MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  usgr2wlkspth Structured version   Visualization version   Unicode version

Theorem usgr2wlkspth 26655
Description: In a simple graph, any walk of length 2 between two different vertices is a simple path. (Contributed by Alexander van der Vekens, 2-Mar-2018.) (Revised by AV, 27-Jan-2021.) (Proof shortened by AV, 31-Oct-2021.)
Assertion
Ref Expression
usgr2wlkspth  |-  ( ( G  e. USGraph  /\  ( # `
 F )  =  2  /\  A  =/= 
B )  ->  ( F ( A (WalksOn `  G ) B ) P  <->  F ( A (SPathsOn `  G ) B ) P ) )

Proof of Theorem usgr2wlkspth
StepHypRef Expression
1 simpl31 1142 . . . . . . . 8  |-  ( ( ( ( A  e.  (Vtx `  G )  /\  B  e.  (Vtx `  G ) )  /\  ( F  e.  _V  /\  P  e.  _V )  /\  ( F (Walks `  G ) P  /\  ( P `  0 )  =  A  /\  ( P `  ( # `  F
) )  =  B ) )  /\  ( G  e. USGraph  /\  ( # `  F )  =  2  /\  A  =/=  B
) )  ->  F
(Walks `  G ) P )
2 simp2 1062 . . . . . . . . . . . . . 14  |-  ( ( F (Walks `  G
) P  /\  ( P `  0 )  =  A  /\  ( P `  ( # `  F
) )  =  B )  ->  ( P `  0 )  =  A )
3 simp3 1063 . . . . . . . . . . . . . 14  |-  ( ( F (Walks `  G
) P  /\  ( P `  0 )  =  A  /\  ( P `  ( # `  F
) )  =  B )  ->  ( P `  ( # `  F
) )  =  B )
42, 3neeq12d 2855 . . . . . . . . . . . . 13  |-  ( ( F (Walks `  G
) P  /\  ( P `  0 )  =  A  /\  ( P `  ( # `  F
) )  =  B )  ->  ( ( P `  0 )  =/=  ( P `  ( # `
 F ) )  <-> 
A  =/=  B ) )
54bicomd 213 . . . . . . . . . . . 12  |-  ( ( F (Walks `  G
) P  /\  ( P `  0 )  =  A  /\  ( P `  ( # `  F
) )  =  B )  ->  ( A  =/=  B  <->  ( P ` 
0 )  =/=  ( P `  ( # `  F
) ) ) )
653anbi3d 1405 . . . . . . . . . . 11  |-  ( ( F (Walks `  G
) P  /\  ( P `  0 )  =  A  /\  ( P `  ( # `  F
) )  =  B )  ->  ( ( G  e. USGraph  /\  ( # `  F )  =  2  /\  A  =/=  B
)  <->  ( G  e. USGraph  /\  ( # `  F
)  =  2  /\  ( P `  0
)  =/=  ( P `
 ( # `  F
) ) ) ) )
7 usgr2wlkspthlem1 26653 . . . . . . . . . . . . 13  |-  ( ( F (Walks `  G
) P  /\  ( G  e. USGraph  /\  ( # `  F )  =  2  /\  ( P ` 
0 )  =/=  ( P `  ( # `  F
) ) ) )  ->  Fun  `' F
)
87ex 450 . . . . . . . . . . . 12  |-  ( F (Walks `  G ) P  ->  ( ( G  e. USGraph  /\  ( # `  F
)  =  2  /\  ( P `  0
)  =/=  ( P `
 ( # `  F
) ) )  ->  Fun  `' F ) )
983ad2ant1 1082 . . . . . . . . . . 11  |-  ( ( F (Walks `  G
) P  /\  ( P `  0 )  =  A  /\  ( P `  ( # `  F
