MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tgbtwnxfr Structured version   Visualization version   Unicode version

Theorem tgbtwnxfr 25425
Description: A condition for extending betweenness to a new set of points based on congruence with another set of points. Theorem 4.6 of [Schwabhauser] p. 36. (Contributed by Thierry Arnoux, 27-Apr-2019.)
Hypotheses
Ref Expression
tgcgrxfr.p  |-  P  =  ( Base `  G
)
tgcgrxfr.m  |-  .-  =  ( dist `  G )
tgcgrxfr.i  |-  I  =  (Itv `  G )
tgcgrxfr.r  |-  .~  =  (cgrG `  G )
tgcgrxfr.g  |-  ( ph  ->  G  e. TarskiG )
tgbtwnxfr.a  |-  ( ph  ->  A  e.  P )
tgbtwnxfr.b  |-  ( ph  ->  B  e.  P )
tgbtwnxfr.c  |-  ( ph  ->  C  e.  P )
tgbtwnxfr.d  |-  ( ph  ->  D  e.  P )
tgbtwnxfr.e  |-  ( ph  ->  E  e.  P )
tgbtwnxfr.f  |-  ( ph  ->  F  e.  P )
tgbtwnxfr.2  |-  ( ph  ->  <" A B C ">  .~  <" D E F "> )
tgbtwnxfr.1  |-  ( ph  ->  B  e.  ( A I C ) )
Assertion
Ref Expression
tgbtwnxfr  |-  ( ph  ->  E  e.  ( D I F ) )

Proof of Theorem tgbtwnxfr
Dummy variable  e is distinct from all other variables.
StepHypRef Expression
1 tgcgrxfr.p . . . 4  |-  P  =  ( Base `  G
)
2 tgcgrxfr.m . . . 4  |-  .-  =  ( dist `  G )
3 tgcgrxfr.i . . . 4  |-  I  =  (Itv `  G )
4 tgcgrxfr.g . . . . 5  |-  ( ph  ->  G  e. TarskiG )
54ad2antrr 762 . . . 4  |-  ( ( ( ph  /\  e  e.  P )  /\  (
e  e.  ( D I F )  /\  <" A B C ">  .~  <" D e F "> ) )  ->  G  e. TarskiG )
6 simplr 792 . . . 4  |-  ( ( ( ph  /\  e  e.  P )  /\  (
e  e.  ( D I F )  /\  <" A B C ">  .~  <" D e F "> ) )  ->  e  e.  P )
7 tgbtwnxfr.e . . . . 5  |-  ( ph  ->  E  e.  P )
87ad2antrr 762 . . . 4  |-  ( ( ( ph  /\  e  e.  P )  /\  (
e  e.  ( D I F )  /\  <" A B C ">  .~  <" D e F "> ) )  ->  E  e.  P )
9 tgbtwnxfr.d . . . . . 6  |-  ( ph  ->  D  e.  P )
109ad2antrr 762 . . . . 5  |-  ( ( ( ph  /\  e  e.  P )  /\  (
e  e.  ( D I F )  /\  <" A B C ">  .~  <" D e F "> ) )  ->  D  e.  P )
11 tgbtwnxfr.f . . . . . 6  |-  ( ph  ->  F  e.  P )
1211ad2antrr 762 . . . . 5  |-  ( ( ( ph  /\  e  e.  P )  /\  (
e  e.  ( D I F )  /\  <" A B C ">  .~  <" D e F "> ) )  ->  F  e.  P )
13 simprl 794 . . . . 5  |-  ( ( ( ph  /\  e  e.  P )  /\  (
e  e.  ( D I F )  /\  <" A B C ">  .~  <" D e F "> ) )  ->  e  e.  ( D I F ) )
14 eqidd 2623 . . . . 5  |-  ( ( ( ph  /\  e  e.  P )  /\  (
e  e.  ( D I F )  /\  <" A B C ">  .~  <" D e F "> ) )  ->  ( D  .-  F )  =  ( D  .-  F
) )
15 eqidd 2623 . . . . 5  |-  ( ( ( ph  /\  e  e.  P )  /\  (
e  e.  ( D I F )  /\  <" A B C ">  .~  <" D e F "> ) )  ->  (
e  .-  F )  =  ( e  .-  F ) )
16 tgcgrxfr.r . . . . . 6  |-  .~  =  (cgrG `  G )
17 tgbtwnxfr.a . . . . . . . . 9  |-  ( ph  ->  A  e.  P )
1817ad2antrr 762 . . . . . . . 8  |-  ( ( ( ph  /\  e  e.  P )  /\  (
e  e.  ( D I F )  /\  <" A B C ">  .~  <" D e F "> ) )  ->  A  e.  P )
19 tgbtwnxfr.b . . . . . . . . 9  |-  ( ph  ->  B  e.  P )
2019ad2antrr 762 . . . . . . . 8  |-  ( ( ( ph  /\  e  e.  P )  /\  (
e  e.  ( D I F )  /\  <" A B C ">  .~  <" D e F "> ) )  ->  B  e.  P )
21 tgbtwnxfr.c . . . . . . . . 9  |-  ( ph  ->  C  e.  P )
2221ad2antrr 762 . . . . . . . 8  |-  ( ( ( ph  /\  e  e.  P )  /\  (
e  e.  ( D I F )  /\  <" A B C ">  .~  <" D e F "> ) )  ->  C  e.  P )
23 simprr 796 . . . . . . . . 9  |-  ( ( ( ph  /\  e  e.  P )  /\  (
