MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wlkiswwlks1 Structured version   Visualization version   Unicode version

Theorem wlkiswwlks1 26753
Description: The sequence of vertices in a walk is a walk as word in a pseudograph. (Contributed by Alexander van der Vekens, 20-Jul-2018.) (Revised by AV, 9-Apr-2021.)
Assertion
Ref Expression
wlkiswwlks1  |-  ( G  e. UPGraph  ->  ( F (Walks `  G ) P  ->  P  e.  (WWalks `  G
) ) )

Proof of Theorem wlkiswwlks1
Dummy variable  i is distinct from all other variables.
StepHypRef Expression
1 wlkn0 26516 . 2  |-  ( F (Walks `  G ) P  ->  P  =/=  (/) )
2 eqid 2622 . . . 4  |-  (Vtx `  G )  =  (Vtx
`  G )
3 eqid 2622 . . . 4  |-  (iEdg `  G )  =  (iEdg `  G )
42, 3upgriswlk 26537 . . 3  |-  ( G  e. UPGraph  ->  ( F (Walks `  G ) P  <->  ( F  e. Word  dom  (iEdg `  G
)  /\  P :
( 0 ... ( # `
 F ) ) --> (Vtx `  G )  /\  A. i  e.  ( 0..^ ( # `  F
) ) ( (iEdg `  G ) `  ( F `  i )
)  =  { ( P `  i ) ,  ( P `  ( i  +  1 ) ) } ) ) )
5 simpr 477 . . . . . 6  |-  ( ( ( G  e. UPGraph  /\  ( F  e. Word  dom  (iEdg `  G )  /\  P : ( 0 ... ( # `  F
) ) --> (Vtx `  G )  /\  A. i  e.  ( 0..^ ( # `  F
) ) ( (iEdg `  G ) `  ( F `  i )
)  =  { ( P `  i ) ,  ( P `  ( i  +  1 ) ) } ) )  /\  P  =/=  (/) )  ->  P  =/=  (/) )
6 ffz0iswrd 13332 . . . . . . . 8  |-  ( P : ( 0 ... ( # `  F
) ) --> (Vtx `  G )  ->  P  e. Word  (Vtx `  G )
)
763ad2ant2 1083 . . . . . . 7  |-  ( ( F  e. Word  dom  (iEdg `  G )  /\  P : ( 0 ... ( # `  F
) ) --> (Vtx `  G )  /\  A. i  e.  ( 0..^ ( # `  F
) ) ( (iEdg `  G ) `  ( F `  i )
)  =  { ( P `  i ) ,  ( P `  ( i  +  1 ) ) } )  ->  P  e. Word  (Vtx `  G ) )
87ad2antlr 763 . . . . . 6  |-  ( ( ( G  e. UPGraph  /\  ( F  e. Word  dom  (iEdg `  G )  /\  P : ( 0 ... ( # `  F
) ) --> (Vtx `  G )  /\  A. i  e.  ( 0..^ ( # `  F
) ) ( (iEdg `  G ) `  ( F `  i )
)  =  { ( P `  i ) ,  ( P `  ( i  +  1 ) ) } ) )  /\  P  =/=  (/) )  ->  P  e. Word 
(Vtx `  G )
)
9 upgruhgr 25997 . . . . . . . . . . . . . . . . . 18  |-  ( G  e. UPGraph  ->  G  e. UHGraph  )
103uhgrfun 25961 . . . . . . . . . . . . . . . . . 18  |-  ( G  e. UHGraph  ->  Fun  (iEdg `  G
) )
11 funfn 5918 . . . . . . . . . . . . . . . . . . 19  |-  ( Fun  (iEdg `  G )  <->  (iEdg `  G )  Fn  dom  (iEdg `  G ) )
1211biimpi 206 . . . . . . . . . . . . . . . . . 18  |-  ( Fun  (iEdg `  G )  ->  (iEdg `  G )  Fn  dom  (iEdg `  G
) )
139, 10, 123syl 18 . . . . . . . . . . . . . . . . 17  |-  ( G  e. UPGraph  ->  (iEdg `  G
)  Fn  dom  (iEdg `  G ) )
1413ad2antlr 763 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( F  e. Word  dom  (iEdg `  G )  /\  P : ( 0 ... ( # `  F
