MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uhgrwkspthlem2 Structured version   Visualization version   Unicode version

Theorem uhgrwkspthlem2 26650
Description: Lemma 2 for uhgrwkspth 26651. (Contributed by AV, 25-Jan-2021.)
Assertion
Ref Expression
uhgrwkspthlem2  |-  ( ( F (Walks `  G
) P  /\  (
( # `  F )  =  1  /\  A  =/=  B )  /\  (
( P `  0
)  =  A  /\  ( P `  ( # `  F ) )  =  B ) )  ->  Fun  `' P )

Proof of Theorem uhgrwkspthlem2
StepHypRef Expression
1 eqid 2622 . . . 4  |-  (Vtx `  G )  =  (Vtx
`  G )
21wlkp 26512 . . 3  |-  ( F (Walks `  G ) P  ->  P : ( 0 ... ( # `  F ) ) --> (Vtx
`  G ) )
3 oveq2 6658 . . . . . . . . . . . . 13  |-  ( (
# `  F )  =  1  ->  (
0 ... ( # `  F
) )  =  ( 0 ... 1 ) )
4 1e0p1 11552 . . . . . . . . . . . . . . 15  |-  1  =  ( 0  +  1 )
54oveq2i 6661 . . . . . . . . . . . . . 14  |-  ( 0 ... 1 )  =  ( 0 ... (
0  +  1 ) )
6 0z 11388 . . . . . . . . . . . . . . 15  |-  0  e.  ZZ
7 fzpr 12396 . . . . . . . . . . . . . . 15  |-  ( 0  e.  ZZ  ->  (
0 ... ( 0  +  1 ) )  =  { 0 ,  ( 0  +  1 ) } )
86, 7ax-mp 5 . . . . . . . . . . . . . 14  |-  ( 0 ... ( 0  +  1 ) )  =  { 0 ,  ( 0  +  1 ) }
9 0p1e1 11132 . . . . . . . . . . . . . . 15  |-  ( 0  +  1 )  =  1
109preq2i 4272 . . . . . . . . . . . . . 14  |-  { 0 ,  ( 0  +  1 ) }  =  { 0 ,  1 }
115, 8, 103eqtri 2648 . . . . . . . . . . . . 13  |-  ( 0 ... 1 )  =  { 0 ,  1 }
123, 11syl6eq 2672 . . . . . . . . . . . 12  |-  ( (
# `  F )  =  1  ->  (
0 ... ( # `  F
) )  =  {
0 ,  1 } )
1312feq2d 6031 . . . . . . . . . . 11  |-  ( (
# `  F )  =  1  ->  ( P : ( 0 ... ( # `  F
) ) --> (Vtx `  G )  <->  P : { 0 ,  1 } --> (Vtx `  G
) ) )
1413adantr 481 . . . . . . . . . 10  |-  ( ( ( # `  F
)  =  1  /\  ( ( P ` 
0 )  =  A  /\  ( P `  ( # `  F ) )  =  B ) )  ->  ( P : ( 0 ... ( # `  F
) ) --> (Vtx `  G )  <->  P : { 0 ,  1 } --> (Vtx `  G
) ) )
15 simpl 473 . . . . . . . . . . . . 13  |-  ( ( ( P `  0
)  =  A  /\  ( P `  ( # `  F ) )  =  B )  ->  ( P `  0 )  =  A )
16 simpr 477 . . . . . . . . . . . . 13  |-  ( ( ( P `  0
)  =  A  /\  ( P `  ( # `  F ) )  =  B )  ->  ( P `  ( # `  F
) )  =  B )
1715, 16neeq12d 2855 . . . . . . . . . . . 12  |-  ( ( ( P `  0
)  =  A  /\  ( P `  ( # `  F ) )  =  B )  ->  (
( P `  0
)  =/=  ( P `
 ( # `  F
) )  <->  A  =/=  B ) )
1817bicomd 213 . . . . . . . . . . 11  |-  ( ( ( P `  0
)  =  A  /\  ( P `  ( # `  F ) )  =  B )  ->  ( A  =/=  B  <->  ( P `  0 )  =/=  ( P `  ( # `
 F ) ) ) )
