MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pockthi Structured version   Visualization version   Unicode version

Theorem pockthi 15611
Description: Pocklington's theorem, which gives a sufficient criterion for a number  N to be prime. This is the preferred method for verifying large primes, being much more efficient to compute than trial division. This form has been optimized for application to specific large primes; see pockthg 15610 for a more general closed-form version. (Contributed by Mario Carneiro, 2-Mar-2014.)
Hypotheses
Ref Expression
pockthi.p  |-  P  e. 
Prime
pockthi.g  |-  G  e.  NN
pockthi.m  |-  M  =  ( G  x.  P
)
pockthi.n  |-  N  =  ( M  +  1 )
pockthi.d  |-  D  e.  NN
pockthi.e  |-  E  e.  NN
pockthi.a  |-  A  e.  NN
pockthi.fac  |-  M  =  ( D  x.  ( P ^ E ) )
pockthi.gt  |-  D  < 
( P ^ E
)
pockthi.mod  |-  ( ( A ^ M )  mod  N )  =  ( 1  mod  N
)
pockthi.gcd  |-  ( ( ( A ^ G
)  -  1 )  gcd  N )  =  1
Assertion
Ref Expression
pockthi  |-  N  e. 
Prime

Proof of Theorem pockthi
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pockthi.d . 2  |-  D  e.  NN
2 pockthi.p . . . . . 6  |-  P  e. 
Prime
3 prmnn 15388 . . . . . 6  |-  ( P  e.  Prime  ->  P  e.  NN )
42, 3ax-mp 5 . . . . 5  |-  P  e.  NN
5 pockthi.e . . . . . 6  |-  E  e.  NN
65nnnn0i 11300 . . . . 5  |-  E  e. 
NN0
7 nnexpcl 12873 . . . . 5  |-  ( ( P  e.  NN  /\  E  e.  NN0 )  -> 
( P ^ E
)  e.  NN )
84, 6, 7mp2an 708 . . . 4  |-  ( P ^ E )  e.  NN
98a1i 11 . . 3  |-  ( D  e.  NN  ->  ( P ^ E )  e.  NN )
10 id 22 . . 3  |-  ( D  e.  NN  ->  D  e.  NN )
11 pockthi.gt . . . 4  |-  D  < 
( P ^ E
)
1211a1i 11 . . 3  |-  ( D  e.  NN  ->  D  <  ( P ^ E
) )
13 pockthi.n . . . . 5  |-  N  =  ( M  +  1 )
14 pockthi.fac . . . . . . 7  |-  M  =  ( D  x.  ( P ^ E ) )
151nncni 11030 . . . . . . . 8  |-  D  e.  CC
168nncni 11030 . . . . . . . 8  |-  ( P ^ E )  e.  CC
1715, 16mulcomi 10046 . . . . . . 7  |-  ( D  x.  ( P ^ E ) )  =  ( ( P ^ E )  x.  D
)
1814, 17eqtri 2644 . . . . . 6  |-  M  =  ( ( P ^ E )  x.  D
)
1918oveq1i 6660 . . . . 5  |-  ( M  +  1 )  =  ( ( ( P ^ E )  x.  D )  +  1 )
2013, 19eqtri 2644 . . . 4  |-  N  =  ( ( ( P ^ E )  x.  D )  +  1 )
2120a1i 11 . . 3  |-  ( D  e.  NN  ->  N  =  ( ( ( P ^ E )  x.  D )  +  1 ) )
22 prmdvdsexpb 15428 . . . . . . 7  |-  ( ( x  e.  Prime  /\  P  e.  Prime  /\  E  e.  NN )  ->  ( x 
||  ( P ^ E )  <->  x  =  P ) )
