MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wlkp1lem8 Structured version   Visualization version   Unicode version

Theorem wlkp1lem8 26577
Description: Lemma for wlkp1 26578. (Contributed by AV, 6-Mar-2021.)
Hypotheses
Ref Expression
wlkp1.v  |-  V  =  (Vtx `  G )
wlkp1.i  |-  I  =  (iEdg `  G )
wlkp1.f  |-  ( ph  ->  Fun  I )
wlkp1.a  |-  ( ph  ->  I  e.  Fin )
wlkp1.b  |-  ( ph  ->  B  e.  _V )
wlkp1.c  |-  ( ph  ->  C  e.  V )
wlkp1.d  |-  ( ph  ->  -.  B  e.  dom  I )
wlkp1.w  |-  ( ph  ->  F (Walks `  G
) P )
wlkp1.n  |-  N  =  ( # `  F
)
wlkp1.e  |-  ( ph  ->  E  e.  (Edg `  G ) )
wlkp1.x  |-  ( ph  ->  { ( P `  N ) ,  C }  C_  E )
wlkp1.u  |-  ( ph  ->  (iEdg `  S )  =  ( I  u. 
{ <. B ,  E >. } ) )
wlkp1.h  |-  H  =  ( F  u.  { <. N ,  B >. } )
wlkp1.q  |-  Q  =  ( P  u.  { <. ( N  +  1 ) ,  C >. } )
wlkp1.s  |-  ( ph  ->  (Vtx `  S )  =  V )
wlkp1.l  |-  ( (
ph  /\  C  =  ( P `  N ) )  ->  E  =  { C } )
Assertion
Ref Expression
wlkp1lem8  |-  ( ph  ->  A. k  e.  ( 0..^ ( # `  H
) )if- ( ( Q `  k )  =  ( Q `  ( k  +  1 ) ) ,  ( (iEdg `  S ) `  ( H `  k
) )  =  {
( Q `  k
) } ,  {
( Q `  k
) ,  ( Q `
 ( k  +  1 ) ) } 
C_  ( (iEdg `  S ) `  ( H `  k )
) ) )
Distinct variable groups:    ph, k    k, N    P, k    Q, k   
k, F    k, G    k, H    S, k
Allowed substitution hints:    B( k)    C( k)    E( k)    I( k)    V( k)

Proof of Theorem wlkp1lem8
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 wlkp1.v . . . 4  |-  V  =  (Vtx `  G )
2 wlkp1.i . . . 4  |-  I  =  (iEdg `  G )
3 wlkp1.f . . . 4  |-  ( ph  ->  Fun  I )
4 wlkp1.a . . . 4  |-  ( ph  ->  I  e.  Fin )
5 wlkp1.b . . . 4  |-  ( ph  ->  B  e.  _V )
6 wlkp1.c . . . 4  |-  ( ph  ->  C  e.  V )
7 wlkp1.d . . . 4  |-  ( ph  ->  -.  B  e.  dom  I )
8 wlkp1.w . . . 4  |-  ( ph  ->  F (Walks `  G
) P )
9 wlkp1.n . . . 4  |-  N  =  ( # `  F
)
10 wlkp1.e . . . 4  |-  ( ph  ->  E  e.  (Edg `  G ) )
11 wlkp1.x . . . 4  |-  ( ph  ->  { ( P `  N ) ,  C }  C_  E )
12 wlkp1.u . . . 4  |-  ( ph  ->  (iEdg `  S )  =  ( I  u. 
{ <. B ,  E >. } ) )
13 wlkp1.h . . . 4  |-  H  =  ( F  u.  { <. N ,  B >. } )
14 wlkp1.q . . . 4  |-  Q  =  ( P  u.  { <. ( N  +  1 ) ,  C >. } )
15 wlkp1.s . . . 4  |-  ( ph  ->  (Vtx `  S )  =  V )
161, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15wlkp1lem6 26575 . . 3  |-  ( ph  ->  A. k  e.  ( 0..^ N ) ( ( Q `  k
)  =  ( P `
 k )  /\  ( Q `  ( k  +  1 ) )  =  ( P `  ( k  +  1 ) )  /\  (
(iEdg `  S ) `  ( H `  k
) )  =  ( I `  ( F `
 k ) ) ) )
1710elfvexd 6222 . . . . . 6  |-  ( ph  ->  G  e.  _V )
181, 2iswlkg 26509 . . . . . 6  |-  ( G  e.  _V  ->  ( F (Walks `  G ) P 
<->  ( F  e. Word  dom  I  /\  P : ( 0 ... ( # `  F ) ) --> V  /\  A. k  e.  ( 0..^ ( # `  F ) )if- ( ( P `  k
)  =  ( P `
 ( k  +  1 ) ) ,  ( I `  ( F `  k )
)  =  { ( P `  k ) } ,  { ( P `  k ) ,  ( P `  ( k  +  1 ) ) }  C_  ( I `  ( F `  k )
) ) ) ) )
