MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wwlktovfo Structured version   Visualization version   Unicode version

Theorem wwlktovfo 13701
Description: Lemma 3 for wrd2f1tovbij 13703. (Contributed by Alexander van der Vekens, 27-Jul-2018.)
Hypotheses
Ref Expression
wrd2f1tovbij.d  |-  D  =  { w  e. Word  V  |  ( ( # `  w )  =  2  /\  ( w ` 
0 )  =  P  /\  { ( w `
 0 ) ,  ( w `  1
) }  e.  X
) }
wrd2f1tovbij.r  |-  R  =  { n  e.  V  |  { P ,  n }  e.  X }
wrd2f1tovbij.f  |-  F  =  ( t  e.  D  |->  ( t `  1
) )
Assertion
Ref Expression
wwlktovfo  |-  ( P  e.  V  ->  F : D -onto-> R )
Distinct variable groups:    t, D    P, n, t, w    t, R    n, V, t, w   
n, X, w
Allowed substitution hints:    D( w, n)    R( w, n)    F( w, t, n)    X( t)

Proof of Theorem wwlktovfo
Dummy variables  p  u are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 wrd2f1tovbij.d . . . 4  |-  D  =  { w  e. Word  V  |  ( ( # `  w )  =  2  /\  ( w ` 
0 )  =  P  /\  { ( w `
 0 ) ,  ( w `  1
) }  e.  X
) }
2 wrd2f1tovbij.r . . . 4  |-  R  =  { n  e.  V  |  { P ,  n }  e.  X }
3 wrd2f1tovbij.f . . . 4  |-  F  =  ( t  e.  D  |->  ( t `  1
) )
41, 2, 3wwlktovf 13699 . . 3  |-  F : D
--> R
54a1i 11 . 2  |-  ( P  e.  V  ->  F : D --> R )
6 preq2 4269 . . . . . 6  |-  ( n  =  p  ->  { P ,  n }  =  { P ,  p }
)
76eleq1d 2686 . . . . 5  |-  ( n  =  p  ->  ( { P ,  n }  e.  X  <->  { P ,  p }  e.  X )
)
87, 2elrab2 3366 . . . 4  |-  ( p  e.  R  <->  ( p  e.  V  /\  { P ,  p }  e.  X
) )
9 simpl 473 . . . . . . . . . . 11  |-  ( ( p  e.  V  /\  { P ,  p }  e.  X )  ->  p  e.  V )
109anim2i 593 . . . . . . . . . 10  |-  ( ( P  e.  V  /\  ( p  e.  V  /\  { P ,  p }  e.  X )
)  ->  ( P  e.  V  /\  p  e.  V ) )
11 eqidd 2623 . . . . . . . . . 10  |-  ( ( P  e.  V  /\  ( p  e.  V  /\  { P ,  p }  e.  X )
)  ->  { <. 0 ,  P >. ,  <. 1 ,  p >. }  =  { <. 0 ,  P >. , 
<. 1 ,  p >. } )
12 wrdlen2i 13686 . . . . . . . . . 10  |-  ( ( P  e.  V  /\  p  e.  V )  ->  ( { <. 0 ,  P >. ,  <. 1 ,  p >. }  =  { <. 0 ,  P >. , 
<. 1 ,  p >. }  ->  ( ( { <. 0 ,  P >. ,  <. 1 ,  p >. }  e. Word  V  /\  ( # `  { <. 0 ,  P >. , 
<. 1 ,  p >. } )  =  2 )  /\  ( ( { <. 0 ,  P >. ,  <. 1 ,  p >. } `  0 )  =  P  /\  ( { <. 0 ,  P >. ,  <. 1 ,  p >. } `  1 )  =  p ) ) ) )
