MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wlkwwlksur Structured version   Visualization version   Unicode version

Theorem wlkwwlksur 26783
Description: Lemma 3 for wlkwwlkbij2 26785. (Contributed by Alexander van der Vekens, 23-Jul-2018.) (Revised by AV, 16-Apr-2021.)
Hypotheses
Ref Expression
wlkwwlkbij.t  |-  T  =  { p  e.  (Walks `  G )  |  ( ( # `  ( 1st `  p ) )  =  N  /\  (
( 2nd `  p
) `  0 )  =  P ) }
wlkwwlkbij.w  |-  W  =  { w  e.  ( N WWalksN  G )  |  ( w `  0 )  =  P }
wlkwwlkbij.f  |-  F  =  ( t  e.  T  |->  ( 2nd `  t
) )
Assertion
Ref Expression
wlkwwlksur  |-  ( ( G  e. USPGraph  /\  P  e.  V  /\  N  e. 
NN0 )  ->  F : T -onto-> W )
Distinct variable groups:    G, p, t, w    N, p, t, w    P, p, t, w   
t, T, w    t, V    t, W    w, F    w, V    F, p    T, p    W, p
Allowed substitution hints:    F( t)    V( p)    W( w)

Proof of Theorem wlkwwlksur
Dummy variables  u  f are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 uspgrupgr 26071 . . 3  |-  ( G  e. USPGraph  ->  G  e. UPGraph  )
2 wlkwwlkbij.t . . . 4  |-  T  =  { p  e.  (Walks `  G )  |  ( ( # `  ( 1st `  p ) )  =  N  /\  (
( 2nd `  p
) `  0 )  =  P ) }
3 wlkwwlkbij.w . . . 4  |-  W  =  { w  e.  ( N WWalksN  G )  |  ( w `  0 )  =  P }
4 wlkwwlkbij.f . . . 4  |-  F  =  ( t  e.  T  |->  ( 2nd `  t
) )
52, 3, 4wlkwwlkfun 26781 . . 3  |-  ( ( G  e. UPGraph  /\  P  e.  V  /\  N  e. 
NN0 )  ->  F : T --> W )
61, 5syl3an1 1359 . 2  |-  ( ( G  e. USPGraph  /\  P  e.  V  /\  N  e. 
NN0 )  ->  F : T --> W )
7 fveq1 6190 . . . . . . 7  |-  ( w  =  p  ->  (
w `  0 )  =  ( p ` 
0 ) )
87eqeq1d 2624 . . . . . 6  |-  ( w  =  p  ->  (
( w `  0
)  =  P  <->  ( p `  0 )  =  P ) )
98, 3elrab2 3366 . . . . 5  |-  ( p  e.  W  <->  ( p  e.  ( N WWalksN  G )  /\  ( p `  0
)  =  P ) )
10 wlklnwwlkn 26770 . . . . . . . . . . 11  |-  ( G  e. USPGraph  ->  ( E. f
( f (Walks `  G ) p  /\  ( # `  f )  =  N )  <->  p  e.  ( N WWalksN  G ) ) )
11 df-br 4654 . . . . . . . . . . . . 13  |-  ( f (Walks `  G )
p  <->  <. f ,  p >.  e.  (Walks `  G
) )
12 vex 3203 . . . . . . . . . . . . . . . . 17  |-  f  e. 
_V
13 vex 3203 . . . . . . . . . . . . . . . . 17  |-  p  e. 