1917, 18syl 17 . . . . 5  |-  ( ph  ->  ( F (Walks `  G ) P  <->  ( F  e. Word  dom  I  /\  P : ( 0 ... ( # `  F
) ) --> V  /\  A. k  e.  ( 0..^ ( # `  F
) )if- ( ( P `  k )  =  ( P `  ( k  +  1 ) ) ,  ( I `  ( F `
 k ) )  =  { ( P `
 k ) } ,  { ( P `
 k ) ,  ( P `  (
k  +  1 ) ) }  C_  (
I `  ( F `  k ) ) ) ) ) )
209eqcomi 2631 . . . . . . . . 9  |-  ( # `  F )  =  N
2120oveq2i 6661 . . . . . . . 8  |-  ( 0..^ ( # `  F
) )  =  ( 0..^ N )
2221raleqi 3142 . . . . . . 7  |-  ( A. k  e.  ( 0..^ ( # `  F
) )if- ( ( P `  k )  =  ( P `  ( k  +  1 ) ) ,  ( I `  ( F `
 k ) )  =  { ( P `
 k ) } ,  { ( P `
 k ) ,  ( P `  (
k  +  1 ) ) }  C_  (
I `  ( F `  k ) ) )  <->  A. k  e.  (
0..^ N )if- ( ( P `  k
)  =  ( P `
 ( k  +  1 ) ) ,  ( I `  ( F `  k )
)  =  { ( P `  k ) } ,  { ( P `  k ) ,  ( P `  ( k  +  1 ) ) }  C_  ( I `  ( F `  k )
) ) )
2322biimpi 206 . . . . . 6  |-  ( A. k  e.  ( 0..^ ( # `  F
) )if- ( ( P `  k )  =  ( P `  ( k  +  1 ) ) ,  ( I `  ( F `
 k ) )  =  { ( P `
 k ) } ,  { ( P `
 k ) ,  ( P `  (
k  +  1 ) ) }  C_  (
I `  ( F `  k ) ) )  ->  A. k  e.  ( 0..^ N )if- ( ( P `  k
)  =  ( P `
 ( k  +  1 ) ) ,  ( I `  ( F `  k )
)  =  { ( P `  k ) } ,  { ( P `  k ) ,  ( P `  ( k  +  1 ) ) }  C_  ( I `  ( F `  k )
) ) )
24233ad2ant3 1084 . . . . 5  |-  ( ( F  e. Word  dom  I  /\  P : ( 0 ... ( # `  F
) ) --> V  /\  A. k  e.  ( 0..^ ( # `  F
) )if- ( ( P `  k )  =  ( P `  ( k  +  1 ) ) ,  ( I `  ( F `
 k ) )  =  { ( P `
 k ) } ,  { ( P `
 k ) ,  ( P `  (
k  +  1 ) ) }  C_  (
I `  ( F `  k ) ) ) )  ->  A. k  e.  ( 0..^ N )if- ( ( P `  k )  =  ( P `  ( k  +  1 ) ) ,  ( I `  ( F `  k ) )  =  { ( P `  k ) } ,  { ( P `  k ) ,  ( P `  ( k  +  1 ) ) }  C_  ( I `  ( F `  k )
) ) )
2519, 24syl6bi 243 . . . 4  |-  ( ph  ->  ( F (Walks `  G ) P  ->  A. k  e.  (
0..^ N )if- ( ( P `  k
)  =  ( P `
 ( k  +  1 ) ) ,  ( I `  ( F `  k )
)  =  { ( P `  k ) } ,  { ( P `  k ) ,  ( P `  ( k  +  1 ) ) }  C_  ( I `  ( F `  k )
) ) ) )
268, 25mpd 15 . . 3  |-  ( ph  ->  A. k  e.  ( 0..^ N )if- ( ( P `  k
)  =  ( P `
 ( k  +  1 ) ) ,  ( I `  ( F `  k )
)  =  { ( P `  k ) } ,  { ( P `  k ) ,  ( P `  ( k  +  1 ) ) }  C_  ( I `  ( F `  k )
) ) )
27 eqeq12 2635 . . . . . . 7  |-  ( ( ( Q `  k
)  =  ( P `
 k )  /\  ( Q `  ( k  +  1 ) )  =  ( P `  ( k  +  1 ) ) )  -> 
( ( Q `  k )  =  ( Q `  ( k  +  1 ) )  <-> 
( P `  k
)  =  ( P `
 ( k  +  1 ) ) ) )
28273adant3 1081 . . . . . 6  |-  ( ( ( Q `  k
)  =  ( P `
 k )  /\  ( Q `  ( k  +  1 ) )  =  ( P `  ( k  +  1 ) )  /\  (
(iEdg `  S ) `  ( H `  k
) )  =  ( I `  ( F `
 k ) ) )  ->  ( ( Q `  k )  =  ( Q `  ( k  +  1 ) )  <->  ( P `  k )  =  ( P `  ( k  +  1 ) ) ) )
29 simp3 1063 . . . . . . 7  |-  ( ( ( Q `  k
)  =  ( P `
 k )  /\  ( Q `  ( k  +  1 ) )  =  ( P `  ( k  +  1 ) )  /\  (
(iEdg `  S ) `  ( H `  k
) )  =  ( I `  ( F `
 k ) ) )  ->  ( (iEdg `  S ) `  ( H `  k )
)  =  ( I `
 ( F `  k ) ) )