19 fveq2 6191 . . . . . . . . . . . 12  |-  ( (
# `  F )  =  1  ->  ( P `  ( # `  F
) )  =  ( P `  1 ) )
2019neeq2d 2854 . . . . . . . . . . 11  |-  ( (
# `  F )  =  1  ->  (
( P `  0
)  =/=  ( P `
 ( # `  F
) )  <->  ( P `  0 )  =/=  ( P `  1
) ) )
2118, 20sylan9bbr 737 . . . . . . . . . 10  |-  ( ( ( # `  F
)  =  1  /\  ( ( P ` 
0 )  =  A  /\  ( P `  ( # `  F ) )  =  B ) )  ->  ( A  =/=  B  <->  ( P ` 
0 )  =/=  ( P `  1 )
) )
2214, 21anbi12d 747 . . . . . . . . 9  |-  ( ( ( # `  F
)  =  1  /\  ( ( P ` 
0 )  =  A  /\  ( P `  ( # `  F ) )  =  B ) )  ->  ( ( P : ( 0 ... ( # `  F
) ) --> (Vtx `  G )  /\  A  =/=  B )  <->  ( P : { 0 ,  1 } --> (Vtx `  G
)  /\  ( P `  0 )  =/=  ( P `  1
) ) ) )
23 1z 11407 . . . . . . . . . . . 12  |-  1  e.  ZZ
24 fpr2g 6475 . . . . . . . . . . . 12  |-  ( ( 0  e.  ZZ  /\  1  e.  ZZ )  ->  ( P : {
0 ,  1 } --> (Vtx `  G )  <->  ( ( P `  0
)  e.  (Vtx `  G )  /\  ( P `  1 )  e.  (Vtx `  G )  /\  P  =  { <. 0 ,  ( P `
 0 ) >. ,  <. 1 ,  ( P `  1 )
>. } ) ) )
256, 23, 24mp2an 708 . . . . . . . . . . 11  |-  ( P : { 0 ,  1 } --> (Vtx `  G )  <->  ( ( P `  0 )  e.  (Vtx `  G )  /\  ( P `  1
)  e.  (Vtx `  G )  /\  P  =  { <. 0 ,  ( P `  0 )
>. ,  <. 1 ,  ( P `  1
) >. } ) )
26 funcnvs2 13658 . . . . . . . . . . . . . . . . 17  |-  ( ( ( P `  0
)  e.  (Vtx `  G )  /\  ( P `  1 )  e.  (Vtx `  G )  /\  ( P `  0
)  =/=  ( P `
 1 ) )  ->  Fun  `' <" ( P `  0 )
( P `  1
) "> )
27263expa 1265 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( P ` 
0 )  e.  (Vtx
`  G )  /\  ( P `  1 )  e.  (Vtx `  G
) )  /\  ( P `  0 )  =/=  ( P `  1
) )  ->  Fun  `'
<" ( P ` 
0 ) ( P `
 1 ) "> )
2827adantl 482 . . . . . . . . . . . . . . 15  |-  ( ( P  =  { <. 0 ,  ( P `  0 ) >. ,  <. 1 ,  ( P `  1 )
>. }  /\  ( ( ( P `  0
)  e.  (Vtx `  G )  /\  ( P `  1 )  e.  (Vtx `  G )
)  /\  ( P `  0 )  =/=  ( P `  1
) ) )  ->  Fun  `' <" ( P `
 0 ) ( P `  1 ) "> )
29 simpl 473 . . . . . . . . . . . . . . . . . 18  |-  ( ( P  =  { <. 0 ,  ( P `  0 ) >. ,  <. 1 ,  ( P `  1 )
>. }  /\  ( ( ( P `  0
)  e.  (Vtx `  G )  /\  ( P `  1 )  e.  (Vtx `  G )
)  /\  ( P `  0 )  =/=  ( P `  1
) ) )  ->  P  =  { <. 0 ,  ( P ` 
0 ) >. ,  <. 1 ,  ( P `  1 ) >. } )
30 s2prop 13652 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( P `  0
)  e.  (Vtx `  G )  /\  ( P `  1 )  e.  (Vtx `  G )
)  ->  <" ( P `  0 )
( P `  1
) ">  =  { <. 0 ,  ( P `  0 )
>. ,  <. 1 ,  ( P `  1
) >. } )
3130eqcomd 2628 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( P `  0