1310, 11, 12sylc 65 . . . . . . . . 9  |-  ( ( P  e.  V  /\  ( p  e.  V  /\  { P ,  p }  e.  X )
)  ->  ( ( { <. 0 ,  P >. ,  <. 1 ,  p >. }  e. Word  V  /\  ( # `  { <. 0 ,  P >. , 
<. 1 ,  p >. } )  =  2 )  /\  ( ( { <. 0 ,  P >. ,  <. 1 ,  p >. } `  0 )  =  P  /\  ( { <. 0 ,  P >. ,  <. 1 ,  p >. } `  1 )  =  p ) ) )
14 prex 4909 . . . . . . . . . . 11  |-  { <. 0 ,  P >. , 
<. 1 ,  p >. }  e.  _V
1514a1i 11 . . . . . . . . . 10  |-  ( ( P  e.  V  /\  ( p  e.  V  /\  { P ,  p }  e.  X )
)  ->  { <. 0 ,  P >. ,  <. 1 ,  p >. }  e.  _V )
16 eleq1 2689 . . . . . . . . . . . . . . . . . . . 20  |-  ( {
<. 0 ,  P >. ,  <. 1 ,  p >. }  =  u  -> 
( { <. 0 ,  P >. ,  <. 1 ,  p >. }  e. Word  V  <->  u  e. Word  V ) )
1716biimpd 219 . . . . . . . . . . . . . . . . . . 19  |-  ( {
<. 0 ,  P >. ,  <. 1 ,  p >. }  =  u  -> 
( { <. 0 ,  P >. ,  <. 1 ,  p >. }  e. Word  V  ->  u  e. Word  V ) )
1817adantr 481 . . . . . . . . . . . . . . . . . 18  |-  ( ( { <. 0 ,  P >. ,  <. 1 ,  p >. }  =  u  /\  ( P  e.  V  /\  ( p  e.  V  /\  { P ,  p }  e.  X )
) )  ->  ( { <. 0 ,  P >. ,  <. 1 ,  p >. }  e. Word  V  ->  u  e. Word  V )
)
1918com12 32 . . . . . . . . . . . . . . . . 17  |-  ( {
<. 0 ,  P >. ,  <. 1 ,  p >. }  e. Word  V  -> 
( ( { <. 0 ,  P >. , 
<. 1 ,  p >. }  =  u  /\  ( P  e.  V  /\  ( p  e.  V  /\  { P ,  p }  e.  X )
) )  ->  u  e. Word  V ) )
2019adantr 481 . . . . . . . . . . . . . . . 16  |-  ( ( { <. 0 ,  P >. ,  <. 1 ,  p >. }  e. Word  V  /\  ( # `  { <. 0 ,  P >. , 
<. 1 ,  p >. } )  =  2 )  ->  ( ( { <. 0 ,  P >. ,  <. 1 ,  p >. }  =  u  /\  ( P  e.  V  /\  ( p  e.  V  /\  { P ,  p }  e.  X )
) )  ->  u  e. Word  V ) )
2120adantr 481 . . . . . . . . . . . . . . 15  |-  ( ( ( { <. 0 ,  P >. ,  <. 1 ,  p >. }  e. Word  V  /\  ( # `  { <. 0 ,  P >. , 
<. 1 ,  p >. } )  =  2 )  /\  ( ( { <. 0 ,  P >. ,  <. 1 ,  p >. } `  0 )  =  P  /\  ( { <. 0 ,  P >. ,  <. 1 ,  p >. } `  1 )  =  p ) )  ->  ( ( {
<. 0 ,  P >. ,  <. 1 ,  p >. }  =  u  /\  ( P  e.  V  /\  ( p  e.  V  /\  { P ,  p }  e.  X )
) )  ->  u  e. Word  V ) )
2221impcom 446 . . . . . . . . . . . . . 14  |-  ( ( ( { <. 0 ,  P >. ,  <. 1 ,  p >. }  =  u  /\  ( P  e.  V  /\  ( p  e.  V  /\  { P ,  p }  e.  X ) ) )  /\  ( ( {
<. 0 ,  P >. ,  <. 1 ,  p >. }  e. Word  V  /\  ( # `  { <. 0 ,  P >. , 
