Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  qqhghm Structured version   Visualization version   Unicode version

Theorem qqhghm 30032
Description: The QQHom homomorphism is a group homomorphism if the target structure is a division ring. (Contributed by Thierry Arnoux, 9-Nov-2017.)
Hypotheses
Ref Expression
qqhval2.0  |-  B  =  ( Base `  R
)
qqhval2.1  |-  ./  =  (/r
`  R )
qqhval2.2  |-  L  =  ( ZRHom `  R
)
qqhrhm.1  |-  Q  =  (flds  QQ )
Assertion
Ref Expression
qqhghm  |-  ( ( R  e.  DivRing  /\  (chr `  R )  =  0 )  ->  (QQHom `  R
)  e.  ( Q 
GrpHom  R ) )

Proof of Theorem qqhghm
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 qqhrhm.1 . . 3  |-  Q  =  (flds  QQ )
21qrngbas 25308 . 2  |-  QQ  =  ( Base `  Q )
3 qqhval2.0 . 2  |-  B  =  ( Base `  R
)
4 qex 11800 . . 3  |-  QQ  e.  _V
5 cnfldadd 19751 . . . 4  |-  +  =  ( +g  ` fld )
61, 5ressplusg 15993 . . 3  |-  ( QQ  e.  _V  ->  +  =  ( +g  `  Q
) )
74, 6ax-mp 5 . 2  |-  +  =  ( +g  `  Q )
8 eqid 2622 . 2  |-  ( +g  `  R )  =  ( +g  `  R )
91qdrng 25309 . . 3  |-  Q  e.  DivRing
10 drnggrp 18755 . . 3  |-  ( Q  e.  DivRing  ->  Q  e.  Grp )
119, 10mp1i 13 . 2  |-  ( ( R  e.  DivRing  /\  (chr `  R )  =  0 )  ->  Q  e.  Grp )
12 drnggrp 18755 . . 3  |-  ( R  e.  DivRing  ->  R  e.  Grp )
1312adantr 481 . 2  |-  ( ( R  e.  DivRing  /\  (chr `  R )  =  0 )  ->  R  e.  Grp )
14 qqhval2.1 . . 3  |-  ./  =  (/r
`  R )
15 qqhval2.2 . . 3  |-  L  =  ( ZRHom `  R
)
163, 14, 15qqhf 30030 . 2  |-  ( ( R  e.  DivRing  /\  (chr `  R )  =  0 )  ->  (QQHom `  R
) : QQ --> B )
17 drngring 18754 . . . . 5  |-  ( R  e.  DivRing  ->  R  e.  Ring )
1817ad2antrr 762 . . . 4  |-  ( ( ( R  e.  DivRing  /\  (chr `  R )  =  0 )  /\  (
x  e.  QQ  /\  y  e.  QQ )
)  ->  R  e.  Ring )
1917adantr 481 . . . . . . 7  |-  ( ( R  e.  DivRing  /\  (chr `  R )  =  0 )  ->  R  e.  Ring )
2015zrhrhm 19860 . . . . . . 7  |-  ( R  e.  Ring  ->  L  e.  (ring RingHom  R ) )
21 zringbas 19824 . . . . . . . 8  |-  ZZ  =  ( Base ` ring )
2221, 3rhmf 18726 . . . . . . 7  |-  ( L  e.  (ring RingHom  R )  ->  L : ZZ --> B )
2319, 20, 223syl 18 . . . . . 6  |-  ( ( R  e.  DivRing  /\  (chr `  R )  =  0 )  ->  L : ZZ
--> B )
2423adantr 481 . . . . 5  |-  ( ( ( R  e.  DivRing  /\  (chr `  R )  =  0 )  /\  (
x  e.  QQ  /\  y  e.  QQ )
)  ->  L : ZZ
--> B )
25 qnumcl 15448 . . . . . . 7  |-  ( x  e.  QQ  ->  (numer `  x )  e.  ZZ )
2625ad2antrl 764 . . . . . 6  |-  ( ( ( R  e.  DivRing  /\  (chr `  R )  =  0 )  /\  (
x  e.  QQ  /\  y  e.  QQ )
)  ->  (numer `  x
)  e.  ZZ )
27 qdencl 15449 . . . . . . . 8  |-  ( y  e.  QQ  ->  (denom `  y )  e.  NN )