)  e.  (Vtx `  G )  /\  ( P `  1 )  e.  (Vtx `  G )
)  ->  { <. 0 ,  ( P ` 
0 ) >. ,  <. 1 ,  ( P `  1 ) >. }  =  <" ( P `  0 )
( P `  1
) "> )
3231adantr 481 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( P ` 
0 )  e.  (Vtx
`  G )  /\  ( P `  1 )  e.  (Vtx `  G
) )  /\  ( P `  0 )  =/=  ( P `  1
) )  ->  { <. 0 ,  ( P `  0 ) >. ,  <. 1 ,  ( P `  1 )
>. }  =  <" ( P `  0 )
( P `  1
) "> )
3332adantl 482 . . . . . . . . . . . . . . . . . 18  |-  ( ( P  =  { <. 0 ,  ( P `  0 ) >. ,  <. 1 ,  ( P `  1 )
>. }  /\  ( ( ( P `  0
)  e.  (Vtx `  G )  /\  ( P `  1 )  e.  (Vtx `  G )
)  /\  ( P `  0 )  =/=  ( P `  1
) ) )  ->  { <. 0 ,  ( P `  0 )
>. ,  <. 1 ,  ( P `  1
) >. }  =  <" ( P `  0
) ( P ` 
1 ) "> )
3429, 33eqtrd 2656 . . . . . . . . . . . . . . . . 17  |-  ( ( P  =  { <. 0 ,  ( P `  0 ) >. ,  <. 1 ,  ( P `  1 )
>. }  /\  ( ( ( P `  0
)  e.  (Vtx `  G )  /\  ( P `  1 )  e.  (Vtx `  G )
)  /\  ( P `  0 )  =/=  ( P `  1
) ) )  ->  P  =  <" ( P `  0 )
( P `  1
) "> )
3534cnveqd 5298 . . . . . . . . . . . . . . . 16  |-  ( ( P  =  { <. 0 ,  ( P `  0 ) >. ,  <. 1 ,  ( P `  1 )
>. }  /\  ( ( ( P `  0
)  e.  (Vtx `  G )  /\  ( P `  1 )  e.  (Vtx `  G )
)  /\  ( P `  0 )  =/=  ( P `  1
) ) )  ->  `' P  =  `' <" ( P ` 
0 ) ( P `
 1 ) "> )
3635funeqd 5910 . . . . . . . . . . . . . . 15  |-  ( ( P  =  { <. 0 ,  ( P `  0 ) >. ,  <. 1 ,  ( P `  1 )
>. }  /\  ( ( ( P `  0
)  e.  (Vtx `  G )  /\  ( P `  1 )  e.  (Vtx `  G )
)  /\  ( P `  0 )  =/=  ( P `  1
) ) )  -> 
( Fun  `' P  <->  Fun  `' <" ( P `
 0 ) ( P `  1 ) "> ) )
3728, 36mpbird 247 . . . . . . . . . . . . . 14  |-  ( ( P  =  { <. 0 ,  ( P `  0 ) >. ,  <. 1 ,  ( P `  1 )
>. }  /\  ( ( ( P `  0
)  e.  (Vtx `  G )  /\  ( P `  1 )  e.  (Vtx `  G )
)  /\  ( P `  0 )  =/=  ( P `  1
) ) )  ->  Fun  `' P )
3837exp32 631 . . . . . . . . . . . . 13  |-  ( P  =  { <. 0 ,  ( P ` 
0 ) >. ,  <. 1 ,  ( P `  1 ) >. }  ->  ( ( ( P `  0 )  e.  (Vtx `  G
)  /\  ( P `  1 )  e.  (Vtx `  G )
)  ->  ( ( P `  0 )  =/=  ( P `  1
)  ->  Fun  `' P
) ) )
3938impcom 446 . . . . . . . . . . . 12  |-  ( ( ( ( P ` 
0 )  e.  (Vtx
`  G )  /\  ( P `  1 )  e.  (Vtx `  G
) )  /\  P  =  { <. 0 ,  ( P `  0 )
>. ,  <. 1 ,  ( P `  1
) >. } )  -> 
( ( P ` 
0 )  =/=  ( P `  1 )  ->  Fun  `' P ) )
40393impa 1259 . . . . . . . . . . 11  |-  ( ( ( P `  0
)  e.  (Vtx `  G )  /\  ( P `  1 )  e.  (Vtx `  G )  /\  P  =  { <. 0 ,  ( P `
 0 ) >. ,  <. 1 ,  ( P `  1 )