30 simp1 1061 . . . . . . . 8  |-  ( ( ( Q `  k
)  =  ( P `
 k )  /\  ( Q `  ( k  +  1 ) )  =  ( P `  ( k  +  1 ) )  /\  (
(iEdg `  S ) `  ( H `  k
) )  =  ( I `  ( F `
 k ) ) )  ->  ( Q `  k )  =  ( P `  k ) )
3130sneqd 4189 . . . . . . 7  |-  ( ( ( Q `  k
)  =  ( P `
 k )  /\  ( Q `  ( k  +  1 ) )  =  ( P `  ( k  +  1 ) )  /\  (
(iEdg `  S ) `  ( H `  k
) )  =  ( I `  ( F `
 k ) ) )  ->  { ( Q `  k ) }  =  { ( P `  k ) } )
3229, 31eqeq12d 2637 . . . . . 6  |-  ( ( ( Q `  k
)  =  ( P `
 k )  /\  ( Q `  ( k  +  1 ) )  =  ( P `  ( k  +  1 ) )  /\  (
(iEdg `  S ) `  ( H `  k
) )  =  ( I `  ( F `
 k ) ) )  ->  ( (
(iEdg `  S ) `  ( H `  k
) )  =  {
( Q `  k
) }  <->  ( I `  ( F `  k
) )  =  {
( P `  k
) } ) )
33 preq12 4270 . . . . . . . 8  |-  ( ( ( Q `  k
)  =  ( P `
 k )  /\  ( Q `  ( k  +  1 ) )  =  ( P `  ( k  +  1 ) ) )  ->  { ( Q `  k ) ,  ( Q `  ( k  +  1 ) ) }  =  { ( P `  k ) ,  ( P `  ( k  +  1 ) ) } )
34333adant3 1081 . . . . . . 7  |-  ( ( ( Q `  k
)  =  ( P `
 k )  /\  ( Q `  ( k  +  1 ) )  =  ( P `  ( k  +  1 ) )  /\  (
(iEdg `  S ) `  ( H `  k
) )  =  ( I `  ( F `
 k ) ) )  ->  { ( Q `  k ) ,  ( Q `  ( k  +  1 ) ) }  =  { ( P `  k ) ,  ( P `  ( k  +  1 ) ) } )
3534, 29sseq12d 3634 . . . . . 6  |-  ( ( ( Q `  k
)  =  ( P `
 k )  /\  ( Q `  ( k  +  1 ) )  =  ( P `  ( k  +  1 ) )  /\  (
(iEdg `  S ) `  ( H `  k
) )  =  ( I `  ( F `
 k ) ) )  ->  ( {
( Q `  k
) ,  ( Q `
 ( k  +  1 ) ) } 
C_  ( (iEdg `  S ) `  ( H `  k )
)  <->  { ( P `  k ) ,  ( P `  ( k  +  1 ) ) }  C_  ( I `  ( F `  k
) ) ) )
3628, 32, 35ifpbi123d 1027 . . . . 5  |-  ( ( ( Q `  k
)  =  ( P `
 k )  /\  ( Q `  ( k  +  1 ) )  =  ( P `  ( k  +  1 ) )  /\  (
(iEdg `  S ) `  ( H `  k
) )  =  ( I `  ( F `
 k ) ) )  ->  (if- (
( Q `  k
)  =  ( Q `
 ( k  +  1 ) ) ,  ( (iEdg `  S
) `  ( H `  k ) )  =  { ( Q `  k ) } ,  { ( Q `  k ) ,  ( Q `  ( k  +  1 ) ) }  C_  ( (iEdg `  S ) `  ( H `  k )
) )  <-> if- ( ( P `  k )  =  ( P `  ( k  +  1 ) ) ,  ( I `  ( F `
 k ) )  =  { ( P `
 k ) } ,  { ( P `
 k ) ,  ( P `  (
k  +  1 ) ) }  C_  (
I `  ( F `  k ) ) ) ) )
3736biimprd 238 . . . 4  |-  ( ( ( Q `  k
)  =  ( P `
 k )  /\  ( Q `  ( k  +  1 ) )  =  ( P `  ( k  +  1 ) )  /\  (
(iEdg `  S ) `  ( H `  k
) )  =  ( I `  ( F `
 k ) ) )  ->  (if- (
( P `  k
)  =  ( P `
 ( k  +  1 ) ) ,  ( I `  ( F `  k )
)  =  { ( P `  k ) } ,  { ( P `  k ) ,  ( P `  ( k  +  1 ) ) }  C_  ( I `  ( F `  k )
) )  -> if- ( ( Q `  k )  =  ( Q `  ( k  +  1 ) ) ,  ( (iEdg `  S ) `  ( H `  k
) )  =  {
( Q `  k
) } ,  {
( Q `  k
) ,  ( Q `
 ( k  +  1 ) ) } 
C_  ( (iEdg `  S ) `  ( H `  k )
) ) ) )
3837ral2imi 2947 . . 3  |-  ( A. k  e.  ( 0..^ N ) ( ( Q `  k )  =  ( P `  k )  /\  ( Q `  ( k  +  1 ) )  =  ( P `  ( k  +  1 ) )  /\  (
(iEdg `  S ) `  ( H `  k
) )  =  ( I `  ( F `
 k ) ) )  ->  ( A. k  e.  ( 0..^ N )if- ( ( P `  k )  =  ( P `  ( k  +  1 ) ) ,  ( I `  ( F `
 k ) )  =  { ( P `
 k ) } ,  { ( P `