) ) --> (Vtx `  G ) )  /\  G  e. UPGraph  )  /\  i  e.  ( 0..^ ( # `  F ) ) )  ->  (iEdg `  G
)  Fn  dom  (iEdg `  G ) )
15 wrdsymbcl 13318 . . . . . . . . . . . . . . . . 17  |-  ( ( F  e. Word  dom  (iEdg `  G )  /\  i  e.  ( 0..^ ( # `  F ) ) )  ->  ( F `  i )  e.  dom  (iEdg `  G ) )
1615ad4ant14 1293 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( F  e. Word  dom  (iEdg `  G )  /\  P : ( 0 ... ( # `  F
) ) --> (Vtx `  G ) )  /\  G  e. UPGraph  )  /\  i  e.  ( 0..^ ( # `  F ) ) )  ->  ( F `  i )  e.  dom  (iEdg `  G ) )
17 fnfvelrn 6356 . . . . . . . . . . . . . . . 16  |-  ( ( (iEdg `  G )  Fn  dom  (iEdg `  G
)  /\  ( F `  i )  e.  dom  (iEdg `  G ) )  ->  ( (iEdg `  G ) `  ( F `  i )
)  e.  ran  (iEdg `  G ) )
1814, 16, 17syl2anc 693 . . . . . . . . . . . . . . 15  |-  ( ( ( ( F  e. Word  dom  (iEdg `  G )  /\  P : ( 0 ... ( # `  F
) ) --> (Vtx `  G ) )  /\  G  e. UPGraph  )  /\  i  e.  ( 0..^ ( # `  F ) ) )  ->  ( (iEdg `  G ) `  ( F `  i )
)  e.  ran  (iEdg `  G ) )
19 edgval 25941 . . . . . . . . . . . . . . 15  |-  (Edg `  G )  =  ran  (iEdg `  G )
2018, 19syl6eleqr 2712 . . . . . . . . . . . . . 14  |-  ( ( ( ( F  e. Word  dom  (iEdg `  G )  /\  P : ( 0 ... ( # `  F
) ) --> (Vtx `  G ) )  /\  G  e. UPGraph  )  /\  i  e.  ( 0..^ ( # `  F ) ) )  ->  ( (iEdg `  G ) `  ( F `  i )
)  e.  (Edg `  G ) )
21 eleq1 2689 . . . . . . . . . . . . . . 15  |-  ( { ( P `  i
) ,  ( P `
 ( i  +  1 ) ) }  =  ( (iEdg `  G ) `  ( F `  i )
)  ->  ( {
( P `  i
) ,  ( P `
 ( i  +  1 ) ) }  e.  (Edg `  G
)  <->  ( (iEdg `  G ) `  ( F `  i )
)  e.  (Edg `  G ) ) )
2221eqcoms 2630 . . . . . . . . . . . . . 14  |-  ( ( (iEdg `  G ) `  ( F `  i
) )  =  {
( P `  i
) ,  ( P `
 ( i  +  1 ) ) }  ->  ( { ( P `  i ) ,  ( P `  ( i  +  1 ) ) }  e.  (Edg `  G )  <->  ( (iEdg `  G ) `  ( F `  i )
)  e.  (Edg `  G ) ) )
2320, 22syl5ibrcom 237 . . . . . . . . . . . . 13  |-  ( ( ( ( F  e. Word  dom  (iEdg `  G )  /\  P : ( 0 ... ( # `  F
) ) --> (Vtx `  G ) )  /\  G  e. UPGraph  )  /\  i  e.  ( 0..^ ( # `  F ) ) )  ->  ( ( (iEdg `  G ) `  ( F `  i )
)  =  { ( P `  i ) ,  ( P `  ( i  +  1 ) ) }  ->  { ( P `  i
) ,  ( P `
 ( i  +  1 ) ) }  e.  (Edg `  G
) ) )
2423ralimdva 2962 . . . . . . . . . . . 12  |-  ( ( ( F  e. Word  dom  (iEdg `  G )  /\  P : ( 0 ... ( # `  F
) ) --> (Vtx `  G ) )  /\  G  e. UPGraph  )  ->  ( A. i  e.  (
0..^ ( # `  F
) ) ( (iEdg `  G ) `  ( F `  i )
)  =  { ( P `  i ) ,  ( P `  ( i  +  1 ) ) }  ->  A. i  e.  ( 0..^ ( # `  F