2827ad2antll 765 . . . . . . 7  |-  ( ( ( R  e.  DivRing  /\  (chr `  R )  =  0 )  /\  (
x  e.  QQ  /\  y  e.  QQ )
)  ->  (denom `  y
)  e.  NN )
2928nnzd 11481 . . . . . 6  |-  ( ( ( R  e.  DivRing  /\  (chr `  R )  =  0 )  /\  (
x  e.  QQ  /\  y  e.  QQ )
)  ->  (denom `  y
)  e.  ZZ )
3026, 29zmulcld 11488 . . . . 5  |-  ( ( ( R  e.  DivRing  /\  (chr `  R )  =  0 )  /\  (
x  e.  QQ  /\  y  e.  QQ )
)  ->  ( (numer `  x )  x.  (denom `  y ) )  e.  ZZ )
3124, 30ffvelrnd 6360 . . . 4  |-  ( ( ( R  e.  DivRing  /\  (chr `  R )  =  0 )  /\  (
x  e.  QQ  /\  y  e.  QQ )
)  ->  ( L `  ( (numer `  x
)  x.  (denom `  y ) ) )  e.  B )
32 qnumcl 15448 . . . . . . 7  |-  ( y  e.  QQ  ->  (numer `  y )  e.  ZZ )
3332ad2antll 765 . . . . . 6  |-  ( ( ( R  e.  DivRing  /\  (chr `  R )  =  0 )  /\  (
x  e.  QQ  /\  y  e.  QQ )
)  ->  (numer `  y
)  e.  ZZ )
34 qdencl 15449 . . . . . . . 8  |-  ( x  e.  QQ  ->  (denom `  x )  e.  NN )
3534ad2antrl 764 . . . . . . 7  |-  ( ( ( R  e.  DivRing  /\  (chr `  R )  =  0 )  /\  (
x  e.  QQ  /\  y  e.  QQ )
)  ->  (denom `  x
)  e.  NN )
3635nnzd 11481 . . . . . 6  |-  ( ( ( R  e.  DivRing  /\  (chr `  R )  =  0 )  /\  (
x  e.  QQ  /\  y  e.  QQ )
)  ->  (denom `  x
)  e.  ZZ )
3733, 36zmulcld 11488 . . . . 5  |-  ( ( ( R  e.  DivRing  /\  (chr `  R )  =  0 )  /\  (
x  e.  QQ  /\  y  e.  QQ )
)  ->  ( (numer `  y )  x.  (denom `  x ) )  e.  ZZ )
3824, 37ffvelrnd 6360 . . . 4  |-  ( ( ( R  e.  DivRing  /\  (chr `  R )  =  0 )  /\  (
x  e.  QQ  /\  y  e.  QQ )
)  ->  ( L `  ( (numer `  y
)  x.  (denom `  x ) ) )  e.  B )
3918, 20syl 17 . . . . . 6  |-  ( ( ( R  e.  DivRing  /\  (chr `  R )  =  0 )  /\  (
x  e.  QQ  /\  y  e.  QQ )
)  ->  L  e.  (ring RingHom  R ) )
40 zringmulr 19827 . . . . . . 7  |-  x.  =  ( .r ` ring )
41 eqid 2622 . . . . . . 7  |-  ( .r
`  R )  =  ( .r `  R
)
4221, 40, 41rhmmul 18727 . . . . . 6  |-  ( ( L  e.  (ring RingHom  R )  /\  (denom `  x )  e.  ZZ  /\  (denom `  y )  e.  ZZ )  ->  ( L `  ( (denom `  x )  x.  (denom `  y )
) )  =  ( ( L `  (denom `  x ) ) ( .r `  R ) ( L `  (denom `  y ) ) ) )
4339, 36, 29, 42syl3anc 1326 . . . . 5  |-  ( ( ( R  e.  DivRing  /\  (chr `  R )  =  0 )  /\  (
x  e.  QQ  /\  y  e.  QQ )
)  ->  ( L `  ( (denom `  x
)  x.  (denom `  y ) ) )  =  ( ( L `
 (denom `  x
) ) ( .r
`  R ) ( L `  (denom `  y ) ) ) )
44 simpl 473 . . . . . . 7  |-  ( ( ( R  e.  DivRing  /\  (chr `  R )  =  0 )  /\  (
x  e.  QQ  /\  y  e.  QQ )
)  ->  ( R  e.  DivRing  /\  (chr `  R
)  =  0 ) )
4535nnne0d 11065 . . . . . . 7  |-  ( ( ( R  e.  DivRing  /\  (chr `  R )  =  0 )  /\  (
x  e.  QQ  /\  y  e.  QQ )