 k ) ,  ( P `  (
k  +  1 ) ) }  C_  (
I `  ( F `  k ) ) )  ->  A. k  e.  ( 0..^ N )if- ( ( Q `  k
)  =  ( Q `
 ( k  +  1 ) ) ,  ( (iEdg `  S
) `  ( H `  k ) )  =  { ( Q `  k ) } ,  { ( Q `  k ) ,  ( Q `  ( k  +  1 ) ) }  C_  ( (iEdg `  S ) `  ( H `  k )
) ) ) )
3916, 26, 38sylc 65 . 2  |-  ( ph  ->  A. k  e.  ( 0..^ N )if- ( ( Q `  k
)  =  ( Q `
 ( k  +  1 ) ) ,  ( (iEdg `  S
) `  ( H `  k ) )  =  { ( Q `  k ) } ,  { ( Q `  k ) ,  ( Q `  ( k  +  1 ) ) }  C_  ( (iEdg `  S ) `  ( H `  k )
) ) )
401, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13wlkp1lem3 26572 . . . . 5  |-  ( ph  ->  ( (iEdg `  S
) `  ( H `  N ) )  =  ( ( I  u. 
{ <. B ,  E >. } ) `  B
) )
4140adantr 481 . . . 4  |-  ( (
ph  /\  ( Q `  N )  =  ( Q `  ( N  +  1 ) ) )  ->  ( (iEdg `  S ) `  ( H `  N )
)  =  ( ( I  u.  { <. B ,  E >. } ) `
 B ) )
425, 10, 73jca 1242 . . . . . 6  |-  ( ph  ->  ( B  e.  _V  /\  E  e.  (Edg `  G )  /\  -.  B  e.  dom  I ) )
4342adantr 481 . . . . 5  |-  ( (
ph  /\  ( Q `  N )  =  ( Q `  ( N  +  1 ) ) )  ->  ( B  e.  _V  /\  E  e.  (Edg `  G )  /\  -.  B  e.  dom  I ) )
44 fsnunfv 6453 . . . . 5  |-  ( ( B  e.  _V  /\  E  e.  (Edg `  G
)  /\  -.  B  e.  dom  I )  -> 
( ( I  u. 
{ <. B ,  E >. } ) `  B
)  =  E )
4543, 44syl 17 . . . 4  |-  ( (
ph  /\  ( Q `  N )  =  ( Q `  ( N  +  1 ) ) )  ->  ( (
I  u.  { <. B ,  E >. } ) `
 B )  =  E )
46 fveq2 6191 . . . . . . . 8  |-  ( x  =  N  ->  ( Q `  x )  =  ( Q `  N ) )
47 fveq2 6191 . . . . . . . 8  |-  ( x  =  N  ->  ( P `  x )  =  ( P `  N ) )
4846, 47eqeq12d 2637 . . . . . . 7  |-  ( x  =  N  ->  (
( Q `  x
)  =  ( P `
 x )  <->  ( Q `  N )  =  ( P `  N ) ) )
491, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15wlkp1lem5 26574 . . . . . . 7  |-  ( ph  ->  A. x  e.  ( 0 ... N ) ( Q `  x
)  =  ( P `
 x ) )
502wlkf 26510 . . . . . . . . . 10  |-  ( F (Walks `  G ) P  ->  F  e. Word  dom  I )
51 lencl 13324 . . . . . . . . . . 11  |-  ( F  e. Word  dom  I  ->  (
# `  F )  e.  NN0 )
529eleq1i 2692 . . . . . . . . . . . 12  |-  ( N  e.  NN0  <->  ( # `  F
)  e.  NN0 )
53 elnn0uz 11725 . . . . . . . . . . . 12  |-  ( N  e.  NN0  <->  N  e.  ( ZZ>=
`  0 ) )
5452, 53sylbb1 227 . . . . . . . . . . 11  |-  ( (
# `  F )  e.  NN0  ->  N  e.  ( ZZ>= `  0 )
)
5551, 54syl 17 . . . . . . . . . 10  |-  ( F  e. Word  dom  I  ->  N  e.  ( ZZ>= `  0
) )
568, 50, 553syl 18 . . . . . . . . 9  |-  ( ph  ->  N  e.  ( ZZ>= ` 
0 ) )
5756, 53sylibr 224 . . . . . . . 8  |-  ( ph  ->  N  e.  NN0 )
58 nn0fz0 12437 . . . . . . . 8  |-  ( N  e.  NN0  <->  N  e.  (
0 ... N ) )
5957, 58sylib 208 . . . . . . 7  |-  ( ph  ->  N  e.  ( 0 ... N ) )
6048, 49, 59rspcdva 3316 . . . . . 6  |-  ( ph  ->  ( Q `  N
)  =  ( P `
 N ) )
6114fveq1i 6192 . . . . . . . . . . 11  |-  ( Q `
 ( N  + 
1 ) )  =  ( ( P  u.  {
<. ( N  +  1 ) ,  C >. } ) `  ( N  +  1 ) )
62 ovex 6678 . . . . . . . . . . . 12  |-  ( N  +  1 )  e. 
