MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wlkonl1iedg Structured version   Visualization version   Unicode version

Theorem wlkonl1iedg 26561
Description: If there is a walk between two vertices  A and  B at least of length 1, then the start vertex  A is incident with an edge. (Contributed by AV, 4-Apr-2021.)
Hypothesis
Ref Expression
wlkonl1iedg.i  |-  I  =  (iEdg `  G )
Assertion
Ref Expression
wlkonl1iedg  |-  ( ( F ( A (WalksOn `  G ) B ) P  /\  ( # `  F )  =/=  0
)  ->  E. e  e.  ran  I  A  e.  e )
Distinct variable groups:    A, e    e, F    e, G    e, I    P, e
Allowed substitution hint:    B( e)

Proof of Theorem wlkonl1iedg
Dummy variable  k is distinct from all other variables.
StepHypRef Expression
1 eqid 2622 . . . 4  |-  (Vtx `  G )  =  (Vtx
`  G )
21wlkonprop 26554 . . 3  |-  ( F ( A (WalksOn `  G
) B ) P  ->  ( ( G  e.  _V  /\  A  e.  (Vtx `  G )  /\  B  e.  (Vtx `  G ) )  /\  ( F  e.  _V  /\  P  e.  _V )  /\  ( F (Walks `  G ) P  /\  ( P `  0 )  =  A  /\  ( P `  ( # `  F
) )  =  B ) ) )
3 fveq2 6191 . . . . . . . . . . 11  |-  ( k  =  0  ->  ( P `  k )  =  ( P ` 
0 ) )
4 oveq1 6657 . . . . . . . . . . . . 13  |-  ( k  =  0  ->  (
k  +  1 )  =  ( 0  +  1 ) )
5 0p1e1 11132 . . . . . . . . . . . . 13  |-  ( 0  +  1 )  =  1
64, 5syl6eq 2672 . . . . . . . . . . . 12  |-  ( k  =  0  ->  (
k  +  1 )  =  1 )
76fveq2d 6195 . . . . . . . . . . 11  |-  ( k  =  0  ->  ( P `  ( k  +  1 ) )  =  ( P ` 
1 ) )
83, 7preq12d 4276 . . . . . . . . . 10  |-  ( k  =  0  ->  { ( P `  k ) ,  ( P `  ( k  +  1 ) ) }  =  { ( P ` 
0 ) ,  ( P `  1 ) } )
98sseq1d 3632 . . . . . . . . 9  |-  ( k  =  0  ->  ( { ( P `  k ) ,  ( P `  ( k  +  1 ) ) }  C_  e  <->  { ( P `  0 ) ,  ( P ` 
1 ) }  C_  e ) )
109rexbidv 3052 . . . . . . . 8  |-  ( k  =  0  ->  ( E. e  e.  ran  I { ( P `  k ) ,  ( P `  ( k  +  1 ) ) }  C_  e  <->  E. e  e.  ran  I { ( P `  0 ) ,  ( P ` 
1 ) }  C_  e ) )
11 wlkonl1iedg.i . . . . . . . . . . 11  |-  I  =  (iEdg `  G )
1211wlkvtxiedg 26520 . . . . . . . . . 10  |-  ( F (Walks `  G ) P  ->  A. k  e.  ( 0..^ ( # `  F
) ) E. e  e.  ran  I { ( P `  k ) ,  ( P `  ( k  +  1 ) ) }  C_  e )
1312adantr 481 . . . . . . . . 9  |-  ( ( F (Walks `  G
) P  /\  ( P `  0 )  =  A )  ->  A. k  e.  ( 0..^ ( # `  F ) ) E. e  e.  ran  I { ( P `  k ) ,  ( P `  ( k  +  1 ) ) }  C_  e )
1413adantr 481 . . . . . . . 8  |-  ( ( ( F (Walks `  G ) P  /\  ( P `  0 )  =  A )  /\  ( # `  F )  =/=  0 )  ->  A. k  e.  (
0..^ ( # `  F
) ) E. e  e.  ran  I { ( P `  k ) ,  ( P `  ( k  +  1 ) ) }  C_  e )
15 wlkcl 26511 . . . . . . . . . . 11  |-  ( F (Walks `  G ) P  ->  ( # `  F
)  e.  NN0 )
16 elnnne0 11306 . . . . . . . . . . . . 13  |-  ( (
# `  F )  e.  NN  <->  ( ( # `  F )  e.  NN0  /\  ( # `  F
)  =/=  0 ) )
1716simplbi2 655 . . . . . . . . . . . 12  |-  ( (
# `  F )  e.  NN0  ->  ( ( # `
 F )  =/=  0  ->  ( # `  F
)  e.  NN ) )
18 lbfzo0 12507 . . . . . . . . . . . 12  |-  ( 0  e.  ( 0..^ (
# `  F )
)  <->  ( # `  F
)  e.  NN )
1917, 18syl6ibr 242 . . . . . . . . . . 11  |-  ( (
# `  F )  e.  NN0  ->  ( ( # `
 F )  =/=  0  ->  0  e.  ( 0..^ ( # `  F
) ) ) )
2015, 19syl 17 . . . . . . . . . 10  |-  ( F (Walks `  G ) P  ->  ( ( # `  F )  =/=  0  ->  0  e.  ( 0..^ ( # `  F
) ) ) )
2120adantr 481 . . . . . . . . 9  |-  ( ( F (Walks `  G
) P  /\  ( P `  0 )  =  A )  ->  (
( # `  F )  =/=  0  ->  0  e.  ( 0..^ ( # `  F ) ) ) )
2221imp 445 . . . . . . . 8  |-  ( ( ( F (Walks `  G ) P  /\  ( P `  0 )  =  A )  /\  ( # `  F )  =/=  0 )  -> 
0  e.  ( 0..^ ( # `  F
) ) )
2310, 14, 22rspcdva 3316 . . . . . . 7  |-  ( ( ( F (Walks `  G ) P  /\  ( P `  0 )  =  A )  /\  ( # `  F )  =/=  0 )  ->  E. e  e.  ran  I { ( P ` 
0 ) ,  ( P `  1 ) }  C_  e )
24 fvex 6201 . . . . . . . . . . 11  |-  ( P `
 0 )  e. 