<. 1 ,  p >. } )  =  2 )  /\  ( ( { <. 0 ,  P >. ,  <. 1 ,  p >. } `  0 )  =  P  /\  ( { <. 0 ,  P >. ,  <. 1 ,  p >. } `  1 )  =  p ) ) )  ->  u  e. Word  V )
23 fveq2 6191 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( {
<. 0 ,  P >. ,  <. 1 ,  p >. }  =  u  -> 
( # `  { <. 0 ,  P >. , 
<. 1 ,  p >. } )  =  (
# `  u )
)
2423eqeq1d 2624 . . . . . . . . . . . . . . . . . . . . 21  |-  ( {
<. 0 ,  P >. ,  <. 1 ,  p >. }  =  u  -> 
( ( # `  { <. 0 ,  P >. , 
<. 1 ,  p >. } )  =  2  <-> 
( # `  u )  =  2 ) )
2524biimpd 219 . . . . . . . . . . . . . . . . . . . 20  |-  ( {
<. 0 ,  P >. ,  <. 1 ,  p >. }  =  u  -> 
( ( # `  { <. 0 ,  P >. , 
<. 1 ,  p >. } )  =  2  ->  ( # `  u
)  =  2 ) )
2625adantr 481 . . . . . . . . . . . . . . . . . . 19  |-  ( ( { <. 0 ,  P >. ,  <. 1 ,  p >. }  =  u  /\  ( P  e.  V  /\  ( p  e.  V  /\  { P ,  p }  e.  X )
) )  ->  (
( # `  { <. 0 ,  P >. , 
<. 1 ,  p >. } )  =  2  ->  ( # `  u
)  =  2 ) )
2726com12 32 . . . . . . . . . . . . . . . . . 18  |-  ( (
# `  { <. 0 ,  P >. ,  <. 1 ,  p >. } )  =  2  ->  ( ( { <. 0 ,  P >. ,  <. 1 ,  p >. }  =  u  /\  ( P  e.  V  /\  ( p  e.  V  /\  { P ,  p }  e.  X )
) )  ->  ( # `
 u )  =  2 ) )
2827adantl 482 . . . . . . . . . . . . . . . . 17  |-  ( ( { <. 0 ,  P >. ,  <. 1 ,  p >. }  e. Word  V  /\  ( # `  { <. 0 ,  P >. , 
<. 1 ,  p >. } )  =  2 )  ->  ( ( { <. 0 ,  P >. ,  <. 1 ,  p >. }  =  u  /\  ( P  e.  V  /\  ( p  e.  V  /\  { P ,  p }  e.  X )
) )  ->  ( # `
 u )  =  2 ) )
2928adantr 481 . . . . . . . . . . . . . . . 16  |-  ( ( ( { <. 0 ,  P >. ,  <. 1 ,  p >. }  e. Word  V  /\  ( # `  { <. 0 ,  P >. , 
<. 1 ,  p >. } )  =  2 )  /\  ( ( { <. 0 ,  P >. ,  <. 1 ,  p >. } `  0 )  =  P  /\  ( { <. 0 ,  P >. ,  <. 1 ,  p >. } `  1 )  =  p ) )  ->  ( ( {
<. 0 ,  P >. ,  <. 1 ,  p >. }  =  u  /\  ( P  e.  V  /\  ( p  e.  V  /\  { P ,  p }  e.  X )
) )  ->  ( # `
 u )  =  2 ) )
3029impcom 446 . . . . . . . . . . . . . . 15  |-  ( ( ( { <. 0 ,  P >. ,  <. 1 ,  p >. }  =  u  /\  ( P  e.  V  /\  ( p  e.  V  /\  { P ,  p }  e.  X ) ) )  /\  ( ( {
<. 0 ,  P >. ,  <. 1 ,  p >. }  e. Word  V  /\  ( # `  { <. 0 ,  P >. , 
<. 1 ,  p >. } )  =  2 )  /\  ( ( { <. 0 ,  P >. ,  <. 1 ,  p >. } `  0 )  =  P  /\  ( { <. 0 ,  P >. ,  <. 1 ,  p >. } `  1 )  =  p ) ) )  ->  ( # `  u