_V
631, 2, 3, 4, 5, 6, 7, 8, 9wlkp1lem1 26570 . . . . . . . . . . . 12  |-  ( ph  ->  -.  ( N  + 
1 )  e.  dom  P )
64 fsnunfv 6453 . . . . . . . . . . . 12  |-  ( ( ( N  +  1 )  e.  _V  /\  C  e.  V  /\  -.  ( N  +  1 )  e.  dom  P
)  ->  ( ( P  u.  { <. ( N  +  1 ) ,  C >. } ) `
 ( N  + 
1 ) )  =  C )
6562, 6, 63, 64mp3an2i 1429 . . . . . . . . . . 11  |-  ( ph  ->  ( ( P  u.  {
<. ( N  +  1 ) ,  C >. } ) `  ( N  +  1 ) )  =  C )
6661, 65syl5eq 2668 . . . . . . . . . 10  |-  ( ph  ->  ( Q `  ( N  +  1 ) )  =  C )
6766eqeq2d 2632 . . . . . . . . 9  |-  ( ph  ->  ( ( P `  N )  =  ( Q `  ( N  +  1 ) )  <-> 
( P `  N
)  =  C ) )
68 eqcom 2629 . . . . . . . . 9  |-  ( ( P `  N )  =  C  <->  C  =  ( P `  N ) )
6967, 68syl6bb 276 . . . . . . . 8  |-  ( ph  ->  ( ( P `  N )  =  ( Q `  ( N  +  1 ) )  <-> 
C  =  ( P `
 N ) ) )
70 wlkp1.l . . . . . . . . . 10  |-  ( (
ph  /\  C  =  ( P `  N ) )  ->  E  =  { C } )
71 sneq 4187 . . . . . . . . . . 11  |-  ( C  =  ( P `  N )  ->  { C }  =  { ( P `  N ) } )
7271adantl 482 . . . . . . . . . 10  |-  ( (
ph  /\  C  =  ( P `  N ) )  ->  { C }  =  { ( P `  N ) } )
7370, 72eqtrd 2656 . . . . . . . . 9  |-  ( (
ph  /\  C  =  ( P `  N ) )  ->  E  =  { ( P `  N ) } )
7473ex 450 . . . . . . . 8  |-  ( ph  ->  ( C  =  ( P `  N )  ->  E  =  {
( P `  N
) } ) )
7569, 74sylbid 230 . . . . . . 7  |-  ( ph  ->  ( ( P `  N )  =  ( Q `  ( N  +  1 ) )  ->  E  =  {
( P `  N
) } ) )
76 eqeq1 2626 . . . . . . . 8  |-  ( ( Q `  N )  =  ( P `  N )  ->  (
( Q `  N
)  =  ( Q `
 ( N  + 
1 ) )  <->  ( P `  N )  =  ( Q `  ( N  +  1 ) ) ) )
77 sneq 4187 . . . . . . . . 9  |-  ( ( Q `  N )  =  ( P `  N )  ->  { ( Q `  N ) }  =  { ( P `  N ) } )
7877eqeq2d 2632 . . . . . . . 8  |-  ( ( Q `  N )  =  ( P `  N )  ->  ( E  =  { ( Q `  N ) } 
<->  E  =  { ( P `  N ) } ) )
7976, 78imbi12d 334 . . . . . . 7  |-  ( ( Q `  N )  =  ( P `  N )  ->  (
( ( Q `  N )  =  ( Q `  ( N  +  1 ) )  ->  E  =  {
( Q `  N
) } )  <->  ( ( P `  N )  =  ( Q `  ( N  +  1
) )  ->  E  =  { ( P `  N ) } ) ) )
8075, 79syl5ibrcom 237 . . . . . 6  |-  ( ph  ->  ( ( Q `  N )  =  ( P `  N )  ->  ( ( Q `
 N )  =  ( Q `  ( N  +  1 ) )  ->  E  =  { ( Q `  N ) } ) ) )
8160, 80mpd 15 . . . . 5  |-  ( ph  ->  ( ( Q `  N )  =  ( Q `  ( N  +  1 ) )  ->  E  =  {
( Q `  N
) } ) )
8281imp 445 . . . 4  |-  ( (
ph  /\  ( Q `  N )  =  ( Q `  ( N  +  1 ) ) )  ->  E  =  { ( Q `  N ) } )
8341, 45, 823eqtrd 2660 . . 3  |-  ( (
ph  /\  ( Q `  N )  =  ( Q `  ( N  +  1 ) ) )  ->  ( (iEdg `  S ) `  ( H `  N )
)  =  { ( Q `  N ) } )
841, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15wlkp1lem7 26576 . . . 4  |-  ( ph  ->  { ( Q `  N ) ,  ( Q `  ( N  +  1 ) ) }  C_  ( (iEdg `  S ) `  ( H `  N )
) )
8584adantr 481 . . 3  |-  ( (