)  ->  (denom `  x
)  =/=  0 )
46 eqid 2622 . . . . . . . 8  |-  ( 0g
`  R )  =  ( 0g `  R
)
473, 15, 46elzrhunit 30023 . . . . . . 7  |-  ( ( ( R  e.  DivRing  /\  (chr `  R )  =  0 )  /\  (
(denom `  x )  e.  ZZ  /\  (denom `  x )  =/=  0
) )  ->  ( L `  (denom `  x
) )  e.  (Unit `  R ) )
4844, 36, 45, 47syl12anc 1324 . . . . . 6  |-  ( ( ( R  e.  DivRing  /\  (chr `  R )  =  0 )  /\  (
x  e.  QQ  /\  y  e.  QQ )
)  ->  ( L `  (denom `  x )
)  e.  (Unit `  R ) )
4928nnne0d 11065 . . . . . . 7  |-  ( ( ( R  e.  DivRing  /\  (chr `  R )  =  0 )  /\  (
x  e.  QQ  /\  y  e.  QQ )
)  ->  (denom `  y
)  =/=  0 )
503, 15, 46elzrhunit 30023 . . . . . . 7  |-  ( ( ( R  e.  DivRing  /\  (chr `  R )  =  0 )  /\  (
(denom `  y )  e.  ZZ  /\  (denom `  y )  =/=  0
) )  ->  ( L `  (denom `  y
) )  e.  (Unit `  R ) )
5144, 29, 49, 50syl12anc 1324 . . . . . 6  |-  ( ( ( R  e.  DivRing  /\  (chr `  R )  =  0 )  /\  (
x  e.  QQ  /\  y  e.  QQ )
)  ->  ( L `  (denom `  y )
)  e.  (Unit `  R ) )
52 eqid 2622 . . . . . . 7  |-  (Unit `  R )  =  (Unit `  R )
5352, 41unitmulcl 18664 . . . . . 6  |-  ( ( R  e.  Ring  /\  ( L `  (denom `  x
) )  e.  (Unit `  R )  /\  ( L `  (denom `  y
) )  e.  (Unit `  R ) )  -> 
( ( L `  (denom `  x ) ) ( .r `  R
) ( L `  (denom `  y ) ) )  e.  (Unit `  R ) )
5418, 48, 51, 53syl3anc 1326 . . . . 5  |-  ( ( ( R  e.  DivRing  /\  (chr `  R )  =  0 )  /\  (
x  e.  QQ  /\  y  e.  QQ )
)  ->  ( ( L `  (denom `  x
) ) ( .r
`  R ) ( L `  (denom `  y ) ) )  e.  (Unit `  R
) )
5543, 54eqeltrd 2701 . . . 4  |-  ( ( ( R  e.  DivRing  /\  (chr `  R )  =  0 )  /\  (
x  e.  QQ  /\  y  e.  QQ )
)  ->  ( L `  ( (denom `  x
)  x.  (denom `  y ) ) )  e.  (Unit `  R
) )
563, 52, 8, 14dvrdir 29790 . . . 4  |-  ( ( R  e.  Ring  /\  (
( L `  (
(numer `  x )  x.  (denom `  y )
) )  e.  B  /\  ( L `  (
(numer `  y )  x.  (denom `  x )
) )  e.  B  /\  ( L `  (
(denom `  x )  x.  (denom `  y )
) )  e.  (Unit `  R ) ) )  ->  ( ( ( L `  ( (numer `  x )  x.  (denom `  y ) ) ) ( +g  `  R
) ( L `  ( (numer `  y )  x.  (denom `  x )
) ) )  ./  ( L `  ( (denom `  x )  x.  (denom `  y ) ) ) )  =  ( ( ( L `  (
(numer `  x )  x.  (denom `  y )
) )  ./  ( L `  ( (denom `  x )  x.  (denom `  y ) ) ) ) ( +g  `  R
) ( ( L `
 ( (numer `  y )  x.  (denom `  x ) ) ) 
./  ( L `  ( (denom `  x )  x.  (denom `  y )
) ) ) ) )
5718, 31, 38, 55, 56syl13anc 1328 . . 3  |-  ( ( ( R  e.  DivRing  /\  (chr `  R )  =  0 )  /\  (
x  e.  QQ  /\  y  e.  QQ )
)  ->  ( (
( L `  (
(numer `  x )  x.  (denom `  y )
) ) ( +g  `  R ) ( L `
 ( (numer `  y )  x.  (denom `  x ) ) ) )  ./  ( L `  ( (denom `  x
