MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ccatswrd Structured version   Visualization version   Unicode version

Theorem ccatswrd 13456
Description: Joining two adjacent subwords makes a longer subword. (Contributed by Stefan O'Rear, 20-Aug-2015.)
Assertion
Ref Expression
ccatswrd  |-  ( ( S  e. Word  A  /\  ( X  e.  (
0 ... Y )  /\  Y  e.  ( 0 ... Z )  /\  Z  e.  ( 0 ... ( # `  S
) ) ) )  ->  ( ( S substr  <. X ,  Y >. ) ++  ( S substr  <. Y ,  Z >. ) )  =  ( S substr  <. X ,  Z >. ) )

Proof of Theorem ccatswrd
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 swrdcl 13419 . . . . . 6  |-  ( S  e. Word  A  ->  ( S substr  <. X ,  Y >. )  e. Word  A )
21adantr 481 . . . . 5  |-  ( ( S  e. Word  A  /\  ( X  e.  (
0 ... Y )  /\  Y  e.  ( 0 ... Z )  /\  Z  e.  ( 0 ... ( # `  S
) ) ) )  ->  ( S substr  <. X ,  Y >. )  e. Word  A
)
3 swrdcl 13419 . . . . . 6  |-  ( S  e. Word  A  ->  ( S substr  <. Y ,  Z >. )  e. Word  A )
43adantr 481 . . . . 5  |-  ( ( S  e. Word  A  /\  ( X  e.  (
0 ... Y )  /\  Y  e.  ( 0 ... Z )  /\  Z  e.  ( 0 ... ( # `  S
) ) ) )  ->  ( S substr  <. Y ,  Z >. )  e. Word  A
)
5 ccatcl 13359 . . . . 5  |-  ( ( ( S substr  <. X ,  Y >. )  e. Word  A  /\  ( S substr  <. Y ,  Z >. )  e. Word  A
)  ->  ( ( S substr  <. X ,  Y >. ) ++  ( S substr  <. Y ,  Z >. ) )  e. Word  A )
62, 4, 5syl2anc 693 . . . 4  |-  ( ( S  e. Word  A  /\  ( X  e.  (
0 ... Y )  /\  Y  e.  ( 0 ... Z )  /\  Z  e.  ( 0 ... ( # `  S
) ) ) )  ->  ( ( S substr  <. X ,  Y >. ) ++  ( S substr  <. Y ,  Z >. ) )  e. Word  A )
7 wrdf 13310 . . . 4  |-  ( ( ( S substr  <. X ,  Y >. ) ++  ( S substr  <. Y ,  Z >. ) )  e. Word  A  -> 
( ( S substr  <. X ,  Y >. ) ++  ( S substr  <. Y ,  Z >. ) ) : ( 0..^ ( # `  (
( S substr  <. X ,  Y >. ) ++  ( S substr  <. Y ,  Z >. ) ) ) ) --> A )
8 ffn 6045 . . . 4  |-  ( ( ( S substr  <. X ,  Y >. ) ++  ( S substr  <. Y ,  Z >. ) ) : ( 0..^ ( # `  (
( S substr  <. X ,  Y >. ) ++  ( S substr  <. Y ,  Z >. ) ) ) ) --> A  ->  ( ( S substr  <. X ,  Y >. ) ++  ( S substr  <. Y ,  Z >. ) )  Fn  ( 0..^ ( # `  ( ( S substr  <. X ,  Y >. ) ++  ( S substr  <. Y ,  Z >. ) ) ) ) )
96, 7, 83syl 18 . . 3  |-  ( ( S  e. Word  A  /\  ( X  e.  (
0 ... Y )  /\  Y  e.  ( 0 ... Z )  /\  Z  e.  ( 0 ... ( # `  S
) ) ) )  ->  ( ( S substr  <. X ,  Y >. ) ++  ( S substr  <. Y ,  Z >. ) )  Fn  ( 0..^ ( # `  ( ( S substr  <. X ,  Y >. ) ++  ( S substr  <. Y ,  Z >. ) ) ) ) )
10 ccatlen 13360 . . . . . . 7  |-  ( ( ( S substr  <. X ,  Y >. )  e. Word  A  /\  ( S substr  <. Y ,  Z >. )  e. Word  A
)  ->  ( # `  (
( S substr  <. X ,  Y >. ) ++  ( S substr  <. Y ,  Z >. ) ) )  =  ( ( # `  ( S substr  <. X ,  Y >. ) )  +  (
# `  ( S substr  <. Y ,  Z >. ) ) ) )
112, 4, 10syl2anc 693 . . . . . 6  |-  ( ( S  e. Word  A  /\  ( X  e.  (
0 ... Y )  /\  Y  e.  ( 0 ... Z )  /\  Z  e.  ( 0 ... ( # `  S
) ) ) )  ->  ( # `  (
( S substr  <. X ,  Y >. ) ++  ( S substr  <. Y ,  Z >. ) ) )  =  ( ( # `  ( S substr  <. X ,  Y >. ) )  +  (
# `  ( S substr  <. Y ,  Z >. ) ) ) )
12 simpl 473 . . . . . . . . 9  |-  ( ( S  e. Word  A  /\  ( X  e.  (
0 ... Y )  /\  Y  e.  ( 0 ... Z )  /\  Z  e.  ( 0 ... ( # `  S
) ) ) )  ->  S  e. Word  A
)
13 simpr1 1067 . . . . . . . . 9  |-  ( ( S  e. Word  A  /\  ( X  e.  (
0 ... Y )  /\  Y  e.  ( 0 ... Z )  /\  Z  e.  ( 0 ... ( # `  S
) ) ) )  ->  X  e.  ( 0 ... Y ) )
14 simpr2 1068 . . . . . . . . . 10  |-  ( ( S  e. Word  A  /\  ( X  e.  (
