MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  upgr2wlk Structured version   Visualization version   Unicode version

Theorem upgr2wlk 26564
Description: Properties of a pair of functions to be a walk of length 2 in a pseudograph. Note that the vertices need not to be distinct and the edges can be loops or multiedges. (Contributed by Alexander van der Vekens, 16-Feb-2018.) (Revised by AV, 3-Jan-2021.) (Revised by AV, 28-Oct-2021.)
Hypotheses
Ref Expression
upgr2wlk.v  |-  V  =  (Vtx `  G )
upgr2wlk.i  |-  I  =  (iEdg `  G )
Assertion
Ref Expression
upgr2wlk  |-  ( G  e. UPGraph  ->  ( ( F (Walks `  G ) P  /\  ( # `  F
)  =  2 )  <-> 
( F : ( 0..^ 2 ) --> dom  I  /\  P :
( 0 ... 2
) --> V  /\  (
( I `  ( F `  0 )
)  =  { ( P `  0 ) ,  ( P ` 
1 ) }  /\  ( I `  ( F `  1 )
)  =  { ( P `  1 ) ,  ( P ` 
2 ) } ) ) ) )

Proof of Theorem upgr2wlk
Dummy variable  k is distinct from all other variables.
StepHypRef Expression
1 upgr2wlk.v . . . 4  |-  V  =  (Vtx `  G )
2 upgr2wlk.i . . . 4  |-  I  =  (iEdg `  G )
31, 2upgriswlk 26537 . . 3  |-  ( G  e. UPGraph  ->  ( F (Walks `  G ) P  <->  ( F  e. Word  dom  I  /\  P : ( 0 ... ( # `  F
) ) --> V  /\  A. k  e.  ( 0..^ ( # `  F
) ) ( I `
 ( F `  k ) )  =  { ( P `  k ) ,  ( P `  ( k  +  1 ) ) } ) ) )
43anbi1d 741 . 2  |-  ( G  e. UPGraph  ->  ( ( F (Walks `  G ) P  /\  ( # `  F
)  =  2 )  <-> 
( ( F  e. Word  dom  I  /\  P :
( 0 ... ( # `
 F ) ) --> V  /\  A. k  e.  ( 0..^ ( # `  F ) ) ( I `  ( F `
 k ) )  =  { ( P `
 k ) ,  ( P `  (
k  +  1 ) ) } )  /\  ( # `  F )  =  2 ) ) )
5 iswrdb 13311 . . . . . . . . 9  |-  ( F  e. Word  dom  I  <->  F :
( 0..^ ( # `  F ) ) --> dom  I )
6 oveq2 6658 . . . . . . . . . 10  |-  ( (
# `  F )  =  2  ->  (
0..^ ( # `  F
) )  =  ( 0..^ 2 ) )
76feq2d 6031 . . . . . . . . 9  |-  ( (
# `  F )  =  2  ->  ( F : ( 0..^ (
# `  F )
) --> dom  I  <->  F :
( 0..^ 2 ) --> dom  I ) )
85, 7syl5bb 272 . . . . . . . 8  |-  ( (
# `  F )  =  2  ->  ( F  e. Word  dom  I  <->  F :
( 0..^ 2 ) --> dom  I ) )
9 oveq2 6658 . . . . . . . . 9  |-  ( (
# `  F )  =  2  ->  (
0 ... ( # `  F
) )  =  ( 0 ... 2 ) )
109feq2d 6031 . . . . . . . 8  |-  ( (
# `  F )  =  2  ->  ( P : ( 0 ... ( # `  F
) ) --> V  <->  P :
( 0 ... 2
) --> V ) )
11 fzo0to2pr 12553 . . . . . . . . . . 11  |-  ( 0..^ 2 )  =  {
0 ,  1 }
126, 11syl6eq 2672 . . . . . . . . . 10  |-  ( (
# `  F )  =  2  ->  (
0..^ ( # `  F
) )  =  {
0 ,  1 } )