232, 5, 22mp3an23 1416 . . . . . 6  |-  ( x  e.  Prime  ->  ( x 
||  ( P ^ E )  <->  x  =  P ) )
2413eqcomi 2631 . . . . . . . . . . 11  |-  ( M  +  1 )  =  N
25 pockthi.m . . . . . . . . . . . . . . . 16  |-  M  =  ( G  x.  P
)
26 pockthi.g . . . . . . . . . . . . . . . . 17  |-  G  e.  NN
2726, 4nnmulcli 11044 . . . . . . . . . . . . . . . 16  |-  ( G  x.  P )  e.  NN
2825, 27eqeltri 2697 . . . . . . . . . . . . . . 15  |-  M  e.  NN
29 peano2nn 11032 . . . . . . . . . . . . . . 15  |-  ( M  e.  NN  ->  ( M  +  1 )  e.  NN )
3028, 29ax-mp 5 . . . . . . . . . . . . . 14  |-  ( M  +  1 )  e.  NN
3113, 30eqeltri 2697 . . . . . . . . . . . . 13  |-  N  e.  NN
3231nncni 11030 . . . . . . . . . . . 12  |-  N  e.  CC
33 ax-1cn 9994 . . . . . . . . . . . 12  |-  1  e.  CC
3428nncni 11030 . . . . . . . . . . . 12  |-  M  e.  CC
3532, 33, 34subadd2i 10369 . . . . . . . . . . 11  |-  ( ( N  -  1 )  =  M  <->  ( M  +  1 )  =  N )
3624, 35mpbir 221 . . . . . . . . . 10  |-  ( N  -  1 )  =  M
3736oveq2i 6661 . . . . . . . . 9  |-  ( A ^ ( N  - 
1 ) )  =  ( A ^ M
)
3837oveq1i 6660 . . . . . . . 8  |-  ( ( A ^ ( N  -  1 ) )  mod  N )  =  ( ( A ^ M )  mod  N
)
39 pockthi.mod . . . . . . . . 9  |-  ( ( A ^ M )  mod  N )  =  ( 1  mod  N
)
4031nnrei 11029 . . . . . . . . . 10  |-  N  e.  RR
4128nngt0i 11054 . . . . . . . . . . . 12  |-  0  <  M
4228nnrei 11029 . . . . . . . . . . . . 13  |-  M  e.  RR
43 1re 10039 . . . . . . . . . . . . 13  |-  1  e.  RR
44 ltaddpos2 10519 . . . . . . . . . . . . 13  |-  ( ( M  e.  RR  /\  1  e.  RR )  ->  ( 0  <  M  <->  1  <  ( M  + 
1 ) ) )
4542, 43, 44mp2an 708 . . . . . . . . . . . 12  |-  ( 0  <  M  <->  1  <  ( M  +  1 ) )
4641, 45mpbi 220 . . . . . . . . . . 11  |-  1  <  ( M  +  1 )
4746, 13breqtrri 4680 . . . . . . . . . 10  |-  1  <  N
48 1mod 12702 . . . . . . . . . 10  |-  ( ( N  e.  RR  /\  1  <  N )  -> 
( 1  mod  N
)  =  1 )
4940, 47, 48mp2an 708 . . . . . . . . 9  |-  ( 1  mod  N )  =  1
5039, 49eqtri 2644 . . . . . . . 8  |-  ( ( A ^ M )  mod  N )  =  1
5138, 50eqtri 2644 . . . . . . 7  |-  ( ( A ^ ( N  -  1 ) )  mod  N )  =  1
52 oveq2 6658 . . . . . . . . . . . 12  |-  ( x  =  P  ->  (
( N  -  1 )  /  x )  =  ( ( N  -  1 )  /  P ) )
5326nncni 11030 . . . . . . . . . . . . . . 15  |-  G  e.  CC
544nncni 11030 . . . . . . . . . . . . . . 15  |-  P  e.  CC