0 ... Y )  /\  Y  e.  ( 0 ... Z )  /\  Z  e.  ( 0 ... ( # `  S
) ) ) )  ->  Y  e.  ( 0 ... Z ) )
15 simpr3 1069 . . . . . . . . . 10  |-  ( ( S  e. Word  A  /\  ( X  e.  (
0 ... Y )  /\  Y  e.  ( 0 ... Z )  /\  Z  e.  ( 0 ... ( # `  S
) ) ) )  ->  Z  e.  ( 0 ... ( # `  S ) ) )
16 fzass4 12379 . . . . . . . . . . . 12  |-  ( ( Y  e.  ( 0 ... ( # `  S
) )  /\  Z  e.  ( Y ... ( # `
 S ) ) )  <->  ( Y  e.  ( 0 ... Z
)  /\  Z  e.  ( 0 ... ( # `
 S ) ) ) )
1716biimpri 218 . . . . . . . . . . 11  |-  ( ( Y  e.  ( 0 ... Z )  /\  Z  e.  ( 0 ... ( # `  S
) ) )  -> 
( Y  e.  ( 0 ... ( # `  S ) )  /\  Z  e.  ( Y ... ( # `  S
) ) ) )
1817simpld 475 . . . . . . . . . 10  |-  ( ( Y  e.  ( 0 ... Z )  /\  Z  e.  ( 0 ... ( # `  S
) ) )  ->  Y  e.  ( 0 ... ( # `  S
) ) )
1914, 15, 18syl2anc 693 . . . . . . . . 9  |-  ( ( S  e. Word  A  /\  ( X  e.  (
0 ... Y )  /\  Y  e.  ( 0 ... Z )  /\  Z  e.  ( 0 ... ( # `  S
) ) ) )  ->  Y  e.  ( 0 ... ( # `  S ) ) )
20 swrdlen 13423 . . . . . . . . 9  |-  ( ( S  e. Word  A  /\  X  e.  ( 0 ... Y )  /\  Y  e.  ( 0 ... ( # `  S
) ) )  -> 
( # `  ( S substr  <. X ,  Y >. ) )  =  ( Y  -  X ) )
2112, 13, 19, 20syl3anc 1326 . . . . . . . 8  |-  ( ( S  e. Word  A  /\  ( X  e.  (
0 ... Y )  /\  Y  e.  ( 0 ... Z )  /\  Z  e.  ( 0 ... ( # `  S
) ) ) )  ->  ( # `  ( S substr  <. X ,  Y >. ) )  =  ( Y  -  X ) )
22 swrdlen 13423 . . . . . . . . 9  |-  ( ( S  e. Word  A  /\  Y  e.  ( 0 ... Z )  /\  Z  e.  ( 0 ... ( # `  S
) ) )  -> 
( # `  ( S substr  <. Y ,  Z >. ) )  =  ( Z  -  Y ) )
2312, 14, 15, 22syl3anc 1326 . . . . . . . 8  |-  ( ( S  e. Word  A  /\  ( X  e.  (
0 ... Y )  /\  Y  e.  ( 0 ... Z )  /\  Z  e.  ( 0 ... ( # `  S
) ) ) )  ->  ( # `  ( S substr  <. Y ,  Z >. ) )  =  ( Z  -  Y ) )
2421, 23oveq12d 6668 . . . . . . 7  |-  ( ( S  e. Word  A  /\  ( X  e.  (
0 ... Y )  /\  Y  e.  ( 0 ... Z )  /\  Z  e.  ( 0 ... ( # `  S
) ) ) )  ->  ( ( # `  ( S substr  <. X ,  Y >. ) )  +  ( # `  ( S substr  <. Y ,  Z >. ) ) )  =  ( ( Y  -  X )  +  ( Z  -  Y ) ) )
25 elfzelz 12342 . . . . . . . . . 10  |-  ( Y  e.  ( 0 ... Z )  ->  Y  e.  ZZ )
2614, 25syl 17 . . . . . . . . 9  |-  ( ( S  e. Word  A  /\  ( X  e.  (
0 ... Y )  /\  Y  e.  ( 0 ... Z )  /\  Z  e.  ( 0 ... ( # `  S
) ) ) )  ->  Y  e.  ZZ )
2726zcnd 11483 . . . . . . . 8  |-  ( ( S  e. Word  A  /\  ( X  e.  (
0 ... Y )  /\  Y  e.  ( 0 ... Z )  /\  Z  e.  ( 0 ... ( # `  S
) ) ) )  ->  Y  e.  CC )
28 elfzelz 12342 . . . . . . . . . 10  |-  ( X  e.  ( 0 ... Y )  ->  X  e.  ZZ )
2913, 28syl 17 . . . . . . . . 9  |-  ( ( S  e. Word  A  /\  ( X  e.  (
0 ... Y )  /\  Y  e.  ( 0 ... Z )  /\  Z  e.  ( 0 ... ( # `  S
) ) ) )  ->  X  e.  ZZ )
3029zcnd 11483 . . . . . . . 8  |-  ( ( S  e. Word  A  /\  ( X  e.  (
0 ... Y )  /\  Y  e.  ( 0 ... Z )  /\  Z  e.  ( 0 ... ( # `  S
) ) ) )  ->  X  e.  CC )
31 elfzelz 12342 . . . . . . . . . 10  |-  ( Z  e.  ( 0 ... ( # `  S
) )  ->  Z  e.  ZZ )
3215, 31syl 17 . . . . . . . . 9  |-  ( ( S  e. Word  A  /\  ( X  e.  (
0 ... Y )  /\  Y  e.  ( 0 ... Z )  /\  Z  e.  ( 0 ... ( # `  S
) ) ) )  ->  Z  e.  ZZ )
3332zcnd 11483 . . . . . . . 8  |-  ( ( S  e. Word  A  /\  ( X  e.  (
0 ... Y )  /\  Y  e.  ( 0 ... Z )  /\  Z  e.  ( 0 ... ( # `  S
) ) ) )  ->  Z  e.  CC )
3427, 30, 33npncan3d 10428 . . . . . . 7  |-  ( ( S  e. Word  A  /\  ( X  e.  (
0 ... Y )  /\  Y  e.  ( 0 ... Z )  /\  Z  e.  ( 0 ... ( # `  S