1312raleqdv 3144 . . . . . . . . 9  |-  ( (
# `  F )  =  2  ->  ( A. k  e.  (
0..^ ( # `  F
) ) ( I `
 ( F `  k ) )  =  { ( P `  k ) ,  ( P `  ( k  +  1 ) ) }  <->  A. k  e.  {
0 ,  1 }  ( I `  ( F `  k )
)  =  { ( P `  k ) ,  ( P `  ( k  +  1 ) ) } ) )
14 2wlklem 26563 . . . . . . . . 9  |-  ( A. k  e.  { 0 ,  1 }  (
I `  ( F `  k ) )  =  { ( P `  k ) ,  ( P `  ( k  +  1 ) ) }  <->  ( ( I `
 ( F ` 
0 ) )  =  { ( P ` 
0 ) ,  ( P `  1 ) }  /\  ( I `
 ( F ` 
1 ) )  =  { ( P ` 
1 ) ,  ( P `  2 ) } ) )
1513, 14syl6bb 276 . . . . . . . 8  |-  ( (
# `  F )  =  2  ->  ( A. k  e.  (
0..^ ( # `  F
) ) ( I `
 ( F `  k ) )  =  { ( P `  k ) ,  ( P `  ( k  +  1 ) ) }  <->  ( ( I `
 ( F ` 
0 ) )  =  { ( P ` 
0 ) ,  ( P `  1 ) }  /\  ( I `
 ( F ` 
1 ) )  =  { ( P ` 
1 ) ,  ( P `  2 ) } ) ) )
168, 10, 153anbi123d 1399 . . . . . . 7  |-  ( (
# `  F )  =  2  ->  (
( F  e. Word  dom  I  /\  P : ( 0 ... ( # `  F ) ) --> V  /\  A. k  e.  ( 0..^ ( # `  F ) ) ( I `  ( F `
 k ) )  =  { ( P `
 k ) ,  ( P `  (
k  +  1 ) ) } )  <->  ( F : ( 0..^ 2 ) --> dom  I  /\  P : ( 0 ... 2 ) --> V  /\  ( ( I `  ( F `  0 ) )  =  { ( P `  0 ) ,  ( P ` 
1 ) }  /\  ( I `  ( F `  1 )
)  =  { ( P `  1 ) ,  ( P ` 
2 ) } ) ) ) )
1716adantl 482 . . . . . 6  |-  ( ( G  e. UPGraph  /\  ( # `
 F )  =  2 )  ->  (
( F  e. Word  dom  I  /\  P : ( 0 ... ( # `  F ) ) --> V  /\  A. k  e.  ( 0..^ ( # `  F ) ) ( I `  ( F `
 k ) )  =  { ( P `
 k ) ,  ( P `  (
k  +  1 ) ) } )  <->  ( F : ( 0..^ 2 ) --> dom  I  /\  P : ( 0 ... 2 ) --> V  /\  ( ( I `  ( F `  0 ) )  =  { ( P `  0 ) ,  ( P ` 
1 ) }  /\  ( I `  ( F `  1 )
)  =  { ( P `  1 ) ,  ( P ` 
2 ) } ) ) ) )
18 3anass 1042 . . . . . 6  |-  ( ( F : ( 0..^ 2 ) --> dom  I  /\  P : ( 0 ... 2 ) --> V  /\  ( ( I `
 ( F ` 
0 ) )  =  { ( P ` 
0 ) ,  ( P `  1 ) }  /\  ( I `
 ( F ` 
1 ) )  =  { ( P ` 
1 ) ,  ( P `  2 ) } ) )  <->  ( F : ( 0..^ 2 ) --> dom  I  /\  ( P : ( 0 ... 2 ) --> V  /\  ( ( I `
 ( F ` 
0 ) )  =  { ( P ` 
0 ) ,  ( P `  1 ) }  /\  ( I `
 ( F ` 
1 ) )  =  { ( P ` 
1 ) ,  ( P `  2 ) } ) ) ) )
1917, 18syl6bb 276 . . . . 5  |-  ( ( G  e. UPGraph  /\  ( # `
 F )  =  2 )  ->  (
( F  e. Word  dom  I  /\  P : ( 0 ... ( # `  F ) ) --> V  /\  A. k  e.  ( 0..^ ( # `  F ) ) ( I `  ( F `
 k ) )  =  { ( P `
 k ) ,  ( P `  (
k  +  1 ) ) } )  <->  ( F : ( 0..^ 2 ) --> dom  I  /\  ( P : ( 0 ... 2 ) --> V  /\  ( ( I `
 ( F ` 
0 ) )  =  { ( P ` 
0 ) ,  ( P `  1 ) }  /\  ( I `