)  x.  (denom `  y ) ) ) )  =  ( ( ( L `  (
(numer `  x )  x.  (denom `  y )
) )  ./  ( L `  ( (denom `  x )  x.  (denom `  y ) ) ) ) ( +g  `  R
) ( ( L `
 ( (numer `  y )  x.  (denom `  x ) ) ) 
./  ( L `  ( (denom `  x )  x.  (denom `  y )
) ) ) ) )
58 qeqnumdivden 15454 . . . . . . . 8  |-  ( x  e.  QQ  ->  x  =  ( (numer `  x )  /  (denom `  x ) ) )
5958ad2antrl 764 . . . . . . 7  |-  ( ( ( R  e.  DivRing  /\  (chr `  R )  =  0 )  /\  (
x  e.  QQ  /\  y  e.  QQ )
)  ->  x  =  ( (numer `  x )  /  (denom `  x )
) )
60 qeqnumdivden 15454 . . . . . . . 8  |-  ( y  e.  QQ  ->  y  =  ( (numer `  y )  /  (denom `  y ) ) )
6160ad2antll 765 . . . . . . 7  |-  ( ( ( R  e.  DivRing  /\  (chr `  R )  =  0 )  /\  (
x  e.  QQ  /\  y  e.  QQ )
)  ->  y  =  ( (numer `  y )  /  (denom `  y )
) )
6259, 61oveq12d 6668 . . . . . 6  |-  ( ( ( R  e.  DivRing  /\  (chr `  R )  =  0 )  /\  (
x  e.  QQ  /\  y  e.  QQ )
)  ->  ( x  +  y )  =  ( ( (numer `  x )  /  (denom `  x ) )  +  ( (numer `  y
)  /  (denom `  y ) ) ) )
6326zcnd 11483 . . . . . . 7  |-  ( ( ( R  e.  DivRing  /\  (chr `  R )  =  0 )  /\  (
x  e.  QQ  /\  y  e.  QQ )
)  ->  (numer `  x
)  e.  CC )
6436zcnd 11483 . . . . . . 7  |-  ( ( ( R  e.  DivRing  /\  (chr `  R )  =  0 )  /\  (
x  e.  QQ  /\  y  e.  QQ )
)  ->  (denom `  x
)  e.  CC )
6533zcnd 11483 . . . . . . 7  |-  ( ( ( R  e.  DivRing  /\  (chr `  R )  =  0 )  /\  (
x  e.  QQ  /\  y  e.  QQ )
)  ->  (numer `  y
)  e.  CC )
6629zcnd 11483 . . . . . . 7  |-  ( ( ( R  e.  DivRing  /\  (chr `  R )  =  0 )  /\  (
x  e.  QQ  /\  y  e.  QQ )
)  ->  (denom `  y
)  e.  CC )
6763, 64, 65, 66, 45, 49divadddivd 10845 . . . . . 6  |-  ( ( ( R  e.  DivRing  /\  (chr `  R )  =  0 )  /\  (
x  e.  QQ  /\  y  e.  QQ )
)  ->  ( (
(numer `  x )  /  (denom `  x )
)  +  ( (numer `  y )  /  (denom `  y ) ) )  =  ( ( ( (numer `  x )  x.  (denom `  y )
)  +  ( (numer `  y )  x.  (denom `  x ) ) )  /  ( (denom `  x )  x.  (denom `  y ) ) ) )
6862, 67eqtrd 2656 . . . . 5  |-  ( ( ( R  e.  DivRing  /\  (chr `  R )  =  0 )  /\  (
x  e.  QQ  /\  y  e.  QQ )
)  ->  ( x  +  y )  =  ( ( ( (numer `  x )  x.  (denom `  y ) )  +  ( (numer `  y
)  x.  (denom `  x ) ) )  /  ( (denom `  x )  x.  (denom `  y ) ) ) )
6968fveq2d 6195 . . . 4  |-  ( ( ( R  e.  DivRing  /\  (chr `  R )  =  0 )  /\  (
x  e.  QQ  /\  y  e.  QQ )
)  ->  ( (QQHom `  R ) `  (
x  +  y ) )  =  ( (QQHom `  R ) `  (
( ( (numer `  x )  x.  (denom `  y ) )  +  ( (numer `  y
)  x.  (denom `  x ) ) )  /  ( (denom `  x )  x.  (denom `  y ) ) ) ) )
7030, 37zaddcld 11486 . . . . 5  |-  ( ( ( R  e.  DivRing  /\  (chr `  R )  =  0 )  /\  (