) ) ) )  ->  ( ( Y  -  X )  +  ( Z  -  Y
) )  =  ( Z  -  X ) )
3524, 34eqtrd 2656 . . . . . 6  |-  ( ( S  e. Word  A  /\  ( X  e.  (
0 ... Y )  /\  Y  e.  ( 0 ... Z )  /\  Z  e.  ( 0 ... ( # `  S
) ) ) )  ->  ( ( # `  ( S substr  <. X ,  Y >. ) )  +  ( # `  ( S substr  <. Y ,  Z >. ) ) )  =  ( Z  -  X
) )
3611, 35eqtrd 2656 . . . . 5  |-  ( ( S  e. Word  A  /\  ( X  e.  (
0 ... Y )  /\  Y  e.  ( 0 ... Z )  /\  Z  e.  ( 0 ... ( # `  S
) ) ) )  ->  ( # `  (
( S substr  <. X ,  Y >. ) ++  ( S substr  <. Y ,  Z >. ) ) )  =  ( Z  -  X ) )
3736oveq2d 6666 . . . 4  |-  ( ( S  e. Word  A  /\  ( X  e.  (
0 ... Y )  /\  Y  e.  ( 0 ... Z )  /\  Z  e.  ( 0 ... ( # `  S
) ) ) )  ->  ( 0..^ (
# `  ( ( S substr  <. X ,  Y >. ) ++  ( S substr  <. Y ,  Z >. ) ) ) )  =  ( 0..^ ( Z  -  X
) ) )
3837fneq2d 5982 . . 3  |-  ( ( S  e. Word  A  /\  ( X  e.  (
0 ... Y )  /\  Y  e.  ( 0 ... Z )  /\  Z  e.  ( 0 ... ( # `  S
) ) ) )  ->  ( ( ( S substr  <. X ,  Y >. ) ++  ( S substr  <. Y ,  Z >. ) )  Fn  ( 0..^ ( # `  ( ( S substr  <. X ,  Y >. ) ++  ( S substr  <. Y ,  Z >. ) ) ) )  <->  ( ( S substr  <. X ,  Y >. ) ++  ( S substr  <. Y ,  Z >. ) )  Fn  ( 0..^ ( Z  -  X ) ) ) )
399, 38mpbid 222 . 2  |-  ( ( S  e. Word  A  /\  ( X  e.  (
0 ... Y )  /\  Y  e.  ( 0 ... Z )  /\  Z  e.  ( 0 ... ( # `  S
) ) ) )  ->  ( ( S substr  <. X ,  Y >. ) ++  ( S substr  <. Y ,  Z >. ) )  Fn  ( 0..^ ( Z  -  X ) ) )
40 swrdcl 13419 . . . . 5  |-  ( S  e. Word  A  ->  ( S substr  <. X ,  Z >. )  e. Word  A )
4140adantr 481 . . . 4  |-  ( ( S  e. Word  A  /\  ( X  e.  (
0 ... Y )  /\  Y  e.  ( 0 ... Z )  /\  Z  e.  ( 0 ... ( # `  S
) ) ) )  ->  ( S substr  <. X ,  Z >. )  e. Word  A
)
42 wrdf 13310 . . . 4  |-  ( ( S substr  <. X ,  Z >. )  e. Word  A  -> 
( S substr  <. X ,  Z >. ) : ( 0..^ ( # `  ( S substr  <. X ,  Z >. ) ) ) --> A )
43 ffn 6045 . . . 4  |-  ( ( S substr  <. X ,  Z >. ) : ( 0..^ ( # `  ( S substr  <. X ,  Z >. ) ) ) --> A  ->  ( S substr  <. X ,  Z >. )  Fn  (
0..^ ( # `  ( S substr  <. X ,  Z >. ) ) ) )
4441, 42, 433syl 18 . . 3  |-  ( ( S  e. Word  A  /\  ( X  e.  (
0 ... Y )  /\  Y  e.  ( 0 ... Z )  /\  Z  e.  ( 0 ... ( # `  S
) ) ) )  ->  ( S substr  <. X ,  Z >. )  Fn  (
0..^ ( # `  ( S substr  <. X ,  Z >. ) ) ) )
45 fzass4 12379 . . . . . . . . 9  |-  ( ( X  e.  ( 0 ... Z )  /\  Y  e.  ( X ... Z ) )  <->  ( X  e.  ( 0 ... Y
)  /\  Y  e.  ( 0 ... Z
) ) )
4645biimpri 218 . . . . . . . 8  |-  ( ( X  e.  ( 0 ... Y )  /\  Y  e.  ( 0 ... Z ) )  ->  ( X  e.  ( 0 ... Z
)  /\  Y  e.  ( X ... Z ) ) )
4746simpld 475 . . . . . . 7  |-  ( ( X  e.  ( 0 ... Y )  /\  Y  e.  ( 0 ... Z ) )  ->  X  e.  ( 0 ... Z ) )
4813, 14, 47syl2anc 693 . . . . . 6  |-  ( ( S  e. Word  A  /\  ( X  e.  (
0 ... Y )  /\  Y  e.  ( 0 ... Z )  /\  Z  e.  ( 0 ... ( # `  S
) ) ) )  ->  X  e.  ( 0 ... Z ) )
49 swrdlen 13423 . . . . . 6  |-  ( ( S  e. Word  A  /\  X  e.  ( 0 ... Z )  /\  Z  e.  ( 0 ... ( # `  S
) ) )  -> 
( # `  ( S substr  <. X ,  Z >. ) )  =  ( Z  -  X ) )
5012, 48, 15, 49syl3anc 1326 . . . . 5  |-  ( ( S  e. Word  A  /\  ( X  e.  (
0 ... Y )  /\  Y  e.  ( 0 ... Z )  /\  Z  e.  ( 0 ... ( # `  S
) ) ) )  ->  ( # `  ( S substr  <. X ,  Z >. ) )  =  ( Z  -  X ) )
5150oveq2d 6666 . . . 4  |-  ( ( S  e. Word  A  /\  ( X  e.  (
0 ... Y )  /\  Y  e.  ( 0 ... Z )  /\  Z  e.  ( 0 ... ( # `  S
) ) ) )  ->  ( 0..^ (
# `  ( S substr  <. X ,  Z >. ) ) )  =  ( 0..^ ( Z  -  X ) ) )
5251fneq2d 5982 . . 3  |-  ( ( S  e. Word  A  /\  ( X  e.  (