 ( F ` 
1 ) )  =  { ( P ` 
1 ) ,  ( P `  2 ) } ) ) ) ) )
2019ex 450 . . . 4  |-  ( G  e. UPGraph  ->  ( ( # `  F )  =  2  ->  ( ( F  e. Word  dom  I  /\  P : ( 0 ... ( # `  F
) ) --> V  /\  A. k  e.  ( 0..^ ( # `  F
) ) ( I `
 ( F `  k ) )  =  { ( P `  k ) ,  ( P `  ( k  +  1 ) ) } )  <->  ( F : ( 0..^ 2 ) --> dom  I  /\  ( P : ( 0 ... 2 ) --> V  /\  ( ( I `
 ( F ` 
0 ) )  =  { ( P ` 
0 ) ,  ( P `  1 ) }  /\  ( I `
 ( F ` 
1 ) )  =  { ( P ` 
1 ) ,  ( P `  2 ) } ) ) ) ) ) )
2120pm5.32rd 672 . . 3  |-  ( G  e. UPGraph  ->  ( ( ( F  e. Word  dom  I  /\  P : ( 0 ... ( # `  F
) ) --> V  /\  A. k  e.  ( 0..^ ( # `  F
) ) ( I `
 ( F `  k ) )  =  { ( P `  k ) ,  ( P `  ( k  +  1 ) ) } )  /\  ( # `
 F )  =  2 )  <->  ( ( F : ( 0..^ 2 ) --> dom  I  /\  ( P : ( 0 ... 2 ) --> V  /\  ( ( I `
 ( F ` 
0 ) )  =  { ( P ` 
0 ) ,  ( P `  1 ) }  /\  ( I `
 ( F ` 
1 ) )  =  { ( P ` 
1 ) ,  ( P `  2 ) } ) ) )  /\  ( # `  F
)  =  2 ) ) )
22 3anass 1042 . . . 4  |-  ( ( ( F : ( 0..^ 2 ) --> dom  I  /\  ( # `  F )  =  2 )  /\  P :
( 0 ... 2
) --> V  /\  (
( I `  ( F `  0 )
)  =  { ( P `  0 ) ,  ( P ` 
1 ) }  /\  ( I `  ( F `  1 )
)  =  { ( P `  1 ) ,  ( P ` 
2 ) } ) )  <->  ( ( F : ( 0..^ 2 ) --> dom  I  /\  ( # `  F )  =  2 )  /\  ( P : ( 0 ... 2 ) --> V  /\  ( ( I `
 ( F ` 
0 ) )  =  { ( P ` 
0 ) ,  ( P `  1 ) }  /\  ( I `
 ( F ` 
1 ) )  =  { ( P ` 
1 ) ,  ( P `  2 ) } ) ) ) )
23 an32 839 . . . 4  |-  ( ( ( F : ( 0..^ 2 ) --> dom  I  /\  ( # `  F )  =  2 )  /\  ( P : ( 0 ... 2 ) --> V  /\  ( ( I `  ( F `  0 ) )  =  { ( P `  0 ) ,  ( P ` 
1 ) }  /\  ( I `  ( F `  1 )
)  =  { ( P `  1 ) ,  ( P ` 
2 ) } ) ) )  <->  ( ( F : ( 0..^ 2 ) --> dom  I  /\  ( P : ( 0 ... 2 ) --> V  /\  ( ( I `
 ( F ` 
0 ) )  =  { ( P ` 
0 ) ,  ( P `  1 ) }  /\  ( I `
 ( F ` 
1 ) )  =  { ( P ` 
1 ) ,  ( P `  2 ) } ) ) )  /\  ( # `  F
)  =  2 ) )
2422, 23bitri 264 . . 3  |-  ( ( ( F : ( 0..^ 2 ) --> dom  I  /\  ( # `  F )  =  2 )  /\  P :
( 0 ... 2
) --> V  /\  (
( I `  ( F `  0 )
)  =  { ( P `  0 ) ,  ( P ` 
1 ) }  /\  ( I `  ( F `  1 )
)  =  { ( P `  1 ) ,  ( P ` 
2 ) } ) )  <->  ( ( F : ( 0..^ 2 ) --> dom  I  /\  ( P : ( 0 ... 2 ) --> V  /\  ( ( I `
 ( F ` 
0 ) )  =  { ( P ` 
0 ) ,  ( P `  1 ) }  /\  ( I `
 ( F ` 
1 ) )  =  { ( P ` 
1 ) ,  ( P `  2 ) } ) ) )  /\  ( # `  F
)  =  2 ) )
2521, 24syl6bbr 278 . 2  |-  ( G  e. UPGraph  ->  ( ( ( F  e. Word  dom  I  /\  P : ( 0 ... ( # `  F
) ) --> V  /\  A. k  e.  ( 0..^ ( # `  F