x  e.  QQ  /\  y  e.  QQ )
)  ->  ( (
(numer `  x )  x.  (denom `  y )
)  +  ( (numer `  y )  x.  (denom `  x ) ) )  e.  ZZ )
7136, 29zmulcld 11488 . . . . 5  |-  ( ( ( R  e.  DivRing  /\  (chr `  R )  =  0 )  /\  (
x  e.  QQ  /\  y  e.  QQ )
)  ->  ( (denom `  x )  x.  (denom `  y ) )  e.  ZZ )
7264, 66, 45, 49mulne0d 10679 . . . . 5  |-  ( ( ( R  e.  DivRing  /\  (chr `  R )  =  0 )  /\  (
x  e.  QQ  /\  y  e.  QQ )
)  ->  ( (denom `  x )  x.  (denom `  y ) )  =/=  0 )
733, 14, 15qqhvq 30031 . . . . 5  |-  ( ( ( R  e.  DivRing  /\  (chr `  R )  =  0 )  /\  (
( ( (numer `  x )  x.  (denom `  y ) )  +  ( (numer `  y
)  x.  (denom `  x ) ) )  e.  ZZ  /\  (
(denom `  x )  x.  (denom `  y )
)  e.  ZZ  /\  ( (denom `  x )  x.  (denom `  y )
)  =/=  0 ) )  ->  ( (QQHom `  R ) `  (
( ( (numer `  x )  x.  (denom `  y ) )  +  ( (numer `  y
)  x.  (denom `  x ) ) )  /  ( (denom `  x )  x.  (denom `  y ) ) ) )  =  ( ( L `  ( ( (numer `  x )  x.  (denom `  y )
)  +  ( (numer `  y )  x.  (denom `  x ) ) ) )  ./  ( L `  ( (denom `  x
)  x.  (denom `  y ) ) ) ) )
7444, 70, 71, 72, 73syl13anc 1328 . . . 4  |-  ( ( ( R  e.  DivRing  /\  (chr `  R )  =  0 )  /\  (
x  e.  QQ  /\  y  e.  QQ )
)  ->  ( (QQHom `  R ) `  (
( ( (numer `  x )  x.  (denom `  y ) )  +  ( (numer `  y
)  x.  (denom `  x ) ) )  /  ( (denom `  x )  x.  (denom `  y ) ) ) )  =  ( ( L `  ( ( (numer `  x )  x.  (denom `  y )
)  +  ( (numer `  y )  x.  (denom `  x ) ) ) )  ./  ( L `  ( (denom `  x
)  x.  (denom `  y ) ) ) ) )
75 rhmghm 18725 . . . . . 6  |-  ( L  e.  (ring RingHom  R )  ->  L  e.  (ring  GrpHom  R ) )
7639, 75syl 17 . . . . 5  |-  ( ( ( R  e.  DivRing  /\  (chr `  R )  =  0 )  /\  (
x  e.  QQ  /\  y  e.  QQ )
)  ->  L  e.  (ring  GrpHom  R ) )
77 zringplusg 19825 . . . . . . 7  |-  +  =  ( +g  ` ring )
7821, 77, 8ghmlin 17665 . . . . . 6  |-  ( ( L  e.  (ring  GrpHom  R )  /\  ( (numer `  x )  x.  (denom `  y ) )  e.  ZZ  /\  ( (numer `  y )  x.  (denom `  x ) )  e.  ZZ )  ->  ( L `  ( (
(numer `  x )  x.  (denom `  y )
)  +  ( (numer `  y )  x.  (denom `  x ) ) ) )  =  ( ( L `  ( (numer `  x )  x.  (denom `  y ) ) ) ( +g  `  R
) ( L `  ( (numer `  y )  x.  (denom `  x )
) ) ) )
7978oveq1d 6665 . . . . 5  |-  ( ( L  e.  (ring  GrpHom  R )  /\  ( (numer `  x )  x.  (denom `  y ) )  e.  ZZ  /\  ( (numer `  y )  x.  (denom `  x ) )  e.  ZZ )  ->  (
( L `  (
( (numer `  x
)  x.  (denom `  y ) )  +  ( (numer `  y
)  x.  (denom `  x ) ) ) )  ./  ( L `  ( (denom `  x
)  x.  (denom `  y ) ) ) )  =  ( ( ( L `  (
(numer `  x )  x.  (denom `  y )
) ) ( +g  `  R ) ( L `
 ( (numer `  y )  x.  (denom `  x ) ) ) )  ./  ( L `  ( (denom `  x