ph  /\  -.  ( Q `  N )  =  ( Q `  ( N  +  1
) ) )  ->  { ( Q `  N ) ,  ( Q `  ( N  +  1 ) ) }  C_  ( (iEdg `  S ) `  ( H `  N )
) )
8683, 85ifpimpda 1028 . 2  |-  ( ph  -> if- ( ( Q `  N )  =  ( Q `  ( N  +  1 ) ) ,  ( (iEdg `  S ) `  ( H `  N )
)  =  { ( Q `  N ) } ,  { ( Q `  N ) ,  ( Q `  ( N  +  1
) ) }  C_  ( (iEdg `  S ) `  ( H `  N
) ) ) )
871, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13wlkp1lem2 26571 . . . . . 6  |-  ( ph  ->  ( # `  H
)  =  ( N  +  1 ) )
8887oveq2d 6666 . . . . 5  |-  ( ph  ->  ( 0..^ ( # `  H ) )  =  ( 0..^ ( N  +  1 ) ) )
89 fzosplitsn 12576 . . . . . 6  |-  ( N  e.  ( ZZ>= `  0
)  ->  ( 0..^ ( N  +  1 ) )  =  ( ( 0..^ N )  u.  { N }
) )
9056, 89syl 17 . . . . 5  |-  ( ph  ->  ( 0..^ ( N  +  1 ) )  =  ( ( 0..^ N )  u.  { N } ) )
9188, 90eqtrd 2656 . . . 4  |-  ( ph  ->  ( 0..^ ( # `  H ) )  =  ( ( 0..^ N )  u.  { N } ) )
9291raleqdv 3144 . . 3  |-  ( ph  ->  ( A. k  e.  ( 0..^ ( # `  H ) )if- ( ( Q `  k
)  =  ( Q `
 ( k  +  1 ) ) ,  ( (iEdg `  S
) `  ( H `  k ) )  =  { ( Q `  k ) } ,  { ( Q `  k ) ,  ( Q `  ( k  +  1 ) ) }  C_  ( (iEdg `  S ) `  ( H `  k )
) )  <->  A. k  e.  ( ( 0..^ N )  u.  { N } )if- ( ( Q `
 k )  =  ( Q `  (
k  +  1 ) ) ,  ( (iEdg `  S ) `  ( H `  k )
)  =  { ( Q `  k ) } ,  { ( Q `  k ) ,  ( Q `  ( k  +  1 ) ) }  C_  ( (iEdg `  S ) `  ( H `  k
) ) ) ) )
93 ralunb 3794 . . . 4  |-  ( A. k  e.  ( (
0..^ N )  u. 
{ N } )if- ( ( Q `  k )  =  ( Q `  ( k  +  1 ) ) ,  ( (iEdg `  S ) `  ( H `  k )
)  =  { ( Q `  k ) } ,  { ( Q `  k ) ,  ( Q `  ( k  +  1 ) ) }  C_  ( (iEdg `  S ) `  ( H `  k
) ) )  <->  ( A. k  e.  ( 0..^ N )if- ( ( Q `  k )  =  ( Q `  ( k  +  1 ) ) ,  ( (iEdg `  S ) `  ( H `  k
) )  =  {
( Q `  k
) } ,  {
( Q `  k
) ,  ( Q `
 ( k  +  1 ) ) } 
C_  ( (iEdg `  S ) `  ( H `  k )
) )  /\  A. k  e.  { N }if- ( ( Q `  k )  =  ( Q `  ( k  +  1 ) ) ,  ( (iEdg `  S ) `  ( H `  k )
)  =  { ( Q `  k ) } ,  { ( Q `  k ) ,  ( Q `  ( k  +  1 ) ) }  C_  ( (iEdg `  S ) `  ( H `  k
) ) ) ) )
9493a1i 11 . . 3  |-  ( ph  ->  ( A. k  e.  ( ( 0..^ N )  u.  { N } )if- ( ( Q `
 k )  =  ( Q `  (
k  +  1 ) ) ,  ( (iEdg `  S ) `  ( H `  k )
)  =  { ( Q `  k ) } ,  { ( Q `  k ) ,  ( Q `  ( k  +  1 ) ) }  C_  ( (iEdg `  S ) `  ( H `  k
) ) )  <->  ( A. k  e.  ( 0..^ N )if- ( ( Q `  k )  =  ( Q `  ( k  +  1 ) ) ,  ( (iEdg `  S ) `  ( H `  k
) )  =  {
( Q `  k
) } ,  {
( Q `  k
) ,  ( Q `
 ( k  +  1 ) ) } 
C_  ( (iEdg `  S ) `  ( H `  k )
) )  /\  A. k  e.  { N }if- ( ( Q `  k )  =  ( Q `  ( k  +  1 ) ) ,  ( (iEdg `  S ) `  ( H `  k )
)  =  { ( Q `  k ) } ,  { ( Q `  k ) ,  ( Q `  ( k  +  1 ) ) }  C_  ( (iEdg `  S ) `  ( H `  k
) ) ) ) ) )
95 fvex 6201 . . . . . 6  |-  ( # `  F )  e.  _V
969, 95eqeltri 2697 . . . . 5  |-  N  e. 