)  =  2 )
31 fveq1 6190 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( {
<. 0 ,  P >. ,  <. 1 ,  p >. }  =  u  -> 
( { <. 0 ,  P >. ,  <. 1 ,  p >. } `  0
)  =  ( u `
 0 ) )
3231eqeq1d 2624 . . . . . . . . . . . . . . . . . . . . 21  |-  ( {
<. 0 ,  P >. ,  <. 1 ,  p >. }  =  u  -> 
( ( { <. 0 ,  P >. , 
<. 1 ,  p >. } `  0 )  =  P  <->  ( u `  0 )  =  P ) )
3332biimpd 219 . . . . . . . . . . . . . . . . . . . 20  |-  ( {
<. 0 ,  P >. ,  <. 1 ,  p >. }  =  u  -> 
( ( { <. 0 ,  P >. , 
<. 1 ,  p >. } `  0 )  =  P  ->  (
u `  0 )  =  P ) )
3433adantr 481 . . . . . . . . . . . . . . . . . . 19  |-  ( ( { <. 0 ,  P >. ,  <. 1 ,  p >. }  =  u  /\  ( P  e.  V  /\  ( p  e.  V  /\  { P ,  p }  e.  X )
) )  ->  (
( { <. 0 ,  P >. ,  <. 1 ,  p >. } `  0
)  =  P  -> 
( u `  0
)  =  P ) )
3534com12 32 . . . . . . . . . . . . . . . . . 18  |-  ( ( { <. 0 ,  P >. ,  <. 1 ,  p >. } `  0 )  =  P  ->  (
( { <. 0 ,  P >. ,  <. 1 ,  p >. }  =  u  /\  ( P  e.  V  /\  ( p  e.  V  /\  { P ,  p }  e.  X ) ) )  ->  ( u ` 
0 )  =  P ) )
3635adantr 481 . . . . . . . . . . . . . . . . 17  |-  ( ( ( { <. 0 ,  P >. ,  <. 1 ,  p >. } `  0
)  =  P  /\  ( { <. 0 ,  P >. ,  <. 1 ,  p >. } `  1 )  =  p )  -> 
( ( { <. 0 ,  P >. , 
<. 1 ,  p >. }  =  u  /\  ( P  e.  V  /\  ( p  e.  V  /\  { P ,  p }  e.  X )
) )  ->  (
u `  0 )  =  P ) )
3736adantl 482 . . . . . . . . . . . . . . . 16  |-  ( ( ( { <. 0 ,  P >. ,  <. 1 ,  p >. }  e. Word  V  /\  ( # `  { <. 0 ,  P >. , 
<. 1 ,  p >. } )  =  2 )  /\  ( ( { <. 0 ,  P >. ,  <. 1 ,  p >. } `  0 )  =  P  /\  ( { <. 0 ,  P >. ,  <. 1 ,  p >. } `  1 )  =  p ) )  ->  ( ( {
<. 0 ,  P >. ,  <. 1 ,  p >. }  =  u  /\  ( P  e.  V  /\  ( p  e.  V  /\  { P ,  p }  e.  X )
) )  ->  (
u `  0 )  =  P ) )
3837impcom 446 . . . . . . . . . . . . . . 15  |-  ( ( ( { <. 0 ,  P >. ,  <. 1 ,  p >. }  =  u  /\  ( P  e.  V  /\  ( p  e.  V  /\  { P ,  p }  e.  X ) ) )  /\  ( ( {
<. 0 ,  P >. ,  <. 1 ,  p >. }  e. Word  V  /\  ( # `  { <. 0 ,  P >. , 
<. 1 ,  p >. } )  =  2 )  /\  ( ( { <. 0 ,  P >. ,  <. 1 ,  p >. } `  0 )  =  P  /\  ( { <. 0 ,  P >. ,  <. 1 ,  p >. } `  1 )  =  p ) ) )  ->  ( u `  0 )  =  P )
39 fveq1 6190 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( {
<. 0 ,  P >. ,  <. 1 ,  p >. }  =  u  -> 