)  x.  (denom `  y ) ) ) ) )
8076, 30, 37, 79syl3anc 1326 . . . 4  |-  ( ( ( R  e.  DivRing  /\  (chr `  R )  =  0 )  /\  (
x  e.  QQ  /\  y  e.  QQ )
)  ->  ( ( L `  ( (
(numer `  x )  x.  (denom `  y )
)  +  ( (numer `  y )  x.  (denom `  x ) ) ) )  ./  ( L `  ( (denom `  x
)  x.  (denom `  y ) ) ) )  =  ( ( ( L `  (
(numer `  x )  x.  (denom `  y )
) ) ( +g  `  R ) ( L `
 ( (numer `  y )  x.  (denom `  x ) ) ) )  ./  ( L `  ( (denom `  x
)  x.  (denom `  y ) ) ) ) )
8169, 74, 803eqtrd 2660 . . 3  |-  ( ( ( R  e.  DivRing  /\  (chr `  R )  =  0 )  /\  (
x  e.  QQ  /\  y  e.  QQ )
)  ->  ( (QQHom `  R ) `  (
x  +  y ) )  =  ( ( ( L `  (
(numer `  x )  x.  (denom `  y )
) ) ( +g  `  R ) ( L `
 ( (numer `  y )  x.  (denom `  x ) ) ) )  ./  ( L `  ( (denom `  x
)  x.  (denom `  y ) ) ) ) )
8258fveq2d 6195 . . . . . 6  |-  ( x  e.  QQ  ->  (
(QQHom `  R ) `  x )  =  ( (QQHom `  R ) `  ( (numer `  x
)  /  (denom `  x ) ) ) )
8382ad2antrl 764 . . . . 5  |-  ( ( ( R  e.  DivRing  /\  (chr `  R )  =  0 )  /\  (
x  e.  QQ  /\  y  e.  QQ )
)  ->  ( (QQHom `  R ) `  x
)  =  ( (QQHom `  R ) `  (
(numer `  x )  /  (denom `  x )
) ) )
843, 14, 15qqhvq 30031 . . . . . 6  |-  ( ( ( R  e.  DivRing  /\  (chr `  R )  =  0 )  /\  (
(numer `  x )  e.  ZZ  /\  (denom `  x )  e.  ZZ  /\  (denom `  x )  =/=  0 ) )  -> 
( (QQHom `  R
) `  ( (numer `  x )  /  (denom `  x ) ) )  =  ( ( L `
 (numer `  x
) )  ./  ( L `  (denom `  x
) ) ) )
8544, 26, 36, 45, 84syl13anc 1328 . . . . 5  |-  ( ( ( R  e.  DivRing  /\  (chr `  R )  =  0 )  /\  (
x  e.  QQ  /\  y  e.  QQ )
)  ->  ( (QQHom `  R ) `  (
(numer `  x )  /  (denom `  x )
) )  =  ( ( L `  (numer `  x ) )  ./  ( L `  (denom `  x ) ) ) )
8652, 21, 14, 40rhmdvd 29821 . . . . . 6  |-  ( ( L  e.  (ring RingHom  R )  /\  ( (numer `  x )  e.  ZZ  /\  (denom `  x )  e.  ZZ  /\  (denom `  y )  e.  ZZ )  /\  (
( L `  (denom `  x ) )  e.  (Unit `  R )  /\  ( L `  (denom `  y ) )  e.  (Unit `  R )
) )  ->  (
( L `  (numer `  x ) )  ./  ( L `  (denom `  x ) ) )  =  ( ( L `
 ( (numer `  x )  x.  (denom `  y ) ) ) 
./  ( L `  ( (denom `  x )  x.  (denom `  y )
) ) ) )
8739, 26, 36, 29, 48, 51, 86syl132anc 1344 . . . . 5  |-  ( ( ( R  e.  DivRing  /\  (chr `  R )  =  0 )  /\  (
x  e.  QQ  /\  y  e.  QQ )
)  ->  ( ( L `  (numer `  x
) )  ./  ( L `  (denom `  x
) ) )  =  ( ( L `  ( (numer `  x )  x.  (denom `  y )
) )  ./  ( L `  ( (denom `  x )  x.  (denom `  y ) ) ) ) )
8883, 85, 873eqtrd 2660 . . . 4  |-  ( ( ( R  e.  DivRing  /\  (chr `  R )  =  0 )  /\  (
x  e.  QQ  /\  y  e.  QQ )
)  ->  ( (QQHom `  R ) `  x
)  =  ( ( L `  ( (numer `  x )  x.  (denom `  y ) ) ) 