) ) { ( P `  i ) ,  ( P `  ( i  +  1 ) ) }  e.  (Edg `  G ) ) )
2524ex 450 . . . . . . . . . . 11  |-  ( ( F  e. Word  dom  (iEdg `  G )  /\  P : ( 0 ... ( # `  F
) ) --> (Vtx `  G ) )  -> 
( G  e. UPGraph  ->  ( A. i  e.  ( 0..^ ( # `  F
) ) ( (iEdg `  G ) `  ( F `  i )
)  =  { ( P `  i ) ,  ( P `  ( i  +  1 ) ) }  ->  A. i  e.  ( 0..^ ( # `  F
) ) { ( P `  i ) ,  ( P `  ( i  +  1 ) ) }  e.  (Edg `  G ) ) ) )
2625com23 86 . . . . . . . . . 10  |-  ( ( F  e. Word  dom  (iEdg `  G )  /\  P : ( 0 ... ( # `  F
) ) --> (Vtx `  G ) )  -> 
( A. i  e.  ( 0..^ ( # `  F ) ) ( (iEdg `  G ) `  ( F `  i
) )  =  {
( P `  i
) ,  ( P `
 ( i  +  1 ) ) }  ->  ( G  e. UPGraph  ->  A. i  e.  ( 0..^ ( # `  F
) ) { ( P `  i ) ,  ( P `  ( i  +  1 ) ) }  e.  (Edg `  G ) ) ) )
27263impia 1261 . . . . . . . . 9  |-  ( ( F  e. Word  dom  (iEdg `  G )  /\  P : ( 0 ... ( # `  F
) ) --> (Vtx `  G )  /\  A. i  e.  ( 0..^ ( # `  F
) ) ( (iEdg `  G ) `  ( F `  i )
)  =  { ( P `  i ) ,  ( P `  ( i  +  1 ) ) } )  ->  ( G  e. UPGraph  ->  A. i  e.  ( 0..^ ( # `  F
) ) { ( P `  i ) ,  ( P `  ( i  +  1 ) ) }  e.  (Edg `  G ) ) )
2827impcom 446 . . . . . . . 8  |-  ( ( G  e. UPGraph  /\  ( F  e. Word  dom  (iEdg `  G )  /\  P : ( 0 ... ( # `  F
) ) --> (Vtx `  G )  /\  A. i  e.  ( 0..^ ( # `  F
) ) ( (iEdg `  G ) `  ( F `  i )
)  =  { ( P `  i ) ,  ( P `  ( i  +  1 ) ) } ) )  ->  A. i  e.  ( 0..^ ( # `  F ) ) { ( P `  i
) ,  ( P `
 ( i  +  1 ) ) }  e.  (Edg `  G
) )
29 lencl 13324 . . . . . . . . . . . . . 14  |-  ( F  e. Word  dom  (iEdg `  G
)  ->  ( # `  F
)  e.  NN0 )
30 ffz0hash 13231 . . . . . . . . . . . . . . . 16  |-  ( ( ( # `  F
)  e.  NN0  /\  P : ( 0 ... ( # `  F
) ) --> (Vtx `  G ) )  -> 
( # `  P )  =  ( ( # `  F )  +  1 ) )
3130ex 450 . . . . . . . . . . . . . . 15  |-  ( (
# `  F )  e.  NN0  ->  ( P : ( 0 ... ( # `  F
) ) --> (Vtx `  G )  ->  ( # `
 P )  =  ( ( # `  F
)  +  1 ) ) )
32 oveq1 6657 . . . . . . . . . . . . . . . . 17  |-  ( (
# `  P )  =  ( ( # `  F )  +  1 )  ->  ( ( # `
 P )  - 
1 )  =  ( ( ( # `  F
)  +  1 )  -  1 ) )
33 nn0cn 11302 . . . . . . . . . . . . . . . . . 18  |-  ( (
# `  F )  e.  NN0  ->  ( # `  F
)  e.  CC )
34 pncan1 10454 . . . . . . . . . . . . . . . . . 18  |-  ( (
# `  F )  e.  CC  ->  ( (
( # `  F )  +  1 )  - 
1 )  =  (
# `  F )
)
3533, 34syl 17 . . . . . . . . . . . . . . . . 17  |-  ( (
# `  F )  e.  NN0  ->  ( (
( # `  F )  +  1 )  - 
1 )  =  (
# `  F )
)
3632, 35sylan9eqr 2678 . . . . . . . . . . . . . . . 16  |-  ( ( ( # `  F
)  e.  NN0  /\  ( # `  P )  =  ( ( # `  F )  +  1 ) )  ->  (
( # `  P )  -  1 )  =  ( # `  F
) )