( { <. 0 ,  P >. ,  <. 1 ,  p >. } `  1
)  =  ( u `
 1 ) )
4039eqeq1d 2624 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( {
<. 0 ,  P >. ,  <. 1 ,  p >. }  =  u  -> 
( ( { <. 0 ,  P >. , 
<. 1 ,  p >. } `  1 )  =  p  <->  ( u `  1 )  =  p ) )
4132, 40anbi12d 747 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( {
<. 0 ,  P >. ,  <. 1 ,  p >. }  =  u  -> 
( ( ( {
<. 0 ,  P >. ,  <. 1 ,  p >. } `  0 )  =  P  /\  ( { <. 0 ,  P >. ,  <. 1 ,  p >. } `  1 )  =  p )  <->  ( (
u `  0 )  =  P  /\  (
u `  1 )  =  p ) ) )
42 preq12 4270 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( u `  0
)  =  P  /\  ( u `  1
)  =  p )  ->  { ( u `
 0 ) ,  ( u `  1
) }  =  { P ,  p }
)
4342eqcomd 2628 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( u `  0
)  =  P  /\  ( u `  1
)  =  p )  ->  { P ,  p }  =  {
( u `  0
) ,  ( u `
 1 ) } )
4443eleq1d 2686 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( u `  0
)  =  P  /\  ( u `  1
)  =  p )  ->  ( { P ,  p }  e.  X  <->  { ( u `  0
) ,  ( u `
 1 ) }  e.  X ) )
4544biimpd 219 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( u `  0
)  =  P  /\  ( u `  1
)  =  p )  ->  ( { P ,  p }  e.  X  ->  { ( u ` 
0 ) ,  ( u `  1 ) }  e.  X ) )
4641, 45syl6bi 243 . . . . . . . . . . . . . . . . . . . . 21  |-  ( {
<. 0 ,  P >. ,  <. 1 ,  p >. }  =  u  -> 
( ( ( {
<. 0 ,  P >. ,  <. 1 ,  p >. } `  0 )  =  P  /\  ( { <. 0 ,  P >. ,  <. 1 ,  p >. } `  1 )  =  p )  -> 
( { P ,  p }  e.  X  ->  { ( u ` 
0 ) ,  ( u `  1 ) }  e.  X ) ) )
4746com12 32 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( { <. 0 ,  P >. ,  <. 1 ,  p >. } `  0
)  =  P  /\  ( { <. 0 ,  P >. ,  <. 1 ,  p >. } `  1 )  =  p )  -> 
( { <. 0 ,  P >. ,  <. 1 ,  p >. }  =  u  ->  ( { P ,  p }  e.  X  ->  { ( u ` 
0 ) ,  ( u `  1 ) }  e.  X ) ) )
4847adantl 482 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( { <. 0 ,  P >. ,  <. 1 ,  p >. }  e. Word  V  /\  ( # `  { <. 0 ,  P >. , 
<. 1 ,  p >. } )  =  2 )  /\  ( ( { <. 0 ,  P >. ,  <. 1 ,  p >. } `  0 )  =  P  /\  ( { <. 0 ,  P >. ,  <. 1 ,  p >. } `  1 )  =  p ) )  ->  ( { <. 0 ,  P >. , 
<. 1 ,  p >. }  =  u  -> 
( { P ,  p }  e.  X  ->  { ( u ` 
0 ) ,  ( u `  1 ) }  e.  X ) ) )
4948com13 88 . . . . . . . . . . . . . . . . . 18  |-  ( { P ,  p }  e.  X  ->  ( {
<. 0 ,  P >. ,  <. 1 ,  p >. }  =  u  -> 
( ( ( {
<. 0 ,  P >. ,  <. 1 ,  p >. }  e. Word  V  /\  ( # `  { <. 0 ,  P >. , 
<. 1 ,  p >. } )  =  2 )  /\  ( ( { <. 0 ,  P >. ,  <. 1 ,  p >. } `  0 )  =  P  /\  ( { <. 0 ,  P >. ,  <. 1 ,  p >. } `  1 )  =  p ) )  ->  { ( u `
 0 ) ,  ( u `  1
) }  e.  X
) ) )
5049ad2antll 765 . . . . . . . . . . . . . . . . 17  |-  ( ( P  e.  V  /\  ( p  e.  V  /\  { P ,  p }  e.  X )
)  ->  ( { <. 0 ,  P >. , 
<. 1 ,  p >. }  =  u  -> 
( ( ( {
<. 0 ,  P >. ,  <. 1 ,  p >. }  e. Word  V  /\  ( # `  { <. 0 ,  P >. , 
<. 1 ,  p >. } )  =  2 )  /\  ( ( { <. 0 ,  P >. ,  <. 1 ,  p >. } `  0 )  =  P  /\  ( { <. 0 ,  P >. ,  <. 1 ,  p >. } `  1 )  =  p ) )  ->  { ( u `
 0 ) ,  ( u `  1
) }  e.  X
) ) )
5150impcom 446 . . . . . . . . . . . . . . . 16  |-  ( ( { <. 0 ,  P >. ,  <. 1 ,  p >. }  =  u  /\  ( P  e.  V  /\  ( p  e.  V  /\  { P ,  p }  e.  X )
) )  ->  (
( ( { <. 0 ,  P >. , 
<. 1 ,  p >. }  e. Word  V  /\  ( # `  { <. 0 ,  P >. , 
<. 1 ,  p >. } )  =  2 )  /\  ( ( { <. 0 ,  P >. ,  <. 1 ,  p >. } `  0 )  =  P  /\  ( { <. 0 ,  P >. ,  <. 1 ,  p >. } `  1 )  =  p ) )  ->  { ( u `
 0 ) ,  ( u `  1
) }  e.  X
) )
5251imp 445 . . . . . . . . . . . . . . 15  |-  ( ( ( { <. 0 ,  P >. ,  <. 1 ,  p >. }  =  u  /\  ( P  e.  V  /\  ( p  e.  V  /\  { P ,  p }  e.  X ) ) )  /\  ( ( {
<. 0 ,  P >. ,  <. 1 ,  p >. }  e. Word  V  /\  ( # `  { <. 0 ,  P >. , 
<. 1 ,  p >. } )  =  2 )  /\  ( ( { <. 0 ,  P >. ,  <. 1 ,  p >. } `  0 )  =  P  /\  ( { <. 0 ,  P >. ,  <. 1 ,  p >. } `  1 )  =  p ) ) )  ->  { (
u `  0 ) ,  ( u ` 
1 ) }  e.  X )
5330, 38, 523jca 1242 . . . . . . . . . . . . . 14  |-  ( ( ( { <. 0 ,  P >. ,  <. 1 ,  p >. }  =  u  /\  ( P  e.  V  /\  ( p  e.  V  /\  { P ,  p }  e.  X ) ) )  /\  ( ( {
<. 0 ,  P >. ,  <. 1 ,  p >. }  e. Word  V  /\  ( # `  { <. 0 ,  P >. , 
<. 1 ,  p >. } )  =  2 )  /\  ( ( { <. 0 ,  P >. ,  <. 1 ,  p >. } `  0 )  =  P  /\  ( { <. 0 ,  P >. ,  <. 1 ,  p >. } `  1 )  =  p ) ) )  ->  ( ( # `
 u )  =  2  /\  ( u `
 0 )  =  P  /\  { ( u `  0 ) ,  ( u ` 
1 ) }  e.  X ) )
54 eqcom 2629 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( { <. 0 ,  P >. ,  <. 1 ,  p >. } `  1 )  =  p  <->  p  =  ( { <. 0 ,  P >. ,  <. 1 ,  p >. } `  1 ) )
5539eqeq2d 2632 . . . . . . . . . . . . . . . . . . . . 21  |-  ( {