./  ( L `  ( (denom `  x )  x.  (denom `  y )
) ) ) )
8960fveq2d 6195 . . . . . 6  |-  ( y  e.  QQ  ->  (
(QQHom `  R ) `  y )  =  ( (QQHom `  R ) `  ( (numer `  y
)  /  (denom `  y ) ) ) )
9089ad2antll 765 . . . . 5  |-  ( ( ( R  e.  DivRing  /\  (chr `  R )  =  0 )  /\  (
x  e.  QQ  /\  y  e.  QQ )
)  ->  ( (QQHom `  R ) `  y
)  =  ( (QQHom `  R ) `  (
(numer `  y )  /  (denom `  y )
) ) )
9152, 21, 14, 40rhmdvd 29821 . . . . . . 7  |-  ( ( L  e.  (ring RingHom  R )  /\  ( (numer `  y )  e.  ZZ  /\  (denom `  y )  e.  ZZ  /\  (denom `  x )  e.  ZZ )  /\  (
( L `  (denom `  y ) )  e.  (Unit `  R )  /\  ( L `  (denom `  x ) )  e.  (Unit `  R )
) )  ->  (
( L `  (numer `  y ) )  ./  ( L `  (denom `  y ) ) )  =  ( ( L `
 ( (numer `  y )  x.  (denom `  x ) ) ) 
./  ( L `  ( (denom `  y )  x.  (denom `  x )
) ) ) )
9239, 33, 29, 36, 51, 48, 91syl132anc 1344 . . . . . 6  |-  ( ( ( R  e.  DivRing  /\  (chr `  R )  =  0 )  /\  (
x  e.  QQ  /\  y  e.  QQ )
)  ->  ( ( L `  (numer `  y
) )  ./  ( L `  (denom `  y
) ) )  =  ( ( L `  ( (numer `  y )  x.  (denom `  x )
) )  ./  ( L `  ( (denom `  y )  x.  (denom `  x ) ) ) ) )
933, 14, 15qqhvq 30031 . . . . . . 7  |-  ( ( ( R  e.  DivRing  /\  (chr `  R )  =  0 )  /\  (
(numer `  y )  e.  ZZ  /\  (denom `  y )  e.  ZZ  /\  (denom `  y )  =/=  0 ) )  -> 
( (QQHom `  R
) `  ( (numer `  y )  /  (denom `  y ) ) )  =  ( ( L `
 (numer `  y
) )  ./  ( L `  (denom `  y
) ) ) )
9444, 33, 29, 49, 93syl13anc 1328 . . . . . 6  |-  ( ( ( R  e.  DivRing  /\  (chr `  R )  =  0 )  /\  (
x  e.  QQ  /\  y  e.  QQ )
)  ->  ( (QQHom `  R ) `  (
(numer `  y )  /  (denom `  y )
) )  =  ( ( L `  (numer `  y ) )  ./  ( L `  (denom `  y ) ) ) )
9564, 66mulcomd 10061 . . . . . . . 8  |-  ( ( ( R  e.  DivRing  /\  (chr `  R )  =  0 )  /\  (
x  e.  QQ  /\  y  e.  QQ )
)  ->  ( (denom `  x )  x.  (denom `  y ) )  =  ( (denom `  y
)  x.  (denom `  x ) ) )
9695fveq2d 6195 . . . . . . 7  |-  ( ( ( R  e.  DivRing  /\  (chr `  R )  =  0 )  /\  (
x  e.  QQ  /\  y  e.  QQ )
)  ->  ( L `  ( (denom `  x
)  x.  (denom `  y ) ) )  =  ( L `  ( (denom `  y )  x.  (denom `  x )
) ) )
9796oveq2d 6666 . . . . . 6  |-  ( ( ( R  e.  DivRing  /\  (chr `  R )  =  0 )  /\  (
x  e.  QQ  /\  y  e.  QQ )
)  ->  ( ( L `  ( (numer `  y )  x.  (denom `  x ) ) ) 
./  ( L `  ( (denom `  x )  x.  (denom `  y )
) ) )  =  ( ( L `  ( (numer `  y )  x.  (denom `  x )
) )  ./  ( L `  ( (denom `  y )  x.  (denom `  x ) ) ) ) )
9892, 94, 973eqtr4d 2666 . . . . 5  |-  ( ( ( R  e.  DivRing  /\  (chr `  R )  =  0 )  /\  (
x  e.  QQ  /\  y  e.  QQ )
)  ->  ( (QQHom `  R ) `  (