_V
25 fvex 6201 . . . . . . . . . . 11  |-  ( P `
 1 )  e. 
_V
2624, 25prss 4351 . . . . . . . . . 10  |-  ( ( ( P `  0
)  e.  e  /\  ( P `  1 )  e.  e )  <->  { ( P `  0 ) ,  ( P ` 
1 ) }  C_  e )
27 eleq1 2689 . . . . . . . . . . . . 13  |-  ( ( P `  0 )  =  A  ->  (
( P `  0
)  e.  e  <->  A  e.  e ) )
28 ax-1 6 . . . . . . . . . . . . 13  |-  ( A  e.  e  ->  (
( P `  1
)  e.  e  ->  A  e.  e )
)
2927, 28syl6bi 243 . . . . . . . . . . . 12  |-  ( ( P `  0 )  =  A  ->  (
( P `  0
)  e.  e  -> 
( ( P ` 
1 )  e.  e  ->  A  e.  e ) ) )
3029adantl 482 . . . . . . . . . . 11  |-  ( ( F (Walks `  G
) P  /\  ( P `  0 )  =  A )  ->  (
( P `  0
)  e.  e  -> 
( ( P ` 
1 )  e.  e  ->  A  e.  e ) ) )
3130impd 447 . . . . . . . . . 10  |-  ( ( F (Walks `  G
) P  /\  ( P `  0 )  =  A )  ->  (
( ( P ` 
0 )  e.  e  /\  ( P ` 
1 )  e.  e )  ->  A  e.  e ) )
3226, 31syl5bir 233 . . . . . . . . 9  |-  ( ( F (Walks `  G
) P  /\  ( P `  0 )  =  A )  ->  ( { ( P ` 
0 ) ,  ( P `  1 ) }  C_  e  ->  A  e.  e ) )
3332reximdv 3016 . . . . . . . 8  |-  ( ( F (Walks `  G
) P  /\  ( P `  0 )  =  A )  ->  ( E. e  e.  ran  I { ( P ` 
0 ) ,  ( P `  1 ) }  C_  e  ->  E. e  e.  ran  I  A  e.  e )
)
3433adantr 481 . . . . . . 7  |-  ( ( ( F (Walks `  G ) P  /\  ( P `  0 )  =  A )  /\  ( # `  F )  =/=  0 )  -> 
( E. e  e. 
ran  I { ( P `  0 ) ,  ( P ` 
1 ) }  C_  e  ->  E. e  e.  ran  I  A  e.  e
) )
3523, 34mpd 15 . . . . . 6  |-  ( ( ( F (Walks `  G ) P  /\  ( P `  0 )  =  A )  /\  ( # `  F )  =/=  0 )  ->  E. e  e.  ran  I  A  e.  e
)
3635ex 450 . . . . 5  |-  ( ( F (Walks `  G
) P  /\  ( P `  0 )  =  A )  ->  (
( # `  F )  =/=  0  ->  E. e  e.  ran  I  A  e.  e ) )
37363adant3 1081 . . . 4  |-  ( ( F (Walks `  G
) P  /\  ( P `  0 )  =  A  /\  ( P `  ( # `  F
) )  =  B )  ->  ( ( # `
 F )  =/=  0  ->  E. e  e.  ran  I  A  e.  e ) )
38373ad2ant3 1084 . . 3  |-  ( ( ( G  e.  _V  /\  A  e.  (Vtx `  G )  /\  B  e.  (Vtx `  G )
)  /\  ( F  e.  _V  /\  P  e. 
_V )  /\  ( F (Walks `  G ) P  /\  ( P ` 
0 )  =  A  /\  ( P `  ( # `  F ) )  =  B ) )  ->  ( ( # `
 F )  =/=  0  ->  E. e  e.  ran  I  A  e.  e ) )
392, 38syl 17 . 2  |-  ( F ( A (WalksOn `  G
) B ) P  ->  ( ( # `  F )  =/=  0  ->  E. e  e.  ran  I  A  e.  e
) )
4039imp 445 1  |-  ( ( F ( A (WalksOn `  G ) B ) P  /\  ( # `  F )  =/=  0
)  ->  E. e  e.  ran  I  A  e.  e )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   A.wral 2912   E.wrex 2913   _Vcvv 3200    C_ wss 3574   {cpr 4179   class class class wbr 4653   ran crn 5115   ` cfv 5888  (class class class)co 6650   0cc0 9936   1c1 9937    + caddc 9939   NNcn 11020   NN0cn0 11292  ..^cfzo 12465   #chash 13117  Vtxcvtx 25874  iEdgciedg 25875  Walkscwlks 26492  WalksOncwlkson 26493
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-ifp 1013  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466  df-hash 13118  df-word 13299  df-wlks 26495  df-wlkson 26496
This theorem is referenced by:  conngrv2edg  27055
  Copyright terms: Public domain W3C validator