_V
1412, 13op1st 7176 . . . . . . . . . . . . . . . 16  |-  ( 1st `  <. f ,  p >. )  =  f
1514eqcomi 2631 . . . . . . . . . . . . . . 15  |-  f  =  ( 1st `  <. f ,  p >. )
1615fveq2i 6194 . . . . . . . . . . . . . 14  |-  ( # `  f )  =  (
# `  ( 1st ` 
<. f ,  p >. ) )
1716eqeq1i 2627 . . . . . . . . . . . . 13  |-  ( (
# `  f )  =  N  <->  ( # `  ( 1st `  <. f ,  p >. ) )  =  N )
1812, 13op2nd 7177 . . . . . . . . . . . . . . . . 17  |-  ( 2nd `  <. f ,  p >. )  =  p
1918eqcomi 2631 . . . . . . . . . . . . . . . 16  |-  p  =  ( 2nd `  <. f ,  p >. )
2019fveq1i 6192 . . . . . . . . . . . . . . 15  |-  ( p `
 0 )  =  ( ( 2nd `  <. f ,  p >. ) `  0 )
2120eqeq1i 2627 . . . . . . . . . . . . . 14  |-  ( ( p `  0 )  =  P  <->  ( ( 2nd `  <. f ,  p >. ) `  0 )  =  P )
22 opex 4932 . . . . . . . . . . . . . . . 16  |-  <. f ,  p >.  e.  _V
2322a1i 11 . . . . . . . . . . . . . . 15  |-  ( (
<. f ,  p >.  e.  (Walks `  G )  /\  ( # `  ( 1st `  <. f ,  p >. ) )  =  N )  ->  <. f ,  p >.  e.  _V )
24 simpll 790 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( <. f ,  p >.  e.  (Walks `  G
)  /\  ( # `  ( 1st `  <. f ,  p >. ) )  =  N )  /\  ( ( 2nd `  <. f ,  p >. ) `  0
)  =  P )  ->  <. f ,  p >.  e.  (Walks `  G
) )
25 simpr 477 . . . . . . . . . . . . . . . . . . 19  |-  ( (
<. f ,  p >.  e.  (Walks `  G )  /\  ( # `  ( 1st `  <. f ,  p >. ) )  =  N )  ->  ( # `  ( 1st `  <. f ,  p >. ) )  =  N )
2625anim1i 592 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( <. f ,  p >.  e.  (Walks `  G
)  /\  ( # `  ( 1st `  <. f ,  p >. ) )  =  N )  /\  ( ( 2nd `  <. f ,  p >. ) `  0
)  =  P )  ->  ( ( # `  ( 1st `  <. f ,  p >. )
)  =  N  /\  ( ( 2nd `  <. f ,  p >. ) `  0 )  =  P ) )
2719a1i 11 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( <. f ,  p >.  e.  (Walks `  G
)  /\  ( # `  ( 1st `  <. f ,  p >. ) )  =  N )  /\  ( ( 2nd `  <. f ,  p >. ) `  0
)  =  P )  ->  p  =  ( 2nd `  <. f ,  p >. ) )
2824, 26, 27jca31 557 . . . . . . . . . . . . . . . . 17  |-  ( ( ( <. f ,  p >.  e.  (Walks `  G
)  /\  ( # `  ( 1st `  <. f ,  p >. ) )  =  N )  /\  ( ( 2nd `  <. f ,  p >. ) `  0
)  =  P )  ->  ( ( <.
f ,  p >.  e.  (Walks `  G )  /\  ( ( # `  ( 1st `  <. f ,  p >. ) )  =  N  /\  ( ( 2nd `  <. f ,  p >. ) `  0 )  =  P ) )  /\  p  =  ( 2nd `  <. f ,  p >. ) ) )
29 eleq1 2689 . . . . . . . . . . . . . . . . . . 19  |-  ( u  =  <. f ,  p >.  ->  ( u  e.  (Walks `  G )  <->  <.