) )  =  B )  ->  ( ( G  e. USGraph  /\  ( # `  F )  =  2  /\  ( P ` 
0 )  =/=  ( P `  ( # `  F
) ) )  ->  Fun  `' F ) )
106, 9sylbid 230 . . . . . . . . . 10  |-  ( ( F (Walks `  G
) P  /\  ( P `  0 )  =  A  /\  ( P `  ( # `  F
) )  =  B )  ->  ( ( G  e. USGraph  /\  ( # `  F )  =  2  /\  A  =/=  B
)  ->  Fun  `' F
) )
11103ad2ant3 1084 . . . . . . . . 9  |-  ( ( ( A  e.  (Vtx
`  G )  /\  B  e.  (Vtx `  G
) )  /\  ( F  e.  _V  /\  P  e.  _V )  /\  ( F (Walks `  G ) P  /\  ( P ` 
0 )  =  A  /\  ( P `  ( # `  F ) )  =  B ) )  ->  ( ( G  e. USGraph  /\  ( # `  F )  =  2  /\  A  =/=  B
)  ->  Fun  `' F
) )
1211imp 445 . . . . . . . 8  |-  ( ( ( ( A  e.  (Vtx `  G )  /\  B  e.  (Vtx `  G ) )  /\  ( F  e.  _V  /\  P  e.  _V )  /\  ( F (Walks `  G ) P  /\  ( P `  0 )  =  A  /\  ( P `  ( # `  F
) )  =  B ) )  /\  ( G  e. USGraph  /\  ( # `  F )  =  2  /\  A  =/=  B
) )  ->  Fun  `' F )
13 istrl 26593 . . . . . . . 8  |-  ( F (Trails `  G ) P 
<->  ( F (Walks `  G ) P  /\  Fun  `' F ) )
141, 12, 13sylanbrc 698 . . . . . . 7  |-  ( ( ( ( A  e.  (Vtx `  G )  /\  B  e.  (Vtx `  G ) )  /\  ( F  e.  _V  /\  P  e.  _V )  /\  ( F (Walks `  G ) P  /\  ( P `  0 )  =  A  /\  ( P `  ( # `  F
) )  =  B ) )  /\  ( G  e. USGraph  /\  ( # `  F )  =  2  /\  A  =/=  B
) )  ->  F
(Trails `  G ) P )
15 usgr2wlkspthlem2 26654 . . . . . . . . . . . 12  |-  ( ( F (Walks `  G
) P  /\  ( G  e. USGraph  /\  ( # `  F )  =  2  /\  ( P ` 
0 )  =/=  ( P `  ( # `  F
) ) ) )  ->  Fun  `' P
)
1615ex 450 . . . . . . . . . . 11  |-  ( F (Walks `  G ) P  ->  ( ( G  e. USGraph  /\  ( # `  F
)  =  2  /\  ( P `  0
)  =/=  ( P `
 ( # `  F
) ) )  ->  Fun  `' P ) )
17163ad2ant1 1082 . . . . . . . . . 10  |-  ( ( F (Walks `  G
) P  /\  ( P `  0 )  =  A  /\  ( P `  ( # `  F
) )  =  B )  ->  ( ( G  e. USGraph  /\  ( # `  F )  =  2  /\  ( P ` 
0 )  =/=  ( P `  ( # `  F
) ) )  ->  Fun  `' P ) )
186, 17sylbid 230 . . . . . . . . 9  |-  ( ( F (Walks `  G
) P  /\  ( P `  0 )  =  A  /\  ( P `  ( # `  F
) )  =  B )  ->  ( ( G  e. USGraph  /\  ( # `  F )  =  2  /\  A  =/=  B
)  ->  Fun  `' P
) )
19183ad2ant3 1084 . . . . . . . 8  |-  ( ( ( A  e.  (Vtx
`  G )  /\  B  e.  (Vtx `  G
) )  /\  ( F  e.  _V  /\  P  e.  _V )  /\  ( F (Walks `  G ) P  /\  ( P ` 
0 )  =  A  /\  ( P `  ( # `  F ) )  =  B ) )  ->  ( ( G  e. USGraph  /\  ( # `  F )  =  2  /\  A  =/=  B