>. } )  ->  (
( P `  0
)  =/=  ( P `
 1 )  ->  Fun  `' P ) )
4125, 40sylbi 207 . . . . . . . . . 10  |-  ( P : { 0 ,  1 } --> (Vtx `  G )  ->  (
( P `  0
)  =/=  ( P `
 1 )  ->  Fun  `' P ) )
4241imp 445 . . . . . . . . 9  |-  ( ( P : { 0 ,  1 } --> (Vtx `  G )  /\  ( P `  0 )  =/=  ( P `  1
) )  ->  Fun  `' P )
4322, 42syl6bi 243 . . . . . . . 8  |-  ( ( ( # `  F
)  =  1  /\  ( ( P ` 
0 )  =  A  /\  ( P `  ( # `  F ) )  =  B ) )  ->  ( ( P : ( 0 ... ( # `  F
) ) --> (Vtx `  G )  /\  A  =/=  B )  ->  Fun  `' P ) )
4443expd 452 . . . . . . 7  |-  ( ( ( # `  F
)  =  1  /\  ( ( P ` 
0 )  =  A  /\  ( P `  ( # `  F ) )  =  B ) )  ->  ( P : ( 0 ... ( # `  F
) ) --> (Vtx `  G )  ->  ( A  =/=  B  ->  Fun  `' P ) ) )
4544com12 32 . . . . . 6  |-  ( P : ( 0 ... ( # `  F
) ) --> (Vtx `  G )  ->  (
( ( # `  F
)  =  1  /\  ( ( P ` 
0 )  =  A  /\  ( P `  ( # `  F ) )  =  B ) )  ->  ( A  =/=  B  ->  Fun  `' P
) ) )
4645expd 452 . . . . 5  |-  ( P : ( 0 ... ( # `  F
) ) --> (Vtx `  G )  ->  (
( # `  F )  =  1  ->  (
( ( P ` 
0 )  =  A  /\  ( P `  ( # `  F ) )  =  B )  ->  ( A  =/= 
B  ->  Fun  `' P
) ) ) )
4746com34 91 . . . 4  |-  ( P : ( 0 ... ( # `  F
) ) --> (Vtx `  G )  ->  (
( # `  F )  =  1  ->  ( A  =/=  B  ->  (
( ( P ` 
0 )  =  A  /\  ( P `  ( # `  F ) )  =  B )  ->  Fun  `' P
) ) ) )
4847impd 447 . . 3  |-  ( P : ( 0 ... ( # `  F
) ) --> (Vtx `  G )  ->  (
( ( # `  F
)  =  1  /\  A  =/=  B )  ->  ( ( ( P `  0 )  =  A  /\  ( P `  ( # `  F
) )  =  B )  ->  Fun  `' P
) ) )
492, 48syl 17 . 2  |-  ( F (Walks `  G ) P  ->  ( ( (
# `  F )  =  1  /\  A  =/=  B )  ->  (
( ( P ` 
0 )  =  A  /\  ( P `  ( # `  F ) )  =  B )  ->  Fun  `' P
) ) )
50493imp 1256 1  |-  ( ( F (Walks `  G
) P  /\  (
( # `  F )  =  1  /\  A  =/=  B )  /\  (
( P `  0
)  =  A  /\  ( P `  ( # `  F ) )  =  B ) )  ->  Fun  `' P )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   {cpr 4179   <.cop 4183   class class class wbr 4653   `'ccnv 5113   Fun wfun 5882   -->wf 5884   ` cfv 5888  (class class class)co 6650   0cc0 9936   1c1 9937    + caddc 9939   ZZcz 11377   ...cfz 12326   #chash 13117   <"cs2 13586  Vtxcvtx 25874  Walkscwlks 26492
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-ifp 1013  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466  df-hash 13118  df-word 13299  df-concat 13301  df-s1 13302  df-s2 13593  df-wlks 26495
This theorem is referenced by:  uhgrwkspth  26651
  Copyright terms: Public domain W3C validator