5553, 54mulcomi 10046 . . . . . . . . . . . . . 14  |-  ( G  x.  P )  =  ( P  x.  G
)
5636, 25, 553eqtrri 2649 . . . . . . . . . . . . 13  |-  ( P  x.  G )  =  ( N  -  1 )
5732, 33subcli 10357 . . . . . . . . . . . . . 14  |-  ( N  -  1 )  e.  CC
584nnne0i 11055 . . . . . . . . . . . . . 14  |-  P  =/=  0
5957, 54, 53, 58divmuli 10779 . . . . . . . . . . . . 13  |-  ( ( ( N  -  1 )  /  P )  =  G  <->  ( P  x.  G )  =  ( N  -  1 ) )
6056, 59mpbir 221 . . . . . . . . . . . 12  |-  ( ( N  -  1 )  /  P )  =  G
6152, 60syl6eq 2672 . . . . . . . . . . 11  |-  ( x  =  P  ->  (
( N  -  1 )  /  x )  =  G )
6261oveq2d 6666 . . . . . . . . . 10  |-  ( x  =  P  ->  ( A ^ ( ( N  -  1 )  /  x ) )  =  ( A ^ G
) )
6362oveq1d 6665 . . . . . . . . 9  |-  ( x  =  P  ->  (
( A ^ (
( N  -  1 )  /  x ) )  -  1 )  =  ( ( A ^ G )  - 
1 ) )
6463oveq1d 6665 . . . . . . . 8  |-  ( x  =  P  ->  (
( ( A ^
( ( N  - 
1 )  /  x
) )  -  1 )  gcd  N )  =  ( ( ( A ^ G )  -  1 )  gcd 
N ) )
65 pockthi.gcd . . . . . . . 8  |-  ( ( ( A ^ G
)  -  1 )  gcd  N )  =  1
6664, 65syl6eq 2672 . . . . . . 7  |-  ( x  =  P  ->  (
( ( A ^
( ( N  - 
1 )  /  x
) )  -  1 )  gcd  N )  =  1 )
67 pockthi.a . . . . . . . . 9  |-  A  e.  NN
6867nnzi 11401 . . . . . . . 8  |-  A  e.  ZZ
69 oveq1 6657 . . . . . . . . . . . 12  |-  ( y  =  A  ->  (
y ^ ( N  -  1 ) )  =  ( A ^
( N  -  1 ) ) )
7069oveq1d 6665 . . . . . . . . . . 11  |-  ( y  =  A  ->  (
( y ^ ( N  -  1 ) )  mod  N )  =  ( ( A ^ ( N  - 
1 ) )  mod 
N ) )
7170eqeq1d 2624 . . . . . . . . . 10  |-  ( y  =  A  ->  (
( ( y ^
( N  -  1 ) )  mod  N
)  =  1  <->  (
( A ^ ( N  -  1 ) )  mod  N )  =  1 ) )
72 oveq1 6657 . . . . . . . . . . . . 13  |-  ( y  =  A  ->  (
y ^ ( ( N  -  1 )  /  x ) )  =  ( A ^
( ( N  - 
1 )  /  x
) ) )
7372oveq1d 6665 . . . . . . . . . . . 12  |-  ( y  =  A  ->  (
( y ^ (
( N  -  1 )  /  x ) )  -  1 )  =  ( ( A ^ ( ( N  -  1 )  /  x ) )  - 
1 ) )
7473oveq1d 6665 . . . . . . . . . . 11  |-  ( y  =  A  ->  (
( ( y ^
( ( N  - 
1 )  /  x
) )  -  1 )  gcd  N )  =  ( ( ( A ^ ( ( N  -  1 )  /  x ) )  -  1 )  gcd 
N ) )
7574eqeq1d 2624 . . . . . . . . . 10  |-  ( y  =  A  ->  (
( ( ( y ^ ( ( N  -  1 )  /  x ) )  - 
1 )  gcd  N
)  =  1  <->  (
( ( A ^
( ( N  - 
1 )  /  x
) )  -  1 )  gcd  N )  =  1 ) )
7671, 75anbi12d 747 . . . . . . . . 9  |-  ( y  =  A  ->  (
( ( ( y ^ ( N  - 
1 ) )  mod 
N )  =  1  /\  ( ( ( y ^ ( ( N  -  1 )  /  x ) )  -  1 )  gcd 