)  ->  Fun  `' P
) )
2019imp 445 . . . . . . 7  |-  ( ( ( ( A  e.  (Vtx `  G )  /\  B  e.  (Vtx `  G ) )  /\  ( F  e.  _V  /\  P  e.  _V )  /\  ( F (Walks `  G ) P  /\  ( P `  0 )  =  A  /\  ( P `  ( # `  F
) )  =  B ) )  /\  ( G  e. USGraph  /\  ( # `  F )  =  2  /\  A  =/=  B
) )  ->  Fun  `' P )
21 isspth 26620 . . . . . . 7  |-  ( F (SPaths `  G ) P 
<->  ( F (Trails `  G ) P  /\  Fun  `' P ) )
2214, 20, 21sylanbrc 698 . . . . . 6  |-  ( ( ( ( A  e.  (Vtx `  G )  /\  B  e.  (Vtx `  G ) )  /\  ( F  e.  _V  /\  P  e.  _V )  /\  ( F (Walks `  G ) P  /\  ( P `  0 )  =  A  /\  ( P `  ( # `  F
) )  =  B ) )  /\  ( G  e. USGraph  /\  ( # `  F )  =  2  /\  A  =/=  B
) )  ->  F
(SPaths `  G ) P )
23 3simpc 1060 . . . . . . . 8  |-  ( ( F (Walks `  G
) P  /\  ( P `  0 )  =  A  /\  ( P `  ( # `  F
) )  =  B )  ->  ( ( P `  0 )  =  A  /\  ( P `  ( # `  F
) )  =  B ) )
24233ad2ant3 1084 . . . . . . 7  |-  ( ( ( A  e.  (Vtx
`  G )  /\  B  e.  (Vtx `  G
) )  /\  ( F  e.  _V  /\  P  e.  _V )  /\  ( F (Walks `  G ) P  /\  ( P ` 
0 )  =  A  /\  ( P `  ( # `  F ) )  =  B ) )  ->  ( ( P `  0 )  =  A  /\  ( P `  ( # `  F
) )  =  B ) )
2524adantr 481 . . . . . 6  |-  ( ( ( ( A  e.  (Vtx `  G )  /\  B  e.  (Vtx `  G ) )  /\  ( F  e.  _V  /\  P  e.  _V )  /\  ( F (Walks `  G ) P  /\  ( P `  0 )  =  A  /\  ( P `  ( # `  F
) )  =  B ) )  /\  ( G  e. USGraph  /\  ( # `  F )  =  2  /\  A  =/=  B
) )  ->  (
( P `  0
)  =  A  /\  ( P `  ( # `  F ) )  =  B ) )
26 3anass 1042 . . . . . 6  |-  ( ( F (SPaths `  G
) P  /\  ( P `  0 )  =  A  /\  ( P `  ( # `  F
) )  =  B )  <->  ( F (SPaths `  G ) P  /\  ( ( P ` 
0 )  =  A  /\  ( P `  ( # `  F ) )  =  B ) ) )
2722, 25, 26sylanbrc 698 . . . . 5  |-  ( ( ( ( A  e.  (Vtx `  G )  /\  B  e.  (Vtx `  G ) )  /\  ( F  e.  _V  /\  P  e.  _V )  /\  ( F (Walks `  G ) P  /\  ( P `  0 )  =  A  /\  ( P `  ( # `  F
) )  =  B ) )  /\  ( G  e. USGraph  /\  ( # `  F )  =  2  /\  A  =/=  B
) )  ->  ( F (SPaths `  G ) P  /\  ( P ` 
0 )  =  A  /\  ( P `  ( # `  F ) )  =  B ) )
28 3simpa 1058 . . . . . . 7  |-  ( ( ( A  e.  (Vtx
`  G )  /\  B  e.  (Vtx `  G
) )  /\  ( F  e.  _V  /\  P  e.  _V )  /\  ( F (Walks `  G ) P  /\  ( P ` 
0 )  =  A  /\  ( P `  ( # `  F ) )  =  B ) )  ->  ( ( A  e.  (Vtx `  G
)  /\  B  e.  (Vtx `  G ) )  /\  ( F  e. 