_V
97 fveq2 6191 . . . . . . . 8  |-  ( k  =  N  ->  ( Q `  k )  =  ( Q `  N ) )
98 oveq1 6657 . . . . . . . . 9  |-  ( k  =  N  ->  (
k  +  1 )  =  ( N  + 
1 ) )
9998fveq2d 6195 . . . . . . . 8  |-  ( k  =  N  ->  ( Q `  ( k  +  1 ) )  =  ( Q `  ( N  +  1
) ) )
10097, 99eqeq12d 2637 . . . . . . 7  |-  ( k  =  N  ->  (
( Q `  k
)  =  ( Q `
 ( k  +  1 ) )  <->  ( Q `  N )  =  ( Q `  ( N  +  1 ) ) ) )
101 fveq2 6191 . . . . . . . . 9  |-  ( k  =  N  ->  ( H `  k )  =  ( H `  N ) )
102101fveq2d 6195 . . . . . . . 8  |-  ( k  =  N  ->  (
(iEdg `  S ) `  ( H `  k
) )  =  ( (iEdg `  S ) `  ( H `  N
) ) )
10397sneqd 4189 . . . . . . . 8  |-  ( k  =  N  ->  { ( Q `  k ) }  =  { ( Q `  N ) } )
104102, 103eqeq12d 2637 . . . . . . 7  |-  ( k  =  N  ->  (
( (iEdg `  S
) `  ( H `  k ) )  =  { ( Q `  k ) }  <->  ( (iEdg `  S ) `  ( H `  N )
)  =  { ( Q `  N ) } ) )
10597, 99preq12d 4276 . . . . . . . 8  |-  ( k  =  N  ->  { ( Q `  k ) ,  ( Q `  ( k  +  1 ) ) }  =  { ( Q `  N ) ,  ( Q `  ( N  +  1 ) ) } )
106105, 102sseq12d 3634 . . . . . . 7  |-  ( k  =  N  ->  ( { ( Q `  k ) ,  ( Q `  ( k  +  1 ) ) }  C_  ( (iEdg `  S ) `  ( H `  k )
)  <->  { ( Q `  N ) ,  ( Q `  ( N  +  1 ) ) }  C_  ( (iEdg `  S ) `  ( H `  N )
) ) )
107100, 104, 106ifpbi123d 1027 . . . . . 6  |-  ( k  =  N  ->  (if- ( ( Q `  k )  =  ( Q `  ( k  +  1 ) ) ,  ( (iEdg `  S ) `  ( H `  k )
)  =  { ( Q `  k ) } ,  { ( Q `  k ) ,  ( Q `  ( k  +  1 ) ) }  C_  ( (iEdg `  S ) `  ( H `  k
) ) )  <-> if- ( ( Q `  N )  =  ( Q `  ( N  +  1
) ) ,  ( (iEdg `  S ) `  ( H `  N
) )  =  {
( Q `  N
) } ,  {
( Q `  N
) ,  ( Q `
 ( N  + 
1 ) ) } 
C_  ( (iEdg `  S ) `  ( H `  N )
) ) ) )
108107ralsng 4218 . . . . 5  |-  ( N  e.  _V  ->  ( A. k  e.  { N }if- ( ( Q `  k )  =  ( Q `  ( k  +  1 ) ) ,  ( (iEdg `  S ) `  ( H `  k )
)  =  { ( Q `  k ) } ,  { ( Q `  k ) ,  ( Q `  ( k  +  1 ) ) }  C_  ( (iEdg `  S ) `  ( H `  k
) ) )  <-> if- ( ( Q `  N )  =  ( Q `  ( N  +  1
) ) ,  ( (iEdg `  S ) `  ( H `  N
) )  =  {
( Q `  N
) } ,  {
( Q `  N
) ,  ( Q `
 ( N  + 
1 ) ) } 
C_  ( (iEdg `  S ) `  ( H `  N )
) ) ) )
10996, 108mp1i 13 . . . 4  |-  ( ph  ->  ( A. k  e. 