) ) ( I `
 ( F `  k ) )  =  { ( P `  k ) ,  ( P `  ( k  +  1 ) ) } )  /\  ( # `
 F )  =  2 )  <->  ( ( F : ( 0..^ 2 ) --> dom  I  /\  ( # `  F )  =  2 )  /\  P : ( 0 ... 2 ) --> V  /\  ( ( I `  ( F `  0 ) )  =  { ( P `  0 ) ,  ( P ` 
1 ) }  /\  ( I `  ( F `  1 )
)  =  { ( P `  1 ) ,  ( P ` 
2 ) } ) ) ) )
26 2nn0 11309 . . . . . . 7  |-  2  e.  NN0
27 fnfzo0hash 13234 . . . . . . 7  |-  ( ( 2  e.  NN0  /\  F : ( 0..^ 2 ) --> dom  I )  ->  ( # `  F
)  =  2 )
2826, 27mpan 706 . . . . . 6  |-  ( F : ( 0..^ 2 ) --> dom  I  ->  (
# `  F )  =  2 )
2928pm4.71i 664 . . . . 5  |-  ( F : ( 0..^ 2 ) --> dom  I  <->  ( F : ( 0..^ 2 ) --> dom  I  /\  ( # `  F )  =  2 ) )
3029bicomi 214 . . . 4  |-  ( ( F : ( 0..^ 2 ) --> dom  I  /\  ( # `  F
)  =  2 )  <-> 
F : ( 0..^ 2 ) --> dom  I
)
3130a1i 11 . . 3  |-  ( G  e. UPGraph  ->  ( ( F : ( 0..^ 2 ) --> dom  I  /\  ( # `  F )  =  2 )  <->  F :
( 0..^ 2 ) --> dom  I ) )
32313anbi1d 1403 . 2  |-  ( G  e. UPGraph  ->  ( ( ( F : ( 0..^ 2 ) --> dom  I  /\  ( # `  F
)  =  2 )  /\  P : ( 0 ... 2 ) --> V  /\  ( ( I `  ( F `
 0 ) )  =  { ( P `
 0 ) ,  ( P `  1
) }  /\  (
I `  ( F `  1 ) )  =  { ( P `
 1 ) ,  ( P `  2
) } ) )  <-> 
( F : ( 0..^ 2 ) --> dom  I  /\  P :
( 0 ... 2
) --> V  /\  (
( I `  ( F `  0 )
)  =  { ( P `  0 ) ,  ( P ` 
1 ) }  /\  ( I `  ( F `  1 )
)  =  { ( P `  1 ) ,  ( P ` 
2 ) } ) ) ) )
334, 25, 323bitrd 294 1  |-  ( G  e. UPGraph  ->  ( ( F (Walks `  G ) P  /\  ( # `  F
)  =  2 )  <-> 
( F : ( 0..^ 2 ) --> dom  I  /\  P :
( 0 ... 2
) --> V  /\  (
( I `  ( F `  0 )
)  =  { ( P `  0 ) ,  ( P ` 
1 ) }  /\  ( I `  ( F `  1 )
)  =  { ( P `  1 ) ,  ( P ` 
2 ) } ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   A.wral 2912   {cpr 4179   class class class wbr 4653   dom cdm 5114   -->wf 5884   ` cfv 5888  (class class class)co 6650   0cc0 9936   1c1 9937    + caddc 9939   2c2 11070   NN0cn0 11292   ...cfz 12326  ..^cfzo 12465   #chash 13117  Word cword 13291  Vtxcvtx 25874  iEdgciedg 25875   UPGraph cupgr 25975  Walkscwlks 26492
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-ifp 1013  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-n0 11293  df-xnn0 11364  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466  df-hash 13118  df-word 13299  df-edg 25940  df-uhgr 25953  df-upgr 25977  df-wlks 26495
This theorem is referenced by:  umgrwwlks2on  26850
  Copyright terms: Public domain W3C validator