MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wlk2v2e Structured version   Visualization version   Unicode version

Theorem wlk2v2e 27017
Description: In a graph with two vertices and one edge connecting these two vertices, to go from one vertex to the other and back to the first vertex via the same/only edge is a walk. Notice that  G is a simple graph (without loops) only if  X  =/=  Y. (Contributed by Alexander van der Vekens, 22-Oct-2017.) (Revised by AV, 8-Jan-2021.)
Hypotheses
Ref Expression
wlk2v2e.i  |-  I  = 
<" { X ,  Y } ">
wlk2v2e.f  |-  F  = 
<" 0 0 ">
wlk2v2e.x  |-  X  e. 
_V
wlk2v2e.y  |-  Y  e. 
_V
wlk2v2e.p  |-  P  = 
<" X Y X ">
wlk2v2e.g  |-  G  = 
<. { X ,  Y } ,  I >.
Assertion
Ref Expression
wlk2v2e  |-  F (Walks `  G ) P

Proof of Theorem wlk2v2e
Dummy variable  k is distinct from all other variables.
StepHypRef Expression
1 wlk2v2e.g . . . . 5  |-  G  = 
<. { X ,  Y } ,  I >.
2 wlk2v2e.i . . . . . 6  |-  I  = 
<" { X ,  Y } ">
32opeq2i 4406 . . . . 5  |-  <. { X ,  Y } ,  I >.  =  <. { X ,  Y } ,  <" { X ,  Y } "> >.
41, 3eqtri 2644 . . . 4  |-  G  = 
<. { X ,  Y } ,  <" { X ,  Y } "> >.
5 wlk2v2e.x . . . . 5  |-  X  e. 
_V
6 wlk2v2e.y . . . . 5  |-  Y  e. 
_V
7 uspgr2v1e2w 26143 . . . . 5  |-  ( ( X  e.  _V  /\  Y  e.  _V )  -> 
<. { X ,  Y } ,  <" { X ,  Y } "> >.  e. USPGraph  )
85, 6, 7mp2an 708 . . . 4  |-  <. { X ,  Y } ,  <" { X ,  Y } "> >.  e. USPGraph
94, 8eqeltri 2697 . . 3  |-  G  e. USPGraph
10 uspgrupgr 26071 . . 3  |-  ( G  e. USPGraph  ->  G  e. UPGraph  )
119, 10ax-mp 5 . 2  |-  G  e. UPGraph
12 wlk2v2e.f . . . . 5  |-  F  = 
<" 0 0 ">
132, 12wlk2v2elem1 27015 . . . 4  |-  F  e. Word  dom  I
14 wlk2v2e.p . . . . . . . 8  |-  P  = 
<" X Y X ">
155prid1 4297 . . . . . . . . 9  |-  X  e. 
{ X ,  Y }
166prid2 4298 . . . . . . . . 9  |-  Y  e. 
{ X ,  Y }
17 s3cl 13624 . . . . . . . . 9  |-  ( ( X  e.  { X ,  Y }  /\  Y  e.  { X ,  Y }  /\  X  e.  { X ,  Y }
)  ->  <" X Y X ">  e. Word  { X ,  Y }
)
1815, 16, 15, 17mp3an 1424 . . . . . . . 8  |-  <" X Y X ">  e. Word  { X ,  Y }
1914, 18eqeltri 2697 . . . . . . 7  |-  P  e. Word  { X ,  Y }
20 wrdf 13310 . . . . . . 7  |-  ( P  e. Word  { X ,  Y }  ->  P : ( 0..^ ( # `  P
) ) --> { X ,  Y } )
2119, 20ax-mp 5 . . . . . 6  |-  P :
( 0..^ ( # `  P ) ) --> { X ,  Y }
2214fveq2i 6194 . . . . . . . . 9  |-  ( # `  P )  =  (
# `  <" X Y X "> )
23 s3len 13639 . . . . . . . . 9  |-  ( # `  <" X Y X "> )  =  3
2422, 23eqtr2i 2645 . . . . . . . 8  |-  3  =  ( # `  P
)
2524oveq2i 6661 . . . . . . 7  |-  ( 0..^ 3 )  =  ( 0..^ ( # `  P
) )
2625feq2i 6037 . . . . . 6  |-  ( P : ( 0..^ 3 ) --> { X ,  Y }  <->  P : ( 0..^ ( # `  P
) ) --> { X ,  Y } )
2721, 26mpbir 221 . . . . 5  |-  P :
( 0..^ 3 ) --> { X ,  Y }
2812fveq2i 6194 . . . . . . . . 9  |-  ( # `  F )  =  (
# `  <" 0
0 "> )
29 s2len 13634 . . . . . . . . 9  |-  ( # `  <" 0 0 "> )  =  2
3028, 29eqtri 2644 . . . . . . . 8  |-  ( # `  F )  =  2
3130oveq2i 6661 . . . . . . 7  |-  ( 0 ... ( # `  F
) )  =  ( 0 ... 2 )
32 3z 11410 . . . . . . . . 9  |-  3  e.  ZZ
33 fzoval 12471 . . . . . . . . 9  |-  ( 3  e.  ZZ  ->  (