3736ex 450 . . . . . . . . . . . . . . 15  |-  ( (
# `  F )  e.  NN0  ->  ( ( # `
 P )  =  ( ( # `  F
)  +  1 )  ->  ( ( # `  P )  -  1 )  =  ( # `  F ) ) )
3831, 37syld 47 . . . . . . . . . . . . . 14  |-  ( (
# `  F )  e.  NN0  ->  ( P : ( 0 ... ( # `  F
) ) --> (Vtx `  G )  ->  (
( # `  P )  -  1 )  =  ( # `  F
) ) )
3929, 38syl 17 . . . . . . . . . . . . 13  |-  ( F  e. Word  dom  (iEdg `  G
)  ->  ( P : ( 0 ... ( # `  F
) ) --> (Vtx `  G )  ->  (
( # `  P )  -  1 )  =  ( # `  F
) ) )
4039imp 445 . . . . . . . . . . . 12  |-  ( ( F  e. Word  dom  (iEdg `  G )  /\  P : ( 0 ... ( # `  F
) ) --> (Vtx `  G ) )  -> 
( ( # `  P
)  -  1 )  =  ( # `  F
) )
4140oveq2d 6666 . . . . . . . . . . 11  |-  ( ( F  e. Word  dom  (iEdg `  G )  /\  P : ( 0 ... ( # `  F
) ) --> (Vtx `  G ) )  -> 
( 0..^ ( (
# `  P )  -  1 ) )  =  ( 0..^ (
# `  F )
) )
4241raleqdv 3144 . . . . . . . . . 10  |-  ( ( F  e. Word  dom  (iEdg `  G )  /\  P : ( 0 ... ( # `  F
) ) --> (Vtx `  G ) )  -> 
( A. i  e.  ( 0..^ ( (
# `  P )  -  1 ) ) { ( P `  i ) ,  ( P `  ( i  +  1 ) ) }  e.  (Edg `  G )  <->  A. i  e.  ( 0..^ ( # `  F ) ) { ( P `  i
) ,  ( P `
 ( i  +  1 ) ) }  e.  (Edg `  G
) ) )
43423adant3 1081 . . . . . . . . 9  |-  ( ( F  e. Word  dom  (iEdg `  G )  /\  P : ( 0 ... ( # `  F
) ) --> (Vtx `  G )  /\  A. i  e.  ( 0..^ ( # `  F
) ) ( (iEdg `  G ) `  ( F `  i )
)  =  { ( P `  i ) ,  ( P `  ( i  +  1 ) ) } )  ->  ( A. i  e.  ( 0..^ ( (
# `  P )  -  1 ) ) { ( P `  i ) ,  ( P `  ( i  +  1 ) ) }  e.  (Edg `  G )  <->  A. i  e.  ( 0..^ ( # `  F ) ) { ( P `  i
) ,  ( P `
 ( i  +  1 ) ) }  e.  (Edg `  G
) ) )
4443adantl 482 . . . . . . . 8  |-  ( ( G  e. UPGraph  /\  ( F  e. Word  dom  (iEdg `  G )  /\  P : ( 0 ... ( # `  F
) ) --> (Vtx `  G )  /\  A. i  e.  ( 0..^ ( # `  F
) ) ( (iEdg `  G ) `  ( F `  i )
)  =  { ( P `  i ) ,  ( P `  ( i  +  1 ) ) } ) )  ->  ( A. i  e.  ( 0..^ ( ( # `  P
)  -  1 ) ) { ( P `
 i ) ,  ( P `  (
i  +  1 ) ) }  e.  (Edg
`  G )  <->  A. i  e.  ( 0..^ ( # `  F ) ) { ( P `  i
) ,  ( P `
 ( i  +  1 ) ) }  e.  (Edg `  G
) ) )
4528, 44mpbird 247 . . . . . . 7  |-  ( ( G  e. UPGraph  /\  ( F  e. Word  dom  (iEdg `  G )  /\  P : ( 0 ... ( # `  F
) ) --> (Vtx `  G )  /\  A. i  e.  ( 0..^ ( # `  F
) ) ( (iEdg `  G ) `  ( F `  i )
)  =  { ( P `  i ) ,  ( P `  ( i  +  1 ) ) } ) )  ->  A. i  e.  ( 0..^ ( (
# `  P )  -  1 ) ) { ( P `  i ) ,  ( P `  ( i  +  1 ) ) }  e.  (Edg `  G ) )
4645adantr 481 . . . . . 6  |-  ( ( ( G  e. UPGraph  /\  ( F  e. Word  dom  (iEdg `  G )  /\  P : ( 0 ... ( # `  F
) ) --> (Vtx `  G )  /\  A. i  e.  ( 0..^ ( # `  F