f ,  p >.  e.  (Walks `  G )
) )
30 fveq2 6191 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( u  =  <. f ,  p >.  ->  ( 1st `  u
)  =  ( 1st `  <. f ,  p >. ) )
3130fveq2d 6195 . . . . . . . . . . . . . . . . . . . . 21  |-  ( u  =  <. f ,  p >.  ->  ( # `  ( 1st `  u ) )  =  ( # `  ( 1st `  <. f ,  p >. ) ) )
3231eqeq1d 2624 . . . . . . . . . . . . . . . . . . . 20  |-  ( u  =  <. f ,  p >.  ->  ( ( # `  ( 1st `  u
) )  =  N  <-> 
( # `  ( 1st `  <. f ,  p >. ) )  =  N ) )
33 fveq2 6191 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( u  =  <. f ,  p >.  ->  ( 2nd `  u
)  =  ( 2nd `  <. f ,  p >. ) )
3433fveq1d 6193 . . . . . . . . . . . . . . . . . . . . 21  |-  ( u  =  <. f ,  p >.  ->  ( ( 2nd `  u ) `  0
)  =  ( ( 2nd `  <. f ,  p >. ) `  0
) )
3534eqeq1d 2624 . . . . . . . . . . . . . . . . . . . 20  |-  ( u  =  <. f ,  p >.  ->  ( ( ( 2nd `  u ) `
 0 )  =  P  <->  ( ( 2nd `  <. f ,  p >. ) `  0 )  =  P ) )
3632, 35anbi12d 747 . . . . . . . . . . . . . . . . . . 19  |-  ( u  =  <. f ,  p >.  ->  ( ( (
# `  ( 1st `  u ) )  =  N  /\  ( ( 2nd `  u ) `
 0 )  =  P )  <->  ( ( # `
 ( 1st `  <. f ,  p >. )
)  =  N  /\  ( ( 2nd `  <. f ,  p >. ) `  0 )  =  P ) ) )
3729, 36anbi12d 747 . . . . . . . . . . . . . . . . . 18  |-  ( u  =  <. f ,  p >.  ->  ( ( u  e.  (Walks `  G
)  /\  ( ( # `
 ( 1st `  u
) )  =  N  /\  ( ( 2nd `  u ) `  0
)  =  P ) )  <->  ( <. f ,  p >.  e.  (Walks `  G )  /\  (
( # `  ( 1st `  <. f ,  p >. ) )  =  N  /\  ( ( 2nd `  <. f ,  p >. ) `  0 )  =  P ) ) ) )
3833eqeq2d 2632 . . . . . . . . . . . . . . . . . 18  |-  ( u  =  <. f ,  p >.  ->  ( p  =  ( 2nd `  u
)  <->  p  =  ( 2nd `  <. f ,  p >. ) ) )
3937, 38anbi12d 747 . . . . . . . . . . . . . . . . 17  |-  ( u  =  <. f ,  p >.  ->  ( ( ( u  e.  (Walks `  G )  /\  (
( # `  ( 1st `  u ) )  =  N  /\  ( ( 2nd `  u ) `
 0 )  =  P ) )  /\  p  =  ( 2nd `  u ) )  <->  ( ( <. f ,  p >.  e.  (Walks `  G )  /\  ( ( # `  ( 1st `  <. f ,  p >. ) )  =  N  /\  ( ( 2nd `  <. f ,  p >. ) `  0 )  =  P ) )  /\  p  =  ( 2nd `  <. f ,  p >. ) ) ) )
4028, 39syl5ibrcom 237 . . . . . . . . . . . . . . . 16  |-  ( ( ( <. f ,  p >.  e.  (Walks `  G
)  /\  ( # `  ( 1st `  <. f ,  p >. ) )  =  N )  /\  ( ( 2nd `  <. f ,  p >. ) `  0