{ N }if- (
( Q `  k
)  =  ( Q `
 ( k  +  1 ) ) ,  ( (iEdg `  S
) `  ( H `  k ) )  =  { ( Q `  k ) } ,  { ( Q `  k ) ,  ( Q `  ( k  +  1 ) ) }  C_  ( (iEdg `  S ) `  ( H `  k )
) )  <-> if- ( ( Q `  N )  =  ( Q `  ( N  +  1
) ) ,  ( (iEdg `  S ) `  ( H `  N
) )  =  {
( Q `  N
) } ,  {
( Q `  N
) ,  ( Q `
 ( N  + 
1 ) ) } 
C_  ( (iEdg `  S ) `  ( H `  N )
) ) ) )
110109anbi2d 740 . . 3  |-  ( ph  ->  ( ( A. k  e.  ( 0..^ N )if- ( ( Q `  k )  =  ( Q `  ( k  +  1 ) ) ,  ( (iEdg `  S ) `  ( H `  k )
)  =  { ( Q `  k ) } ,  { ( Q `  k ) ,  ( Q `  ( k  +  1 ) ) }  C_  ( (iEdg `  S ) `  ( H `  k
) ) )  /\  A. k  e.  { N }if- ( ( Q `  k )  =  ( Q `  ( k  +  1 ) ) ,  ( (iEdg `  S ) `  ( H `  k )
)  =  { ( Q `  k ) } ,  { ( Q `  k ) ,  ( Q `  ( k  +  1 ) ) }  C_  ( (iEdg `  S ) `  ( H `  k
) ) ) )  <-> 
( A. k  e.  ( 0..^ N )if- ( ( Q `  k )  =  ( Q `  ( k  +  1 ) ) ,  ( (iEdg `  S ) `  ( H `  k )
)  =  { ( Q `  k ) } ,  { ( Q `  k ) ,  ( Q `  ( k  +  1 ) ) }  C_  ( (iEdg `  S ) `  ( H `  k
) ) )  /\ if- ( ( Q `  N )  =  ( Q `  ( N  +  1 ) ) ,  ( (iEdg `  S ) `  ( H `  N )
)  =  { ( Q `  N ) } ,  { ( Q `  N ) ,  ( Q `  ( N  +  1
) ) }  C_  ( (iEdg `  S ) `  ( H `  N
) ) ) ) ) )
11192, 94, 1103bitrd 294 . 2  |-  ( ph  ->  ( A. k  e.  ( 0..^ ( # `  H ) )if- ( ( Q `  k
)  =  ( Q `
 ( k  +  1 ) ) ,  ( (iEdg `  S
) `  ( H `  k ) )  =  { ( Q `  k ) } ,  { ( Q `  k ) ,  ( Q `  ( k  +  1 ) ) }  C_  ( (iEdg `  S ) `  ( H `  k )
) )  <->  ( A. k  e.  ( 0..^ N )if- ( ( Q `  k )  =  ( Q `  ( k  +  1 ) ) ,  ( (iEdg `  S ) `  ( H `  k
) )  =  {
( Q `  k
) } ,  {
( Q `  k
) ,  ( Q `
 ( k  +  1 ) ) } 
C_  ( (iEdg `  S ) `  ( H `  k )
) )  /\ if- (
( Q `  N
)  =  ( Q `
 ( N  + 
1 ) ) ,  ( (iEdg `  S
) `  ( H `  N ) )  =  { ( Q `  N ) } ,  { ( Q `  N ) ,  ( Q `  ( N  +  1 ) ) }  C_  ( (iEdg `  S ) `  ( H `  N )
) ) ) ) )
11239, 86, 111mpbir2and 957 1  |-  ( ph  ->  A. k  e.  ( 0..^ ( # `  H
) )if- ( ( Q `  k )  =  ( Q `  ( k  +  1 ) ) ,  ( (iEdg `  S ) `  ( H `  k
) )  =  {
( Q `  k
) } ,  {
( Q `  k
) ,  ( Q `
 ( k  +  1 ) ) } 
C_  ( (iEdg `  S ) `  ( H `  k )
) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384  if-wif 1012    /\ w3a 1037    = wceq 1483    e. wcel 1990   A.wral 2912   _Vcvv 3200    u. cun 3572    C_ wss 3574   {csn 4177   {cpr 4179   <.cop 4183   class class class wbr 4653   dom cdm 5114   Fun wfun 5882   -->wf 5884   ` cfv 5888  (class class class)co 6650   Fincfn 7955   0cc0 9936   1c1 9937    + caddc 9939   NN0cn0 11292   ZZ>=cuz 11687   ...cfz 12326  ..^cfzo 12465   #chash 13117  Word cword 13291  Vtxcvtx 25874  iEdgciedg 25875  Edgcedg 25939  Walkscwlks 26492
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-ifp 1013  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466  df-hash 13118  df-word 13299  df-wlks 26495
This theorem is referenced by:  wlkp1  26578
  Copyright terms: Public domain W3C validator