_V  /\  P  e.  _V ) ) )
2928adantr 481 . . . . . 6  |-  ( ( ( ( A  e.  (Vtx `  G )  /\  B  e.  (Vtx `  G ) )  /\  ( F  e.  _V  /\  P  e.  _V )  /\  ( F (Walks `  G ) P  /\  ( P `  0 )  =  A  /\  ( P `  ( # `  F
) )  =  B ) )  /\  ( G  e. USGraph  /\  ( # `  F )  =  2  /\  A  =/=  B
) )  ->  (
( A  e.  (Vtx
`  G )  /\  B  e.  (Vtx `  G
) )  /\  ( F  e.  _V  /\  P  e.  _V ) ) )
30 eqid 2622 . . . . . . 7  |-  (Vtx `  G )  =  (Vtx
`  G )
3130isspthonpth 26645 . . . . . 6  |-  ( ( ( A  e.  (Vtx
`  G )  /\  B  e.  (Vtx `  G
) )  /\  ( F  e.  _V  /\  P  e.  _V ) )  -> 
( F ( A (SPathsOn `  G ) B ) P  <->  ( F
(SPaths `  G ) P  /\  ( P ` 
0 )  =  A  /\  ( P `  ( # `  F ) )  =  B ) ) )
3229, 31syl 17 . . . . 5  |-  ( ( ( ( A  e.  (Vtx `  G )  /\  B  e.  (Vtx `  G ) )  /\  ( F  e.  _V  /\  P  e.  _V )  /\  ( F (Walks `  G ) P  /\  ( P `  0 )  =  A  /\  ( P `  ( # `  F
) )  =  B ) )  /\  ( G  e. USGraph  /\  ( # `  F )  =  2  /\  A  =/=  B
) )  ->  ( F ( A (SPathsOn `  G ) B ) P  <->  ( F (SPaths `  G ) P  /\  ( P `  0 )  =  A  /\  ( P `  ( # `  F
) )  =  B ) ) )
3327, 32mpbird 247 . . . 4  |-  ( ( ( ( A  e.  (Vtx `  G )  /\  B  e.  (Vtx `  G ) )  /\  ( F  e.  _V  /\  P  e.  _V )  /\  ( F (Walks `  G ) P  /\  ( P `  0 )  =  A  /\  ( P `  ( # `  F
) )  =  B ) )  /\  ( G  e. USGraph  /\  ( # `  F )  =  2  /\  A  =/=  B
) )  ->  F
( A (SPathsOn `  G
) B ) P )
3433ex 450 . . 3  |-  ( ( ( A  e.  (Vtx
`  G )  /\  B  e.  (Vtx `  G
) )  /\  ( F  e.  _V  /\  P  e.  _V )  /\  ( F (Walks `  G ) P  /\  ( P ` 
0 )  =  A  /\  ( P `  ( # `  F ) )  =  B ) )  ->  ( ( G  e. USGraph  /\  ( # `  F )  =  2  /\  A  =/=  B
)  ->  F ( A (SPathsOn `  G ) B ) P ) )
3530wlkonprop 26554 . . . 4  |-  ( F ( A (WalksOn `  G
) B ) P  ->  ( ( G  e.  _V  /\  A  e.  (Vtx `  G )  /\  B  e.  (Vtx `  G ) )  /\  ( F  e.  _V  /\  P  e.  _V )  /\  ( F (Walks `  G ) P  /\  ( P `  0 )  =  A  /\  ( P `  ( # `  F
) )  =  B ) ) )
36 3simpc 1060 . . . . 5  |-  ( ( G  e.  _V  /\  A  e.  (Vtx `  G
)  /\  B  e.  (Vtx `  G ) )  ->  ( A  e.  (Vtx `  G )  /\  B  e.  (Vtx `  G ) ) )
37363anim1i 1248 . . . 4  |-  ( ( ( G  e.  _V  /\  A  e.  (Vtx `  G )  /\  B  e.  (Vtx `  G )
)  /\  ( F  e.  _V  /\  P  e. 