)  =  P )  ->  ( u  = 
<. f ,  p >.  -> 
( ( u  e.  (Walks `  G )  /\  ( ( # `  ( 1st `  u ) )  =  N  /\  (
( 2nd `  u
) `  0 )  =  P ) )  /\  p  =  ( 2nd `  u ) ) ) )
4140impancom 456 . . . . . . . . . . . . . . 15  |-  ( ( ( <. f ,  p >.  e.  (Walks `  G
)  /\  ( # `  ( 1st `  <. f ,  p >. ) )  =  N )  /\  u  = 
<. f ,  p >. )  ->  ( ( ( 2nd `  <. f ,  p >. ) `  0
)  =  P  -> 
( ( u  e.  (Walks `  G )  /\  ( ( # `  ( 1st `  u ) )  =  N  /\  (
( 2nd `  u
) `  0 )  =  P ) )  /\  p  =  ( 2nd `  u ) ) ) )
4223, 41spcimedv 3292 . . . . . . . . . . . . . 14  |-  ( (
<. f ,  p >.  e.  (Walks `  G )  /\  ( # `  ( 1st `  <. f ,  p >. ) )  =  N )  ->  ( (
( 2nd `  <. f ,  p >. ) `  0 )  =  P  ->  E. u
( ( u  e.  (Walks `  G )  /\  ( ( # `  ( 1st `  u ) )  =  N  /\  (
( 2nd `  u
) `  0 )  =  P ) )  /\  p  =  ( 2nd `  u ) ) ) )
4321, 42syl5bi 232 . . . . . . . . . . . . 13  |-  ( (
<. f ,  p >.  e.  (Walks `  G )  /\  ( # `  ( 1st `  <. f ,  p >. ) )  =  N )  ->  ( (
p `  0 )  =  P  ->  E. u
( ( u  e.  (Walks `  G )  /\  ( ( # `  ( 1st `  u ) )  =  N  /\  (
( 2nd `  u
) `  0 )  =  P ) )  /\  p  =  ( 2nd `  u ) ) ) )
4411, 17, 43syl2anb 496 . . . . . . . . . . . 12  |-  ( ( f (Walks `  G
) p  /\  ( # `
 f )  =  N )  ->  (
( p `  0
)  =  P  ->  E. u ( ( u  e.  (Walks `  G
)  /\  ( ( # `
 ( 1st `  u
) )  =  N  /\  ( ( 2nd `  u ) `  0
)  =  P ) )  /\  p  =  ( 2nd `  u
) ) ) )
4544exlimiv 1858 . . . . . . . . . . 11  |-  ( E. f ( f (Walks `  G ) p  /\  ( # `  f )  =  N )  -> 
( ( p ` 
0 )  =  P  ->  E. u ( ( u  e.  (Walks `  G )  /\  (
( # `  ( 1st `  u ) )  =  N  /\  ( ( 2nd `  u ) `
 0 )  =  P ) )  /\  p  =  ( 2nd `  u ) ) ) )
4610, 45syl6bir 244 . . . . . . . . . 10  |-  ( G  e. USPGraph  ->  ( p  e.  ( N WWalksN  G )  ->  ( ( p ` 
0 )  =  P  ->  E. u ( ( u  e.  (Walks `  G )  /\  (
( # `  ( 1st `  u ) )  =  N  /\  ( ( 2nd `  u ) `
 0 )  =  P ) )  /\  p  =  ( 2nd `  u ) ) ) ) )
4746imp32 449 . . . . . . . . 9  |-  ( ( G  e. USPGraph  /\  (
p  e.  ( N WWalksN  G )  /\  (
p `  0 )  =  P ) )  ->  E. u ( ( u  e.  (Walks `  G
)  /\  ( ( # `
 ( 1st `  u
) )  =  N  /\  ( ( 2nd `  u ) `  0
)  =  P ) )  /\  p  =  ( 2nd `  u
) ) )
48 fveq2 6191 . . . . . . . . . . . . . . 15  |-  ( p  =  u  ->  ( 1st `  p )  =  ( 1st `  u
) )
4948fveq2d 6195 . . . . . . . . . . . . . 14  |-  ( p  =  u  ->  ( # `
 ( 1st `  p
) )  =  (
# `  ( 1st `  u ) ) )
5049eqeq1d 2624 . . . . . . . . . . . . 13  |-  ( p  =  u  ->  (
( # `  ( 1st `  p ) )  =  N  <->  ( # `  ( 1st `  u ) )  =  N ) )
51 fveq2 6191 . . . . . . . . . . . . . . 15  |-  ( p  =  u  ->  ( 2nd `  p )  =  ( 2nd `  u
) )
5251fveq1d 6193 . . . . . . . . . . . . . 14  |-  ( p  =  u  ->  (
( 2nd `  p
) `  0 )  =  ( ( 2nd `  u ) `  0
) )
5352eqeq1d 2624 . . . . . . . . . . . . 13  |-  ( p  =  u  ->  (
( ( 2nd `  p
) `  0 )  =  P  <->  ( ( 2nd `  u ) `  0
)  =  P ) )
5450, 53anbi12d 747 . . . . . . . . . . . 12  |-  ( p  =  u  ->  (
( ( # `  ( 1st `  p ) )  =  N  /\  (
( 2nd `  p
) `  0 )  =  P )  <->  ( ( # `
 ( 1st `  u
) )  =  N  /\  ( ( 2nd `  u ) `  0
)  =  P ) ) )
5554elrab 3363 . . . . . . . . . . 11  |-  ( u  e.  { p  e.  (Walks `  G )  |  ( ( # `  ( 1st `  p
) )  =  N  /\  ( ( 2nd `  p ) `  0
)  =  P ) }  <->  ( u  e.  (Walks `  G )  /\  ( ( # `  ( 1st `  u ) )  =  N  /\  (
( 2nd `  u
) `  0 )  =  P ) ) )
5655anbi1i 731 . . . . . . . . . 10  |-  ( ( u  e.  { p  e.  (Walks `  G )  |  ( ( # `  ( 1st `  p
) )  =  N  /\  ( ( 2nd `  p ) `  0
)  =  P ) }  /\  p  =  ( 2nd `  u
) )  <->  ( (
u  e.  (Walks `  G )  /\  (
( # `  ( 1st `  u ) )  =  N  /\  ( ( 2nd `  u ) `
 0 )  =  P ) )  /\  p  =  ( 2nd `  u ) ) )
5756exbii 1774 . . . . . . . . 9  |-  ( E. u ( u  e. 
{ p  e.  (Walks `  G )  |  ( ( # `  ( 1st `  p ) )  =  N  /\  (
( 2nd `  p
) `  0 )  =  P ) }  /\  p  =  ( 2nd `  u ) )  <->  E. u
( ( u  e.  (Walks `  G )  /\  ( ( # `  ( 1st `  u ) )  =  N  /\  (
( 2nd `  u
) `  0 )  =  P ) )  /\  p  =  ( 2nd `  u ) ) )
5847, 57sylibr 224 . . . . . . . 8  |-  ( ( G  e. USPGraph  /\  (
p  e.  ( N WWalksN  G )  /\  (
p `  0 )  =  P ) )  ->  E. u ( u  e. 
{ p  e.  (Walks `  G )  |  ( ( # `  ( 1st `  p ) )  =  N  /\  (
( 2nd `  p
) `  0 )  =  P ) }  /\  p  =  ( 2nd `  u ) ) )
59 df-rex 2918 . . . . . . . 8  |-  ( E. u  e.  { p  e.  (Walks `  G )  |  ( ( # `  ( 1st `  p
) )  =  N  /\  ( ( 2nd `  p ) `  0
)  =  P ) } p  =  ( 2nd `  u )  <->  E. u ( u  e. 