N )  =  1 )  <->  ( ( ( A ^ ( N  -  1 ) )  mod  N )  =  1  /\  ( ( ( A ^ (
( N  -  1 )  /  x ) )  -  1 )  gcd  N )  =  1 ) ) )
7776rspcev 3309 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  ( ( ( A ^ ( N  - 
1 ) )  mod 
N )  =  1  /\  ( ( ( A ^ ( ( N  -  1 )  /  x ) )  -  1 )  gcd 
N )  =  1 ) )  ->  E. y  e.  ZZ  ( ( ( y ^ ( N  -  1 ) )  mod  N )  =  1  /\  ( ( ( y ^ (
( N  -  1 )  /  x ) )  -  1 )  gcd  N )  =  1 ) )
7868, 77mpan 706 . . . . . . 7  |-  ( ( ( ( A ^
( N  -  1 ) )  mod  N
)  =  1  /\  ( ( ( A ^ ( ( N  -  1 )  /  x ) )  - 
1 )  gcd  N
)  =  1 )  ->  E. y  e.  ZZ  ( ( ( y ^ ( N  - 
1 ) )  mod 
N )  =  1  /\  ( ( ( y ^ ( ( N  -  1 )  /  x ) )  -  1 )  gcd 
N )  =  1 ) )
7951, 66, 78sylancr 695 . . . . . 6  |-  ( x  =  P  ->  E. y  e.  ZZ  ( ( ( y ^ ( N  -  1 ) )  mod  N )  =  1  /\  ( ( ( y ^ (
( N  -  1 )  /  x ) )  -  1 )  gcd  N )  =  1 ) )
8023, 79syl6bi 243 . . . . 5  |-  ( x  e.  Prime  ->  ( x 
||  ( P ^ E )  ->  E. y  e.  ZZ  ( ( ( y ^ ( N  -  1 ) )  mod  N )  =  1  /\  ( ( ( y ^ (
( N  -  1 )  /  x ) )  -  1 )  gcd  N )  =  1 ) ) )
8180rgen 2922 . . . 4  |-  A. x  e.  Prime  ( x  ||  ( P ^ E )  ->  E. y  e.  ZZ  ( ( ( y ^ ( N  - 
1 ) )  mod 
N )  =  1  /\  ( ( ( y ^ ( ( N  -  1 )  /  x ) )  -  1 )  gcd 
N )  =  1 ) )
8281a1i 11 . . 3  |-  ( D  e.  NN  ->  A. x  e.  Prime  ( x  ||  ( P ^ E )  ->  E. y  e.  ZZ  ( ( ( y ^ ( N  - 
1 ) )  mod 
N )  =  1  /\  ( ( ( y ^ ( ( N  -  1 )  /  x ) )  -  1 )  gcd 
N )  =  1 ) ) )
839, 10, 12, 21, 82pockthg 15610 . 2  |-  ( D  e.  NN  ->  N  e.  Prime )
841, 83ax-mp 5 1  |-  N  e. 
Prime
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912   E.wrex 2913   class class class wbr 4653  (class class class)co 6650   RRcr 9935   0cc0 9936   1c1 9937    + caddc 9939    x. cmul 9941    < clt 10074    - cmin 10266    / cdiv 10684   NNcn 11020   NN0cn0 11292   ZZcz 11377    mod cmo 12668   ^cexp 12860    || cdvds 14983    gcd cgcd 15216   Primecprime 15385
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-xnn0 11364  df-z 11378  df-uz 11688  df-q 11789  df-rp 11833  df-fz 12327  df-fzo 12466  df-fl 12593  df-mod 12669  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-dvds 14984  df-gcd 15217  df-prm 15386  df-odz 15470  df-phi 15471  df-pc 15542
This theorem is referenced by:  1259prm  15843  2503prm  15847  4001prm  15852
  Copyright terms: Public domain W3C validator