0 ... Y )  /\  Y  e.  ( 0 ... Z )  /\  Z  e.  ( 0 ... ( # `  S
) ) ) )  ->  ( ( S substr  <. X ,  Z >. )  Fn  ( 0..^ (
# `  ( S substr  <. X ,  Z >. ) ) )  <->  ( S substr  <. X ,  Z >. )  Fn  ( 0..^ ( Z  -  X ) ) ) )
5344, 52mpbid 222 . 2  |-  ( ( S  e. Word  A  /\  ( X  e.  (
0 ... Y )  /\  Y  e.  ( 0 ... Z )  /\  Z  e.  ( 0 ... ( # `  S
) ) ) )  ->  ( S substr  <. X ,  Z >. )  Fn  (
0..^ ( Z  -  X ) ) )
54 simpr 477 . . . . 5  |-  ( ( ( S  e. Word  A  /\  ( X  e.  ( 0 ... Y )  /\  Y  e.  ( 0 ... Z )  /\  Z  e.  ( 0 ... ( # `  S ) ) ) )  /\  x  e.  ( 0..^ ( Z  -  X ) ) )  ->  x  e.  ( 0..^ ( Z  -  X ) ) )
5526, 29zsubcld 11487 . . . . . 6  |-  ( ( S  e. Word  A  /\  ( X  e.  (
0 ... Y )  /\  Y  e.  ( 0 ... Z )  /\  Z  e.  ( 0 ... ( # `  S
) ) ) )  ->  ( Y  -  X )  e.  ZZ )
5655adantr 481 . . . . 5  |-  ( ( ( S  e. Word  A  /\  ( X  e.  ( 0 ... Y )  /\  Y  e.  ( 0 ... Z )  /\  Z  e.  ( 0 ... ( # `  S ) ) ) )  /\  x  e.  ( 0..^ ( Z  -  X ) ) )  ->  ( Y  -  X )  e.  ZZ )
57 fzospliti 12500 . . . . 5  |-  ( ( x  e.  ( 0..^ ( Z  -  X
) )  /\  ( Y  -  X )  e.  ZZ )  ->  (
x  e.  ( 0..^ ( Y  -  X
) )  \/  x  e.  ( ( Y  -  X )..^ ( Z  -  X ) ) ) )
5854, 56, 57syl2anc 693 . . . 4  |-  ( ( ( S  e. Word  A  /\  ( X  e.  ( 0 ... Y )  /\  Y  e.  ( 0 ... Z )  /\  Z  e.  ( 0 ... ( # `  S ) ) ) )  /\  x  e.  ( 0..^ ( Z  -  X ) ) )  ->  ( x  e.  ( 0..^ ( Y  -  X ) )  \/  x  e.  ( ( Y  -  X
)..^ ( Z  -  X ) ) ) )
592adantr 481 . . . . . . 7  |-  ( ( ( S  e. Word  A  /\  ( X  e.  ( 0 ... Y )  /\  Y  e.  ( 0 ... Z )  /\  Z  e.  ( 0 ... ( # `  S ) ) ) )  /\  x  e.  ( 0..^ ( Y  -  X ) ) )  ->  ( S substr  <. X ,  Y >. )  e. Word  A )
604adantr 481 . . . . . . 7  |-  ( ( ( S  e. Word  A  /\  ( X  e.  ( 0 ... Y )  /\  Y  e.  ( 0 ... Z )  /\  Z  e.  ( 0 ... ( # `  S ) ) ) )  /\  x  e.  ( 0..^ ( Y  -  X ) ) )  ->  ( S substr  <. Y ,  Z >. )  e. Word  A )
6121oveq2d 6666 . . . . . . . . 9  |-  ( ( S  e. Word  A  /\  ( X  e.  (
0 ... Y )  /\  Y  e.  ( 0 ... Z )  /\  Z  e.  ( 0 ... ( # `  S
) ) ) )  ->  ( 0..^ (
# `  ( S substr  <. X ,  Y >. ) ) )  =  ( 0..^ ( Y  -  X ) ) )
6261eleq2d 2687 . . . . . . . 8  |-  ( ( S  e. Word  A  /\  ( X  e.  (
0 ... Y )  /\  Y  e.  ( 0 ... Z )  /\  Z  e.  ( 0 ... ( # `  S
) ) ) )  ->  ( x  e.  ( 0..^ ( # `  ( S substr  <. X ,  Y >. ) ) )  <-> 
x  e.  ( 0..^ ( Y  -  X
) ) ) )
6362biimpar 502 . . . . . . 7  |-  ( ( ( S  e. Word  A  /\  ( X  e.  ( 0 ... Y )  /\  Y  e.  ( 0 ... Z )  /\  Z  e.  ( 0 ... ( # `  S ) ) ) )  /\  x  e.  ( 0..^ ( Y  -  X ) ) )  ->  x  e.  ( 0..^ ( # `  ( S substr  <. X ,  Y >. ) ) ) )
64 ccatval1 13361 . . . . . . 7  |-  ( ( ( S substr  <. X ,  Y >. )  e. Word  A  /\  ( S substr  <. Y ,  Z >. )  e. Word  A  /\  x  e.  (
0..^ ( # `  ( S substr  <. X ,  Y >. ) ) ) )  ->  ( ( ( S substr  <. X ,  Y >. ) ++  ( S substr  <. Y ,  Z >. ) ) `  x )  =  ( ( S substr  <. X ,  Y >. ) `  x
) )
6559, 60, 63, 64syl3anc 1326 . . . . . 6  |-  ( ( ( S  e. Word  A  /\  ( X  e.  ( 0 ... Y )  /\  Y  e.  ( 0 ... Z )  /\  Z  e.  ( 0 ... ( # `  S ) ) ) )  /\  x  e.  ( 0..^ ( Y  -  X ) ) )  ->  ( (
( S substr  <. X ,  Y >. ) ++  ( S substr  <. Y ,  Z >. ) ) `  x )  =  ( ( S substr  <. X ,  Y >. ) `
 x ) )
66 simpll 790 . . . . . . 7  |-  ( ( ( S  e. Word  A  /\  ( X  e.  ( 0 ... Y )  /\  Y  e.  ( 0 ... Z )  /\  Z  e.  ( 0 ... ( # `  S ) ) ) )  /\  x  e.  ( 0..^ ( Y  -  X ) ) )  ->  S  e. Word  A )