0..^ 3 )  =  ( 0 ... (
3  -  1 ) ) )
3432, 33ax-mp 5 . . . . . . . 8  |-  ( 0..^ 3 )  =  ( 0 ... ( 3  -  1 ) )
35 3m1e2 11137 . . . . . . . . 9  |-  ( 3  -  1 )  =  2
3635oveq2i 6661 . . . . . . . 8  |-  ( 0 ... ( 3  -  1 ) )  =  ( 0 ... 2
)
3734, 36eqtr2i 2645 . . . . . . 7  |-  ( 0 ... 2 )  =  ( 0..^ 3 )
3831, 37eqtri 2644 . . . . . 6  |-  ( 0 ... ( # `  F
) )  =  ( 0..^ 3 )
3938feq2i 6037 . . . . 5  |-  ( P : ( 0 ... ( # `  F
) ) --> { X ,  Y }  <->  P :
( 0..^ 3 ) --> { X ,  Y } )
4027, 39mpbir 221 . . . 4  |-  P :
( 0 ... ( # `
 F ) ) --> { X ,  Y }
412, 12, 5, 6, 14wlk2v2elem2 27016 . . . 4  |-  A. k  e.  ( 0..^ ( # `  F ) ) ( I `  ( F `
 k ) )  =  { ( P `
 k ) ,  ( P `  (
k  +  1 ) ) }
4213, 40, 413pm3.2i 1239 . . 3  |-  ( F  e. Word  dom  I  /\  P : ( 0 ... ( # `  F
) ) --> { X ,  Y }  /\  A. k  e.  ( 0..^ ( # `  F
) ) ( I `
 ( F `  k ) )  =  { ( P `  k ) ,  ( P `  ( k  +  1 ) ) } )
431fveq2i 6194 . . . . 5  |-  (Vtx `  G )  =  (Vtx
`  <. { X ,  Y } ,  I >. )
44 prex 4909 . . . . . 6  |-  { X ,  Y }  e.  _V
45 s1cli 13384 . . . . . . 7  |-  <" { X ,  Y } ">  e. Word  _V
462, 45eqeltri 2697 . . . . . 6  |-  I  e. Word  _V
47 opvtxfv 25884 . . . . . 6  |-  ( ( { X ,  Y }  e.  _V  /\  I  e. Word  _V )  ->  (Vtx ` 
<. { X ,  Y } ,  I >. )  =  { X ,  Y } )
4844, 46, 47mp2an 708 . . . . 5  |-  (Vtx `  <. { X ,  Y } ,  I >. )  =  { X ,  Y }
4943, 48eqtr2i 2645 . . . 4  |-  { X ,  Y }  =  (Vtx
`  G )
501fveq2i 6194 . . . . 5  |-  (iEdg `  G )  =  (iEdg `  <. { X ,  Y } ,  I >. )
51 opiedgfv 25887 . . . . . 6  |-  ( ( { X ,  Y }  e.  _V  /\  I  e. Word  _V )  ->  (iEdg ` 
<. { X ,  Y } ,  I >. )  =  I )
5244, 46, 51mp2an 708 . . . . 5  |-  (iEdg `  <. { X ,  Y } ,  I >. )  =  I
5350, 52eqtr2i 2645 . . . 4  |-  I  =  (iEdg `  G )
5449, 53upgriswlk 26537 . . 3  |-  ( G  e. UPGraph  ->  ( F (Walks `  G ) P  <->  ( F  e. Word  dom  I  /\  P : ( 0 ... ( # `  F
) ) --> { X ,  Y }  /\  A. k  e.  ( 0..^ ( # `  F
) ) ( I `
 ( F `  k ) )  =  { ( P `  k ) ,  ( P `  ( k  +  1 ) ) } ) ) )
5542, 54mpbiri 248 . 2  |-  ( G  e. UPGraph  ->  F (Walks `  G ) P )
5611, 55ax-mp 5 1  |-  F (Walks `  G ) P
Colors of variables: wff setvar class
Syntax hints:    /\ w3a 1037    = wceq 1483    e. wcel 1990   A.wral 2912   _Vcvv 3200   {cpr 4179   <.cop 4183   class class class wbr 4653   dom cdm 5114   -->wf 5884   ` cfv 5888  (class class class)co 6650   0cc0 9936   1c1 9937    + caddc 9939    - cmin 10266   2c2 11070   3c3 11071   ZZcz 11377   ...cfz 12326  ..^cfzo 12465   #chash 13117  Word cword 13291   <"cs1 13294   <"cs2 13586   <"cs3 13587  Vtxcvtx 25874  iEdgciedg 25875   UPGraph cupgr 25975   USPGraph cuspgr 26043  Walkscwlks 26492
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-ifp 1013  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-xnn0 11364  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466  df-hash 13118  df-word 13299  df-concat 13301  df-s1 13302  df-s2 13593  df-s3 13594  df-vtx 25876  df-iedg 25877  df-edg 25940  df-uhgr 25953  df-upgr 25977  df-uspgr 26045  df-wlks 26495
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator