `  T ) )  e.  ( ZZ>= `  ( ( # `
 S )  +  ( # `  T
) ) ) )
24 elfzuzb 12336 . . . . . . . . 9  |-  ( ( ( # `  S
)  +  ( # `  T ) )  e.  ( 0 ... (
( # `  S )  +  ( # `  T
) ) )  <->  ( (
( # `  S )  +  ( # `  T
) )  e.  (
ZZ>= `  0 )  /\  ( ( # `  S
)  +  ( # `  T ) )  e.  ( ZZ>= `  ( ( # `
 S )  +  ( # `  T
) ) ) ) )
2520, 23, 24sylanbrc 698 . . . . . . . 8  |-  ( ( S  e. Word  B  /\  T  e. Word  B )  ->  ( ( # `  S
)  +  ( # `  T ) )  e.  ( 0 ... (
( # `  S )  +  ( # `  T
) ) ) )
26 ccatlen 13360 . . . . . . . . 9  |-  ( ( S  e. Word  B  /\  T  e. Word  B )  ->  ( # `  ( S ++  T ) )  =  ( ( # `  S
)  +  ( # `  T ) ) )
2726oveq2d 6666 . . . . . . . 8  |-  ( ( S  e. Word  B  /\  T  e. Word  B )  ->  ( 0 ... ( # `
 ( S ++  T
) ) )  =  ( 0 ... (
( # `  S )  +  ( # `  T
) ) ) )
2825, 27eleqtrrd 2704 . . . . . . 7  |-  ( ( S  e. Word  B  /\  T  e. Word  B )  ->  ( ( # `  S
)  +  ( # `  T ) )  e.  ( 0 ... ( # `
 ( S ++  T
) ) ) )
29 swrdlen 13423 . . . . . . 7  |-  ( ( ( S ++  T )  e. Word  B  /\  ( # `
 S )  e.  ( 0 ... (
( # `  S )  +  ( # `  T
) ) )  /\  ( ( # `  S
)  +  ( # `  T ) )  e.  ( 0 ... ( # `
 ( S ++  T
) ) ) )  ->  ( # `  (
( S ++  T ) substr  <. ( # `  S
) ,  ( (
# `  S )  +  ( # `  T
) ) >. )
)  =  ( ( ( # `  S
)  +  ( # `  T ) )  -  ( # `  S ) ) )
301, 18, 28, 29syl3anc 1326 . . . . . 6  |-  ( ( S  e. Word  B  /\  T  e. Word  B )  ->  ( # `  (
( S ++  T ) substr  <. ( # `  S
) ,  ( (
# `  S )  +  ( # `  T
) ) >. )
)  =  ( ( ( # `  S
)  +  ( # `  T ) )  -  ( # `  S ) ) )
317nn0cnd 11353 . . . . . . 7  |-  ( ( S  e. Word  B  /\  T  e. Word  B )  ->  ( # `  S
)  e.  CC )
3214nn0cnd 11353 . . . . . . 7  |-  ( ( S  e. Word  B  /\  T  e. Word  B )  ->  ( # `  T
)  e.  CC )
3331, 32pncan2d 10394 . . . . . 6  |-  ( ( S  e. Word  B  /\  T  e. Word  B )  ->  ( ( ( # `  S )  +  (
# `  T )
)  -  ( # `  S ) )  =  ( # `  T
) )
3430, 33eqtrd 2656 . . . . 5  |-  ( ( S  e. Word  B  /\  T  e. Word  B )  ->  ( # `  (
( S ++  T ) substr  <. ( # `  S
) ,  ( (
# `  S )  +  ( # `  T
) ) >. )
)  =  ( # `  T ) )
3534oveq2d 6666 . . . 4  |-  ( ( S  e. Word  B  /\  T  e. Word  B )  ->  ( 0..^ ( # `  ( ( S ++  T
) substr  <. ( # `  S
) ,  ( (
# `  S )  +  ( # `  T
) ) >. )
) )  =  ( 0..^ ( # `  T
) ) )
3635fneq2d 5982 . . 3  |-  ( ( S  e. Word  B  /\  T  e. Word  B )  ->  ( ( ( S ++  T ) substr  <. ( # `
 S ) ,  ( ( # `  S
)  +  ( # `  T ) ) >.
)  Fn  ( 0..^ ( # `  (
( S ++  T ) substr  <. ( # `  S
) ,  ( (
# `  S )  +  ( # `  T
) ) >. )
) )  <->  ( ( S ++  T ) substr  <. ( # `
 S ) ,  ( ( # `  S
)  +  ( # `  T ) ) >.