e  e.  ( D I F )  /\  <" A B C ">  .~  <" D e F "> ) )  ->  <" A B C ">  .~  <" D e F "> )
241, 2, 3, 16, 5, 18, 20, 22, 10, 6, 12, 23trgcgrcom 25423 . . . . . . . 8  |-  ( ( ( ph  /\  e  e.  P )  /\  (
e  e.  ( D I F )  /\  <" A B C ">  .~  <" D e F "> ) )  ->  <" D
e F ">  .~ 
<" A B C "> )
25 tgbtwnxfr.2 . . . . . . . . 9  |-  ( ph  ->  <" A B C ">  .~  <" D E F "> )
2625ad2antrr 762 . . . . . . . 8  |-  ( ( ( ph  /\  e  e.  P )  /\  (
e  e.  ( D I F )  /\  <" A B C ">  .~  <" D e F "> ) )  ->  <" A B C ">  .~  <" D E F "> )
271, 2, 3, 16, 5, 10, 6, 12, 18, 20, 22, 24, 10, 8, 12, 26cgr3tr 25424 . . . . . . 7  |-  ( ( ( ph  /\  e  e.  P )  /\  (
e  e.  ( D I F )  /\  <" A B C ">  .~  <" D e F "> ) )  ->  <" D
e F ">  .~ 
<" D E F "> )
281, 2, 3, 16, 5, 10, 6, 12, 10, 8, 12, 27trgcgrcom 25423 . . . . . 6  |-  ( ( ( ph  /\  e  e.  P )  /\  (
e  e.  ( D I F )  /\  <" A B C ">  .~  <" D e F "> ) )  ->  <" D E F ">  .~  <" D e F "> )
291, 2, 3, 16, 5, 10, 8, 12, 10, 6, 12, 28cgr3simp1 25415 . . . . 5  |-  ( ( ( ph  /\  e  e.  P )  /\  (
e  e.  ( D I F )  /\  <" A B C ">  .~  <" D e F "> ) )  ->  ( D  .-  E )  =  ( D  .-  e
) )
301, 2, 3, 16, 5, 10, 8, 12, 10, 6, 12, 28cgr3simp2 25416 . . . . . 6  |-  ( ( ( ph  /\  e  e.  P )  /\  (
e  e.  ( D I F )  /\  <" A B C ">  .~  <" D e F "> ) )  ->  ( E  .-  F )  =  ( e  .-  F
) )
311, 2, 3, 5, 8, 12, 6, 12, 30tgcgrcomlr 25375 . . . . 5  |-  ( ( ( ph  /\  e  e.  P )  /\  (
e  e.  ( D I F )  /\  <" A B C ">  .~  <" D e F "> ) )  ->  ( F  .-  E )  =  ( F  .-  e
) )
321, 2, 3, 5, 10, 6, 12, 8, 10, 6, 12, 6, 13, 13, 14, 15, 29, 31tgifscgr 25403 . . . 4  |-  ( ( ( ph  /\  e  e.  P )  /\  (
e  e.  ( D I F )  /\  <" A B C ">  .~  <" D e F "> ) )  ->  (
e  .-  E )  =  ( e  .-  e ) )
331, 2, 3, 5, 6, 8, 6, 32axtgcgrid 25362 . . 3  |-  ( ( ( ph  /\  e  e.  P )  /\  (
e  e.  ( D I F )  /\  <" A B C ">  .~  <" D e F "> ) )  ->  e  =  E )
3433, 13eqeltrrd 2702 . 2  |-  ( ( ( ph  /\  e  e.  P )  /\  (
e  e.  ( D I F )  /\  <" A B C ">  .~  <" D e F "> ) )  ->  E  e.  ( D I F ) )
35 tgbtwnxfr.1 . . 3  |-  ( ph  ->  B  e.  ( A I C ) )
361, 2, 3, 16, 4, 17, 19, 21, 9, 7, 11, 25cgr3simp3 25417 . . . 4  |-  ( ph  ->  ( C  .-  A
)  =  ( F 
.-  D ) )
371, 2, 3, 4, 21, 17, 11, 9, 36tgcgrcomlr 25375 . . 3  |-  ( ph  ->  ( A  .-  C
)  =  ( D 
.-  F ) )
381, 2, 3, 16, 4, 17, 19, 21, 9, 11, 35, 37tgcgrxfr 25413 . 2  |-  ( ph  ->  E. e  e.  P  ( e  e.  ( D I F )  /\  <" A B C ">  .~  <" D e F "> ) )
3934, 38r19.29a 3078 1  |-  ( ph  ->  E  e.  ( D I F ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   class class class wbr 4653   ` cfv 5888  (class class class)co 6650   <"cs3 13587   Basecbs 15857   distcds 15950  TarskiGcstrkg 25329  Itvcitv 25335  cgrGccgrg 25405
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-xnn0 11364  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466  df-hash 13118  df-word 13299  df-concat 13301  df-s1 13302  df-s2 13593  df-s3 13594  df-trkgc 25347  df-trkgb 25348  df-trkgcb 25349  df-trkg 25352  df-cgrg 25406
This theorem is referenced by:  lnxfr  25461  tgfscgr  25463  legov  25480  legov2  25481  legtrd  25484  mirbtwni  25566  cgrabtwn  25717  cgrahl  25718
  Copyright terms: Public domain W3C validator