67 simplr1 1103 . . . . . . 7  |-  ( ( ( S  e. Word  A  /\  ( X  e.  ( 0 ... Y )  /\  Y  e.  ( 0 ... Z )  /\  Z  e.  ( 0 ... ( # `  S ) ) ) )  /\  x  e.  ( 0..^ ( Y  -  X ) ) )  ->  X  e.  ( 0 ... Y
) )
6819adantr 481 . . . . . . 7  |-  ( ( ( S  e. Word  A  /\  ( X  e.  ( 0 ... Y )  /\  Y  e.  ( 0 ... Z )  /\  Z  e.  ( 0 ... ( # `  S ) ) ) )  /\  x  e.  ( 0..^ ( Y  -  X ) ) )  ->  Y  e.  ( 0 ... ( # `
 S ) ) )
69 simpr 477 . . . . . . 7  |-  ( ( ( S  e. Word  A  /\  ( X  e.  ( 0 ... Y )  /\  Y  e.  ( 0 ... Z )  /\  Z  e.  ( 0 ... ( # `  S ) ) ) )  /\  x  e.  ( 0..^ ( Y  -  X ) ) )  ->  x  e.  ( 0..^ ( Y  -  X ) ) )
70 swrdfv 13424 . . . . . . 7  |-  ( ( ( S  e. Word  A  /\  X  e.  (
0 ... Y )  /\  Y  e.  ( 0 ... ( # `  S
) ) )  /\  x  e.  ( 0..^ ( Y  -  X
) ) )  -> 
( ( S substr  <. X ,  Y >. ) `  x
)  =  ( S `
 ( x  +  X ) ) )
7166, 67, 68, 69, 70syl31anc 1329 . . . . . 6  |-  ( ( ( S  e. Word  A  /\  ( X  e.  ( 0 ... Y )  /\  Y  e.  ( 0 ... Z )  /\  Z  e.  ( 0 ... ( # `  S ) ) ) )  /\  x  e.  ( 0..^ ( Y  -  X ) ) )  ->  ( ( S substr  <. X ,  Y >. ) `  x )  =  ( S `  ( x  +  X
) ) )
7265, 71eqtrd 2656 . . . . 5  |-  ( ( ( S  e. Word  A  /\  ( X  e.  ( 0 ... Y )  /\  Y  e.  ( 0 ... Z )  /\  Z  e.  ( 0 ... ( # `  S ) ) ) )  /\  x  e.  ( 0..^ ( Y  -  X ) ) )  ->  ( (
( S substr  <. X ,  Y >. ) ++  ( S substr  <. Y ,  Z >. ) ) `  x )  =  ( S `  ( x  +  X
) ) )
732adantr 481 . . . . . . 7  |-  ( ( ( S  e. Word  A  /\  ( X  e.  ( 0 ... Y )  /\  Y  e.  ( 0 ... Z )  /\  Z  e.  ( 0 ... ( # `  S ) ) ) )  /\  x  e.  ( ( Y  -  X )..^ ( Z  -  X ) ) )  ->  ( S substr  <. X ,  Y >. )  e. Word  A
)
744adantr 481 . . . . . . 7  |-  ( ( ( S  e. Word  A  /\  ( X  e.  ( 0 ... Y )  /\  Y  e.  ( 0 ... Z )  /\  Z  e.  ( 0 ... ( # `  S ) ) ) )  /\  x  e.  ( ( Y  -  X )..^ ( Z  -  X ) ) )  ->  ( S substr  <. Y ,  Z >. )  e. Word  A
)
7521, 35oveq12d 6668 . . . . . . . . 9  |-  ( ( S  e. Word  A  /\  ( X  e.  (
0 ... Y )  /\  Y  e.  ( 0 ... Z )  /\  Z  e.  ( 0 ... ( # `  S
) ) ) )  ->  ( ( # `  ( S substr  <. X ,  Y >. ) )..^ ( ( # `  ( S substr  <. X ,  Y >. ) )  +  (
# `  ( S substr  <. Y ,  Z >. ) ) ) )  =  ( ( Y  -  X )..^ ( Z  -  X ) ) )
7675eleq2d 2687 . . . . . . . 8  |-  ( ( S  e. Word  A  /\  ( X  e.  (
0 ... Y )  /\  Y  e.  ( 0 ... Z )  /\  Z  e.  ( 0 ... ( # `  S
) ) ) )  ->  ( x  e.  ( ( # `  ( S substr  <. X ,  Y >. ) )..^ ( (
# `  ( S substr  <. X ,  Y >. ) )  +  ( # `  ( S substr  <. Y ,  Z >. ) ) ) )  <->  x  e.  (
( Y  -  X
)..^ ( Z  -  X ) ) ) )
7776biimpar 502 . . . . . . 7  |-  ( ( ( S  e. Word  A  /\  ( X  e.  ( 0 ... Y )  /\  Y  e.  ( 0 ... Z )  /\  Z  e.  ( 0 ... ( # `  S ) ) ) )  /\  x  e.  ( ( Y  -  X )..^ ( Z  -  X ) ) )  ->  x  e.  ( ( # `  ( S substr  <. X ,  Y >. ) )..^ ( (
# `  ( S substr  <. X ,  Y >. ) )  +  ( # `  ( S substr  <. Y ,  Z >. ) ) ) ) )
78 ccatval2 13362 . . . . . . 7  |-  ( ( ( S substr  <. X ,  Y >. )  e. Word  A  /\  ( S substr  <. Y ,  Z >. )  e. Word  A  /\  x  e.  (
( # `  ( S substr  <. X ,  Y >. ) )..^ ( ( # `  ( S substr  <. X ,  Y >. ) )  +  ( # `  ( S substr  <. Y ,  Z >. ) ) ) ) )  ->  ( (
( S substr  <. X ,  Y >. ) ++  ( S substr  <. Y ,  Z >. ) ) `  x )  =  ( ( S substr  <. Y ,  Z >. ) `
 ( x  -  ( # `  ( S substr  <. X ,  Y >. ) ) ) ) )
7973, 74, 77, 78syl3anc 1326 . . . . . 6  |-  ( ( ( S  e. Word  A  /\  ( X  e.  ( 0 ... Y )  /\  Y  e.  ( 0 ... Z )  /\  Z  e.  ( 0 ... ( # `  S ) ) ) )  /\  x  e.  ( ( Y  -  X )..^ ( Z  -  X ) ) )  ->  ( ( ( S substr  <. X ,  Y >. ) ++  ( S substr  <. Y ,  Z >. ) ) `  x )  =  ( ( S substr  <. Y ,  Z >. ) `  (