(numer `  y )  /  (denom `  y )
) )  =  ( ( L `  (
(numer `  y )  x.  (denom `  x )
) )  ./  ( L `  ( (denom `  x )  x.  (denom `  y ) ) ) ) )
9990, 98eqtrd 2656 . . . 4  |-  ( ( ( R  e.  DivRing  /\  (chr `  R )  =  0 )  /\  (
x  e.  QQ  /\  y  e.  QQ )
)  ->  ( (QQHom `  R ) `  y
)  =  ( ( L `  ( (numer `  y )  x.  (denom `  x ) ) ) 
./  ( L `  ( (denom `  x )  x.  (denom `  y )
) ) ) )
10088, 99oveq12d 6668 . . 3  |-  ( ( ( R  e.  DivRing  /\  (chr `  R )  =  0 )  /\  (
x  e.  QQ  /\  y  e.  QQ )
)  ->  ( (
(QQHom `  R ) `  x ) ( +g  `  R ) ( (QQHom `  R ) `  y
) )  =  ( ( ( L `  ( (numer `  x )  x.  (denom `  y )
) )  ./  ( L `  ( (denom `  x )  x.  (denom `  y ) ) ) ) ( +g  `  R
) ( ( L `
 ( (numer `  y )  x.  (denom `  x ) ) ) 
./  ( L `  ( (denom `  x )  x.  (denom `  y )
) ) ) ) )
10157, 81, 1003eqtr4d 2666 . 2  |-  ( ( ( R  e.  DivRing  /\  (chr `  R )  =  0 )  /\  (
x  e.  QQ  /\  y  e.  QQ )
)  ->  ( (QQHom `  R ) `  (
x  +  y ) )  =  ( ( (QQHom `  R ) `  x ) ( +g  `  R ) ( (QQHom `  R ) `  y
) ) )
1022, 3, 7, 8, 11, 13, 16, 101isghmd 17669 1  |-  ( ( R  e.  DivRing  /\  (chr `  R )  =  0 )  ->  (QQHom `  R
)  e.  ( Q 
GrpHom  R ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   _Vcvv 3200   -->wf 5884   ` cfv 5888  (class class class)co 6650   0cc0 9936    + caddc 9939    x. cmul 9941    / cdiv 10684   NNcn 11020   ZZcz 11377   QQcq 11788  numercnumer 15441  denomcdenom 15442   Basecbs 15857   ↾s cress 15858   +g cplusg 15941   .rcmulr 15942   0gc0g 16100   Grpcgrp 17422    GrpHom cghm 17657   Ringcrg 18547  Unitcui 18639  /rcdvr 18682   RingHom crh 18712   DivRingcdr 18747  ℂfldccnfld 19746  ℤringzring 19818   ZRHomczrh 19848  chrcchr 19850  QQHomcqqh 30016
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-tpos 7352  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-fz 12327  df-fl 12593  df-mod 12669  df-seq 12802  df-exp 12861  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-dvds 14984  df-gcd 15217  df-numer 15443  df-denom 15444  df-gz 15634  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-0g 16102  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-mhm 17335  df-grp 17425  df-minusg 17426  df-sbg 17427  df-mulg 17541  df-subg 17591  df-ghm 17658  df-od 17948  df-cmn 18195  df-mgp 18490  df-ur 18502  df-ring 18549  df-cring 18550  df-oppr 18623  df-dvdsr 18641  df-unit 18642  df-invr 18672  df-dvr 18683  df-rnghom 18715  df-drng 18749  df-subrg 18778  df-cnfld 19747  df-zring 19819  df-zrh 19852  df-chr 19854  df-qqh 30017
This theorem is referenced by:  qqhcn  30035  qqhucn  30036
  Copyright terms: Public domain W3C validator