)  Fn  ( 0..^ ( # `  T
) ) ) )
375, 36mpbid 222 . 2  |-  ( ( S  e. Word  B  /\  T  e. Word  B )  ->  ( ( S ++  T
) substr  <. ( # `  S
) ,  ( (
# `  S )  +  ( # `  T
) ) >. )  Fn  ( 0..^ ( # `  T ) ) )
38 wrdf 13310 . . . 4  |-  ( T  e. Word  B  ->  T : ( 0..^ (
# `  T )
) --> B )
3938adantl 482 . . 3  |-  ( ( S  e. Word  B  /\  T  e. Word  B )  ->  T : ( 0..^ ( # `  T
) ) --> B )
40 ffn 6045 . . 3  |-  ( T : ( 0..^ (
# `  T )
) --> B  ->  T  Fn  ( 0..^ ( # `  T ) ) )
4139, 40syl 17 . 2  |-  ( ( S  e. Word  B  /\  T  e. Word  B )  ->  T  Fn  ( 0..^ ( # `  T
) ) )
421adantr 481 . . . 4  |-  ( ( ( S  e. Word  B  /\  T  e. Word  B )  /\  k  e.  ( 0..^ ( # `  T
) ) )  -> 
( S ++  T )  e. Word  B )
4318adantr 481 . . . 4  |-  ( ( ( S  e. Word  B  /\  T  e. Word  B )  /\  k  e.  ( 0..^ ( # `  T
) ) )  -> 
( # `  S )  e.  ( 0 ... ( ( # `  S
)  +  ( # `  T ) ) ) )
4428adantr 481 . . . 4  |-  ( ( ( S  e. Word  B  /\  T  e. Word  B )  /\  k  e.  ( 0..^ ( # `  T
) ) )  -> 
( ( # `  S
)  +  ( # `  T ) )  e.  ( 0 ... ( # `
 ( S ++  T
) ) ) )
4533oveq2d 6666 . . . . . 6  |-  ( ( S  e. Word  B  /\  T  e. Word  B )  ->  ( 0..^ ( ( ( # `  S
)  +  ( # `  T ) )  -  ( # `  S ) ) )  =  ( 0..^ ( # `  T
) ) )
4645eleq2d 2687 . . . . 5  |-  ( ( S  e. Word  B  /\  T  e. Word  B )  ->  ( k  e.  ( 0..^ ( ( (
# `  S )  +  ( # `  T
) )  -  ( # `
 S ) ) )  <->  k  e.  ( 0..^ ( # `  T
) ) ) )
4746biimpar 502 . . . 4  |-  ( ( ( S  e. Word  B  /\  T  e. Word  B )  /\  k  e.  ( 0..^ ( # `  T
) ) )  -> 
k  e.  ( 0..^ ( ( ( # `  S )  +  (
# `  T )
)  -  ( # `  S ) ) ) )
48 swrdfv 13424 . . . 4  |-  ( ( ( ( S ++  T
)  e. Word  B  /\  ( # `  S )  e.  ( 0 ... ( ( # `  S
)  +  ( # `  T ) ) )  /\  ( ( # `  S )  +  (
# `  T )
)  e.  ( 0 ... ( # `  ( S ++  T ) ) ) )  /\  k  e.  ( 0..^ ( ( ( # `  S
)  +  ( # `  T ) )  -  ( # `  S ) ) ) )  -> 
( ( ( S ++  T ) substr  <. ( # `
 S ) ,  ( ( # `  S
)  +  ( # `  T ) ) >.
) `  k )  =  ( ( S ++  T ) `  (
k  +  ( # `  S ) ) ) )
4942, 43, 44, 47, 48syl31anc 1329 . . 3  |-  ( ( ( S  e. Word  B  /\  T  e. Word  B )  /\  k  e.  ( 0..^ ( # `  T
) ) )  -> 
( ( ( S ++  T ) substr  <. ( # `
 S ) ,  ( ( # `  S
)  +  ( # `  T ) ) >.
) `  k )  =  ( ( S ++  T ) `  (
k  +  ( # `  S ) ) ) )
50 ccatval3 13363 . . . 4  |-  ( ( S  e. Word  B  /\  T  e. Word  B  /\  k  e.  ( 0..^ ( # `  T ) ) )  ->  ( ( S ++  T ) `  (
k  +  ( # `  S ) ) )  =  ( T `  k ) )
51503expa 1265 . . 3  |-  ( ( ( S  e. Word  B  /\  T  e. Word  B )  /\  k  e.  ( 0..^ ( # `  T
) ) )  -> 
( ( S ++  T
) `  ( k  +  ( # `  S
) ) )  =  ( T `  k
) )
5249, 51eqtrd 2656 . 2  |-  ( ( ( S  e. Word  B  /\  T  e. Word  B )  /\  k  e.  ( 0..^ ( # `  T
) ) )  -> 
( ( ( S ++  T ) substr  <. ( # `
 S ) ,  ( ( # `  S
)  +  ( # `  T ) ) >.
) `  k )  =  ( T `  k ) )
5337, 41, 52eqfnfvd 6314 1  |-  ( ( S  e. Word  B  /\  T  e. Word  B )  ->  ( ( S ++  T
) substr  <. ( # `  S
) ,  ( (
# `  S )  +  ( # `  T
) ) >. )  =  T )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   <.cop 4183    Fn wfn 5883   -->wf 5884   ` cfv 5888  (class class class)co 6650   0cc0 9936    + caddc 9939    - cmin 10266   NN0cn0 11292   ZZcz 11377   ZZ>=cuz 11687   ...cfz 12326  ..^cfzo 12465   #chash 13117  Word cword 13291   ++ cconcat 13293   substr csubstr 13295
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466  df-hash 13118  df-word 13299  df-concat 13301  df-substr 13303
This theorem is referenced by:  ccatopth  13470
  Copyright terms: Public domain W3C validator