x  -  ( # `  ( S substr  <. X ,  Y >. ) ) ) ) )
80 simpll 790 . . . . . . 7  |-  ( ( ( S  e. Word  A  /\  ( X  e.  ( 0 ... Y )  /\  Y  e.  ( 0 ... Z )  /\  Z  e.  ( 0 ... ( # `  S ) ) ) )  /\  x  e.  ( ( Y  -  X )..^ ( Z  -  X ) ) )  ->  S  e. Word  A
)
81 simplr2 1104 . . . . . . 7  |-  ( ( ( S  e. Word  A  /\  ( X  e.  ( 0 ... Y )  /\  Y  e.  ( 0 ... Z )  /\  Z  e.  ( 0 ... ( # `  S ) ) ) )  /\  x  e.  ( ( Y  -  X )..^ ( Z  -  X ) ) )  ->  Y  e.  ( 0 ... Z ) )
82 simplr3 1105 . . . . . . 7  |-  ( ( ( S  e. Word  A  /\  ( X  e.  ( 0 ... Y )  /\  Y  e.  ( 0 ... Z )  /\  Z  e.  ( 0 ... ( # `  S ) ) ) )  /\  x  e.  ( ( Y  -  X )..^ ( Z  -  X ) ) )  ->  Z  e.  ( 0 ... ( # `  S ) ) )
8321oveq2d 6666 . . . . . . . . 9  |-  ( ( S  e. Word  A  /\  ( X  e.  (
0 ... Y )  /\  Y  e.  ( 0 ... Z )  /\  Z  e.  ( 0 ... ( # `  S
) ) ) )  ->  ( x  -  ( # `  ( S substr  <. X ,  Y >. ) ) )  =  ( x  -  ( Y  -  X ) ) )
8483adantr 481 . . . . . . . 8  |-  ( ( ( S  e. Word  A  /\  ( X  e.  ( 0 ... Y )  /\  Y  e.  ( 0 ... Z )  /\  Z  e.  ( 0 ... ( # `  S ) ) ) )  /\  x  e.  ( ( Y  -  X )..^ ( Z  -  X ) ) )  ->  ( x  -  ( # `  ( S substr  <. X ,  Y >. ) ) )  =  ( x  -  ( Y  -  X ) ) )
8534oveq2d 6666 . . . . . . . . . . 11  |-  ( ( S  e. Word  A  /\  ( X  e.  (
0 ... Y )  /\  Y  e.  ( 0 ... Z )  /\  Z  e.  ( 0 ... ( # `  S
) ) ) )  ->  ( ( Y  -  X )..^ ( ( Y  -  X
)  +  ( Z  -  Y ) ) )  =  ( ( Y  -  X )..^ ( Z  -  X
) ) )
8685eleq2d 2687 . . . . . . . . . 10  |-  ( ( S  e. Word  A  /\  ( X  e.  (
0 ... Y )  /\  Y  e.  ( 0 ... Z )  /\  Z  e.  ( 0 ... ( # `  S
) ) ) )  ->  ( x  e.  ( ( Y  -  X )..^ ( ( Y  -  X )  +  ( Z  -  Y
) ) )  <->  x  e.  ( ( Y  -  X )..^ ( Z  -  X ) ) ) )
8786biimpar 502 . . . . . . . . 9  |-  ( ( ( S  e. Word  A  /\  ( X  e.  ( 0 ... Y )  /\  Y  e.  ( 0 ... Z )  /\  Z  e.  ( 0 ... ( # `  S ) ) ) )  /\  x  e.  ( ( Y  -  X )..^ ( Z  -  X ) ) )  ->  x  e.  ( ( Y  -  X
)..^ ( ( Y  -  X )  +  ( Z  -  Y
) ) ) )
8832, 26zsubcld 11487 . . . . . . . . . 10  |-  ( ( S  e. Word  A  /\  ( X  e.  (
0 ... Y )  /\  Y  e.  ( 0 ... Z )  /\  Z  e.  ( 0 ... ( # `  S
) ) ) )  ->  ( Z  -  Y )  e.  ZZ )
8988adantr 481 . . . . . . . . 9  |-  ( ( ( S  e. Word  A  /\  ( X  e.  ( 0 ... Y )  /\  Y  e.  ( 0 ... Z )  /\  Z  e.  ( 0 ... ( # `  S ) ) ) )  /\  x  e.  ( ( Y  -  X )..^ ( Z  -  X ) ) )  ->  ( Z  -  Y )  e.  ZZ )
90 fzosubel3 12528 . . . . . . . . 9  |-  ( ( x  e.  ( ( Y  -  X )..^ ( ( Y  -  X )  +  ( Z  -  Y ) ) )  /\  ( Z  -  Y )  e.  ZZ )  ->  (
x  -  ( Y  -  X ) )  e.  ( 0..^ ( Z  -  Y ) ) )
9187, 89, 90syl2anc 693 . . . . . . . 8  |-  ( ( ( S  e. Word  A  /\  ( X  e.  ( 0 ... Y )  /\  Y  e.  ( 0 ... Z )  /\  Z  e.  ( 0 ... ( # `  S ) ) ) )  /\  x  e.  ( ( Y  -  X )..^ ( Z  -  X ) ) )  ->  ( x  -  ( Y  -  X
) )  e.  ( 0..^ ( Z  -  Y ) ) )
9284, 91eqeltrd 2701 . . . . . . 7  |-  ( ( ( S  e. Word  A  /\  ( X  e.  ( 0 ... Y )  /\  Y  e.  ( 0 ... Z )  /\  Z  e.  ( 0 ... ( # `  S ) ) ) )  /\  x  e.  ( ( Y  -  X )..^ ( Z  -  X ) ) )  ->  ( x  -  ( # `  ( S substr  <. X ,  Y >. ) ) )  e.  ( 0..^ ( Z  -  Y ) ) )
93 swrdfv 13424 . . . . . . 7  |-  ( ( ( S  e. Word  A  /\  Y  e.  (
0 ... Z )  /\  Z  e.  ( 0 ... ( # `  S
) ) )  /\  ( x  -  ( # `
 ( S substr  <. X ,  Y >. ) ) )  e.  ( 0..^ ( Z  -  Y ) ) )  ->  (