{ p  e.  (Walks `  G )  |  ( ( # `  ( 1st `  p ) )  =  N  /\  (
( 2nd `  p
) `  0 )  =  P ) }  /\  p  =  ( 2nd `  u ) ) )
6058, 59sylibr 224 . . . . . . 7  |-  ( ( G  e. USPGraph  /\  (
p  e.  ( N WWalksN  G )  /\  (
p `  0 )  =  P ) )  ->  E. u  e.  { p  e.  (Walks `  G )  |  ( ( # `  ( 1st `  p
) )  =  N  /\  ( ( 2nd `  p ) `  0
)  =  P ) } p  =  ( 2nd `  u ) )
612rexeqi 3143 . . . . . . 7  |-  ( E. u  e.  T  p  =  ( 2nd `  u
)  <->  E. u  e.  {
p  e.  (Walks `  G )  |  ( ( # `  ( 1st `  p ) )  =  N  /\  (
( 2nd `  p
) `  0 )  =  P ) } p  =  ( 2nd `  u
) )
6260, 61sylibr 224 . . . . . 6  |-  ( ( G  e. USPGraph  /\  (
p  e.  ( N WWalksN  G )  /\  (
p `  0 )  =  P ) )  ->  E. u  e.  T  p  =  ( 2nd `  u ) )
63 fveq2 6191 . . . . . . . . 9  |-  ( t  =  u  ->  ( 2nd `  t )  =  ( 2nd `  u
) )
64 fvex 6201 . . . . . . . . 9  |-  ( 2nd `  u )  e.  _V
6563, 4, 64fvmpt 6282 . . . . . . . 8  |-  ( u  e.  T  ->  ( F `  u )  =  ( 2nd `  u
) )
6665eqeq2d 2632 . . . . . . 7  |-  ( u  e.  T  ->  (
p  =  ( F `
 u )  <->  p  =  ( 2nd `  u ) ) )
6766rexbiia 3040 . . . . . 6  |-  ( E. u  e.  T  p  =  ( F `  u )  <->  E. u  e.  T  p  =  ( 2nd `  u ) )
6862, 67sylibr 224 . . . . 5  |-  ( ( G  e. USPGraph  /\  (
p  e.  ( N WWalksN  G )  /\  (
p `  0 )  =  P ) )  ->  E. u  e.  T  p  =  ( F `  u ) )
699, 68sylan2b 492 . . . 4  |-  ( ( G  e. USPGraph  /\  p  e.  W )  ->  E. u  e.  T  p  =  ( F `  u ) )
7069ralrimiva 2966 . . 3  |-  ( G  e. USPGraph  ->  A. p  e.  W  E. u  e.  T  p  =  ( F `  u ) )
71703ad2ant1 1082 . 2  |-  ( ( G  e. USPGraph  /\  P  e.  V  /\  N  e. 
NN0 )  ->  A. p  e.  W  E. u  e.  T  p  =  ( F `  u ) )
72 dffo3 6374 . 2  |-  ( F : T -onto-> W  <->  ( F : T --> W  /\  A. p  e.  W  E. u  e.  T  p  =  ( F `  u ) ) )
736, 71, 72sylanbrc 698 1  |-  ( ( G  e. USPGraph  /\  P  e.  V  /\  N  e. 
NN0 )  ->  F : T -onto-> W )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483   E.wex 1704    e. wcel 1990   A.wral 2912   E.wrex 2913   {crab 2916   _Vcvv 3200   <.cop 4183   class class class wbr 4653    |-> cmpt 4729   -->wf 5884   -onto->wfo 5886   ` cfv 5888  (class class class)co 6650   1stc1st 7166   2ndc2nd 7167   0cc0 9936   NN0cn0 11292   #chash 13117   UPGraph cupgr 25975   USPGraph cuspgr 26043  Walkscwlks 26492   WWalksN cwwlksn 26718
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-ifp 1013  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-n0 11293  df-xnn0 11364  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466  df-hash 13118  df-word 13299  df-edg 25940  df-uhgr 25953  df-upgr 25977  df-uspgr 26045  df-wlks 26495  df-wwlks 26722  df-wwlksn 26723
This theorem is referenced by:  wlkwwlkbij  26784
  Copyright terms: Public domain W3C validator