) ) ( (iEdg `  G ) `  ( F `  i )
)  =  { ( P `  i ) ,  ( P `  ( i  +  1 ) ) } ) )  /\  P  =/=  (/) )  ->  A. i  e.  ( 0..^ ( (
# `  P )  -  1 ) ) { ( P `  i ) ,  ( P `  ( i  +  1 ) ) }  e.  (Edg `  G ) )
47 eqid 2622 . . . . . . 7  |-  (Edg `  G )  =  (Edg
`  G )
482, 47iswwlks 26728 . . . . . 6  |-  ( P  e.  (WWalks `  G
)  <->  ( P  =/=  (/)  /\  P  e. Word  (Vtx `  G )  /\  A. i  e.  ( 0..^ ( ( # `  P
)  -  1 ) ) { ( P `
 i ) ,  ( P `  (
i  +  1 ) ) }  e.  (Edg
`  G ) ) )
495, 8, 46, 48syl3anbrc 1246 . . . . 5  |-  ( ( ( G  e. UPGraph  /\  ( F  e. Word  dom  (iEdg `  G )  /\  P : ( 0 ... ( # `  F
) ) --> (Vtx `  G )  /\  A. i  e.  ( 0..^ ( # `  F
) ) ( (iEdg `  G ) `  ( F `  i )
)  =  { ( P `  i ) ,  ( P `  ( i  +  1 ) ) } ) )  /\  P  =/=  (/) )  ->  P  e.  (WWalks `  G )
)
5049ex 450 . . . 4  |-  ( ( G  e. UPGraph  /\  ( F  e. Word  dom  (iEdg `  G )  /\  P : ( 0 ... ( # `  F
) ) --> (Vtx `  G )  /\  A. i  e.  ( 0..^ ( # `  F
) ) ( (iEdg `  G ) `  ( F `  i )
)  =  { ( P `  i ) ,  ( P `  ( i  +  1 ) ) } ) )  ->  ( P  =/=  (/)  ->  P  e.  (WWalks `  G ) ) )
5150ex 450 . . 3  |-  ( G  e. UPGraph  ->  ( ( F  e. Word  dom  (iEdg `  G
)  /\  P :
( 0 ... ( # `
 F ) ) --> (Vtx `  G )  /\  A. i  e.  ( 0..^ ( # `  F
) ) ( (iEdg `  G ) `  ( F `  i )
)  =  { ( P `  i ) ,  ( P `  ( i  +  1 ) ) } )  ->  ( P  =/=  (/)  ->  P  e.  (WWalks `  G ) ) ) )
524, 51sylbid 230 . 2  |-  ( G  e. UPGraph  ->  ( F (Walks `  G ) P  -> 
( P  =/=  (/)  ->  P  e.  (WWalks `  G )
) ) )
531, 52mpdi 45 1  |-  ( G  e. UPGraph  ->  ( F (Walks `  G ) P  ->  P  e.  (WWalks `  G
) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   A.wral 2912   (/)c0 3915   {cpr 4179   class class class wbr 4653   dom cdm 5114   ran crn 5115   Fun wfun 5882    Fn wfn 5883   -->wf 5884   ` cfv 5888  (class class class)co 6650   CCcc 9934   0cc0 9936   1c1 9937    + caddc 9939    - cmin 10266   NN0cn0 11292   ...cfz 12326  ..^cfzo 12465   #chash 13117  Word cword 13291  Vtxcvtx 25874  iEdgciedg 25875  Edgcedg 25939   UHGraph cuhgr 25951   UPGraph cupgr 25975  Walkscwlks 26492  WWalkscwwlks 26717
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-ifp 1013  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-n0 11293  df-xnn0 11364  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466  df-hash 13118  df-word 13299  df-edg 25940  df-uhgr 25953  df-upgr 25977  df-wlks 26495  df-wwlks 26722
This theorem is referenced by:  wlklnwwlkln1  26754  wlkiswwlks  26762  wlkiswwlkupgr  26764  elwspths2spth  26862
  Copyright terms: Public domain W3C validator