( S substr  <. Y ,  Z >. ) `  (
x  -  ( # `  ( S substr  <. X ,  Y >. ) ) ) )  =  ( S `
 ( ( x  -  ( # `  ( S substr  <. X ,  Y >. ) ) )  +  Y ) ) )
9480, 81, 82, 92, 93syl31anc 1329 . . . . . 6  |-  ( ( ( S  e. Word  A  /\  ( X  e.  ( 0 ... Y )  /\  Y  e.  ( 0 ... Z )  /\  Z  e.  ( 0 ... ( # `  S ) ) ) )  /\  x  e.  ( ( Y  -  X )..^ ( Z  -  X ) ) )  ->  ( ( S substr  <. Y ,  Z >. ) `
 ( x  -  ( # `  ( S substr  <. X ,  Y >. ) ) ) )  =  ( S `  (
( x  -  ( # `
 ( S substr  <. X ,  Y >. ) ) )  +  Y ) ) )
9583oveq1d 6665 . . . . . . . . 9  |-  ( ( S  e. Word  A  /\  ( X  e.  (
0 ... Y )  /\  Y  e.  ( 0 ... Z )  /\  Z  e.  ( 0 ... ( # `  S
) ) ) )  ->  ( ( x  -  ( # `  ( S substr  <. X ,  Y >. ) ) )  +  Y )  =  ( ( x  -  ( Y  -  X )
)  +  Y ) )
9695adantr 481 . . . . . . . 8  |-  ( ( ( S  e. Word  A  /\  ( X  e.  ( 0 ... Y )  /\  Y  e.  ( 0 ... Z )  /\  Z  e.  ( 0 ... ( # `  S ) ) ) )  /\  x  e.  ( ( Y  -  X )..^ ( Z  -  X ) ) )  ->  ( ( x  -  ( # `  ( S substr  <. X ,  Y >. ) ) )  +  Y )  =  ( ( x  -  ( Y  -  X )
)  +  Y ) )
97 elfzoelz 12470 . . . . . . . . . . 11  |-  ( x  e.  ( ( Y  -  X )..^ ( Z  -  X ) )  ->  x  e.  ZZ )
9897zcnd 11483 . . . . . . . . . 10  |-  ( x  e.  ( ( Y  -  X )..^ ( Z  -  X ) )  ->  x  e.  CC )
9998adantl 482 . . . . . . . . 9  |-  ( ( ( S  e. Word  A  /\  ( X  e.  ( 0 ... Y )  /\  Y  e.  ( 0 ... Z )  /\  Z  e.  ( 0 ... ( # `  S ) ) ) )  /\  x  e.  ( ( Y  -  X )..^ ( Z  -  X ) ) )  ->  x  e.  CC )
10027, 30subcld 10392 . . . . . . . . . 10  |-  ( ( S  e. Word  A  /\  ( X  e.  (
0 ... Y )  /\  Y  e.  ( 0 ... Z )  /\  Z  e.  ( 0 ... ( # `  S
) ) ) )  ->  ( Y  -  X )  e.  CC )
101100adantr 481 . . . . . . . . 9  |-  ( ( ( S  e. Word  A  /\  ( X  e.  ( 0 ... Y )  /\  Y  e.  ( 0 ... Z )  /\  Z  e.  ( 0 ... ( # `  S ) ) ) )  /\  x  e.  ( ( Y  -  X )..^ ( Z  -  X ) ) )  ->  ( Y  -  X )  e.  CC )
10227adantr 481 . . . . . . . . 9  |-  ( ( ( S  e. Word  A  /\  ( X  e.  ( 0 ... Y )  /\  Y  e.  ( 0 ... Z )  /\  Z  e.  ( 0 ... ( # `  S ) ) ) )  /\  x  e.  ( ( Y  -  X )..^ ( Z  -  X ) ) )  ->  Y  e.  CC )
10399, 101, 102subadd23d 10414 . . . . . . . 8  |-  ( ( ( S  e. Word  A  /\  ( X  e.  ( 0 ... Y )  /\  Y  e.  ( 0 ... Z )  /\  Z  e.  ( 0 ... ( # `  S ) ) ) )  /\  x  e.  ( ( Y  -  X )..^ ( Z  -  X ) ) )  ->  ( ( x  -  ( Y  -  X ) )  +  Y )  =  ( x  +  ( Y  -  ( Y  -  X ) ) ) )
10427, 30nncand 10397 . . . . . . . . . 10  |-  ( ( S  e. Word  A  /\  ( X  e.  (
0 ... Y )  /\  Y  e.  ( 0 ... Z )  /\  Z  e.  ( 0 ... ( # `  S
) ) ) )  ->  ( Y  -  ( Y  -  X
) )  =  X )
105104oveq2d 6666 . . . . . . . . 9  |-  ( ( S  e. Word  A  /\  ( X  e.  (
0 ... Y )  /\  Y  e.  ( 0 ... Z )  /\  Z  e.  ( 0 ... ( # `  S
) ) ) )  ->  ( x  +  ( Y  -  ( Y  -  X )
) )  =  ( x  +  X ) )
106105adantr 481 . . . . . . . 8  |-  ( ( ( S  e. Word  A  /\  ( X  e.  ( 0 ... Y )  /\  Y  e.  ( 0 ... Z )  /\  Z  e.  ( 0 ... ( # `  S ) ) ) )  /\  x  e.  ( ( Y  -  X )..^ ( Z  -  X ) ) )  ->  ( x  +  ( Y  -  ( Y  -  X )
) )  =  ( x  +  X ) )
10796, 103, 1063eqtrd 2660 . . . . . . 7  |-  ( ( ( S  e. Word  A  /\  ( X  e.  ( 0 ... Y )  /\  Y  e.  ( 0 ... Z )  /\  Z  e.  ( 0 ... ( # `  S ) ) ) )  /\  x  e.  ( ( Y  -  X )..^ ( Z  -  X ) ) )  ->  ( ( x  -  ( # `  ( S substr  <. X ,  Y >. ) ) )  +  Y )  =  ( x  +  X ) )
108107fveq2d 6195 . . . . . 6  |-  ( ( ( S  e. Word  A  /\  ( X  e.  ( 0 ... Y )  /\  Y  e.  ( 0 ... Z )  /\  Z  e.  ( 0 ... ( # `  S ) ) ) )  /\  x  e.  ( ( Y  -  X )..^ ( Z  -  X ) ) )  ->  ( S `  ( ( x  -  ( # `  ( S substr  <. X ,  Y >. ) ) )  +  Y