_V )  /\  ( F (Walks `  G ) P  /\  ( P ` 
0 )  =  A  /\  ( P `  ( # `  F ) )  =  B ) )  ->  ( ( A  e.  (Vtx `  G
)  /\  B  e.  (Vtx `  G ) )  /\  ( F  e. 
_V  /\  P  e.  _V )  /\  ( F (Walks `  G ) P  /\  ( P ` 
0 )  =  A  /\  ( P `  ( # `  F ) )  =  B ) ) )
3835, 37syl 17 . . 3  |-  ( F ( A (WalksOn `  G
) B ) P  ->  ( ( A  e.  (Vtx `  G
)  /\  B  e.  (Vtx `  G ) )  /\  ( F  e. 
_V  /\  P  e.  _V )  /\  ( F (Walks `  G ) P  /\  ( P ` 
0 )  =  A  /\  ( P `  ( # `  F ) )  =  B ) ) )
3934, 38syl11 33 . 2  |-  ( ( G  e. USGraph  /\  ( # `
 F )  =  2  /\  A  =/= 
B )  ->  ( F ( A (WalksOn `  G ) B ) P  ->  F ( A (SPathsOn `  G ) B ) P ) )
40 spthonpthon 26647 . . 3  |-  ( F ( A (SPathsOn `  G
) B ) P  ->  F ( A (PathsOn `  G ) B ) P )
41 pthontrlon 26643 . . 3  |-  ( F ( A (PathsOn `  G
) B ) P  ->  F ( A (TrailsOn `  G ) B ) P )
42 trlsonwlkon 26606 . . 3  |-  ( F ( A (TrailsOn `  G
) B ) P  ->  F ( A (WalksOn `  G ) B ) P )
4340, 41, 423syl 18 . 2  |-  ( F ( A (SPathsOn `  G
) B ) P  ->  F ( A (WalksOn `  G ) B ) P )
4439, 43impbid1 215 1  |-  ( ( G  e. USGraph  /\  ( # `
 F )  =  2  /\  A  =/= 
B )  ->  ( F ( A (WalksOn `  G ) B ) P  <->  F ( A (SPathsOn `  G ) B ) P ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   _Vcvv 3200   class class class wbr 4653   `'ccnv 5113   Fun wfun 5882   ` cfv 5888  (class class class)co 6650   0cc0 9936   2c2 11070   #chash 13117  Vtxcvtx 25874   USGraph cusgr 26044  Walkscwlks 26492  WalksOncwlkson 26493  Trailsctrls 26587  TrailsOnctrlson 26588  SPathscspths 26609  PathsOncpthson 26610  SPathsOncspthson 26611
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-ifp 1013  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-xnn0 11364  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466  df-hash 13118  df-word 13299  df-concat 13301  df-s1 13302  df-s2 13593  df-s3 13594  df-edg 25940  df-uhgr 25953  df-upgr 25977  df-umgr 25978  df-uspgr 26045  df-usgr 26046  df-wlks 26495  df-wlkson 26496  df-trls 26589  df-trlson 26590  df-pths 26612  df-spths 26613  df-pthson 26614  df-spthson 26615
This theorem is referenced by:  usgr2trlspth  26657  wpthswwlks2on  26854
  Copyright terms: Public domain W3C validator