) )  =  ( S `  ( x  +  X ) ) )
10979, 94, 1083eqtrd 2660 . . . . 5  |-  ( ( ( S  e. Word  A  /\  ( X  e.  ( 0 ... Y )  /\  Y  e.  ( 0 ... Z )  /\  Z  e.  ( 0 ... ( # `  S ) ) ) )  /\  x  e.  ( ( Y  -  X )..^ ( Z  -  X ) ) )  ->  ( ( ( S substr  <. X ,  Y >. ) ++  ( S substr  <. Y ,  Z >. ) ) `  x )  =  ( S `  ( x  +  X ) ) )
11072, 109jaodan 826 . . . 4  |-  ( ( ( S  e. Word  A  /\  ( X  e.  ( 0 ... Y )  /\  Y  e.  ( 0 ... Z )  /\  Z  e.  ( 0 ... ( # `  S ) ) ) )  /\  ( x  e.  ( 0..^ ( Y  -  X ) )  \/  x  e.  ( ( Y  -  X )..^ ( Z  -  X ) ) ) )  ->  ( (
( S substr  <. X ,  Y >. ) ++  ( S substr  <. Y ,  Z >. ) ) `  x )  =  ( S `  ( x  +  X
) ) )
11158, 110syldan 487 . . 3  |-  ( ( ( S  e. Word  A  /\  ( X  e.  ( 0 ... Y )  /\  Y  e.  ( 0 ... Z )  /\  Z  e.  ( 0 ... ( # `  S ) ) ) )  /\  x  e.  ( 0..^ ( Z  -  X ) ) )  ->  ( (
( S substr  <. X ,  Y >. ) ++  ( S substr  <. Y ,  Z >. ) ) `  x )  =  ( S `  ( x  +  X
) ) )
112 simpll 790 . . . 4  |-  ( ( ( S  e. Word  A  /\  ( X  e.  ( 0 ... Y )  /\  Y  e.  ( 0 ... Z )  /\  Z  e.  ( 0 ... ( # `  S ) ) ) )  /\  x  e.  ( 0..^ ( Z  -  X ) ) )  ->  S  e. Word  A )
11348adantr 481 . . . 4  |-  ( ( ( S  e. Word  A  /\  ( X  e.  ( 0 ... Y )  /\  Y  e.  ( 0 ... Z )  /\  Z  e.  ( 0 ... ( # `  S ) ) ) )  /\  x  e.  ( 0..^ ( Z  -  X ) ) )  ->  X  e.  ( 0 ... Z
) )
114 simplr3 1105 . . . 4  |-  ( ( ( S  e. Word  A  /\  ( X  e.  ( 0 ... Y )  /\  Y  e.  ( 0 ... Z )  /\  Z  e.  ( 0 ... ( # `  S ) ) ) )  /\  x  e.  ( 0..^ ( Z  -  X ) ) )  ->  Z  e.  ( 0 ... ( # `
 S ) ) )
115 swrdfv 13424 . . . 4  |-  ( ( ( S  e. Word  A  /\  X  e.  (
0 ... Z )  /\  Z  e.  ( 0 ... ( # `  S
) ) )  /\  x  e.  ( 0..^ ( Z  -  X
) ) )  -> 
( ( S substr  <. X ,  Z >. ) `  x
)  =  ( S `
 ( x  +  X ) ) )
116112, 113, 114, 54, 115syl31anc 1329 . . 3  |-  ( ( ( S  e. Word  A  /\  ( X  e.  ( 0 ... Y )  /\  Y  e.  ( 0 ... Z )  /\  Z  e.  ( 0 ... ( # `  S ) ) ) )  /\  x  e.  ( 0..^ ( Z  -  X ) ) )  ->  ( ( S substr  <. X ,  Z >. ) `  x )  =  ( S `  ( x  +  X
) ) )
117111, 116eqtr4d 2659 . 2  |-  ( ( ( S  e. Word  A  /\  ( X  e.  ( 0 ... Y )  /\  Y  e.  ( 0 ... Z )  /\  Z  e.  ( 0 ... ( # `  S ) ) ) )  /\  x  e.  ( 0..^ ( Z  -  X ) ) )  ->  ( (
( S substr  <. X ,  Y >. ) ++  ( S substr  <. Y ,  Z >. ) ) `  x )  =  ( ( S substr  <. X ,  Z >. ) `
 x ) )
11839, 53, 117eqfnfvd 6314 1  |-  ( ( S  e. Word  A  /\  ( X  e.  (
0 ... Y )  /\  Y  e.  ( 0 ... Z )  /\  Z  e.  ( 0 ... ( # `  S
) ) ) )  ->  ( ( S substr  <. X ,  Y >. ) ++  ( S substr  <. Y ,  Z >. ) )  =  ( S substr  <. X ,  Z >. ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    \/ wo 383    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   <.cop 4183    Fn wfn 5883   -->wf 5884   ` cfv 5888  (class class class)co 6650   CCcc 9934   0cc0 9936    + caddc 9939    - cmin 10266   ZZcz 11377   ...cfz 12326  ..^cfzo 12465   #chash 13117  Word cword 13291   ++ cconcat 13293   substr csubstr 13295
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466  df-hash 13118  df-word 13299  df-concat 13301  df-substr 13303
This theorem is referenced by:  wrdcctswrd  13465  swrdccatwrd  13468  wrdeqs1cat  13474  splid  13504  splval2  13508  swrds2  13685  efgredleme  18156  efgredlemc  18158  efgcpbllemb  18168  frgpuplem  18185  wrdsplex  30618
  Copyright terms: Public domain W3C validator