<. 0 ,  P >. ,  <. 1 ,  p >. }  =  u  -> 
( p  =  ( { <. 0 ,  P >. ,  <. 1 ,  p >. } `  1 )  <-> 
p  =  ( u `
 1 ) ) )
5655biimpd 219 . . . . . . . . . . . . . . . . . . . 20  |-  ( {
<. 0 ,  P >. ,  <. 1 ,  p >. }  =  u  -> 
( p  =  ( { <. 0 ,  P >. ,  <. 1 ,  p >. } `  1 )  ->  p  =  ( u `  1 ) ) )
5754, 56syl5bi 232 . . . . . . . . . . . . . . . . . . 19  |-  ( {
<. 0 ,  P >. ,  <. 1 ,  p >. }  =  u  -> 
( ( { <. 0 ,  P >. , 
<. 1 ,  p >. } `  1 )  =  p  ->  p  =  ( u ` 
1 ) ) )
5857com12 32 . . . . . . . . . . . . . . . . . 18  |-  ( ( { <. 0 ,  P >. ,  <. 1 ,  p >. } `  1 )  =  p  ->  ( { <. 0 ,  P >. ,  <. 1 ,  p >. }  =  u  ->  p  =  ( u `  1 ) ) )
5958ad2antll 765 . . . . . . . . . . . . . . . . 17  |-  ( ( ( { <. 0 ,  P >. ,  <. 1 ,  p >. }  e. Word  V  /\  ( # `  { <. 0 ,  P >. , 
<. 1 ,  p >. } )  =  2 )  /\  ( ( { <. 0 ,  P >. ,  <. 1 ,  p >. } `  0 )  =  P  /\  ( { <. 0 ,  P >. ,  <. 1 ,  p >. } `  1 )  =  p ) )  ->  ( { <. 0 ,  P >. , 
<. 1 ,  p >. }  =  u  ->  p  =  ( u `  1 ) ) )
6059com12 32 . . . . . . . . . . . . . . . 16  |-  ( {
<. 0 ,  P >. ,  <. 1 ,  p >. }  =  u  -> 
( ( ( {
<. 0 ,  P >. ,  <. 1 ,  p >. }  e. Word  V  /\  ( # `  { <. 0 ,  P >. , 
<. 1 ,  p >. } )  =  2 )  /\  ( ( { <. 0 ,  P >. ,  <. 1 ,  p >. } `  0 )  =  P  /\  ( { <. 0 ,  P >. ,  <. 1 ,  p >. } `  1 )  =  p ) )  ->  p  =  ( u `  1 ) ) )
6160adantr 481 . . . . . . . . . . . . . . 15  |-  ( ( { <. 0 ,  P >. ,  <. 1 ,  p >. }  =  u  /\  ( P  e.  V  /\  ( p  e.  V  /\  { P ,  p }  e.  X )
) )  ->  (
( ( { <. 0 ,  P >. , 
<. 1 ,  p >. }  e. Word  V  /\  ( # `  { <. 0 ,  P >. , 
<. 1 ,  p >. } )  =  2 )  /\  ( ( { <. 0 ,  P >. ,  <. 1 ,  p >. } `  0 )  =  P  /\  ( { <. 0 ,  P >. ,  <. 1 ,  p >. } `  1 )  =  p ) )  ->  p  =  ( u `  1 ) ) )
6261imp 445 . . . . . . . . . . . . . 14  |-  ( ( ( { <. 0 ,  P >. ,  <. 1 ,  p >. }  =  u  /\  ( P  e.  V  /\  ( p  e.  V  /\  { P ,  p }  e.  X ) ) )  /\  ( ( {
<. 0 ,  P >. ,  <. 1 ,  p >. }  e. Word  V  /\  ( # `  { <. 0 ,  P >. , 
<. 1 ,  p >. } )  =  2 )  /\  ( ( { <. 0 ,  P >. ,  <. 1 ,  p >. } `  0 )  =  P  /\  ( { <. 0 ,  P >. ,  <. 1 ,  p >. } `  1 )  =  p ) ) )  ->  p  =  ( u `  1
) )
6322, 53, 62jca31 557 . . . . . . . . . . . . 13  |-  ( ( ( { <. 0 ,  P >. ,  <. 1 ,  p >. }  =  u  /\  ( P  e.  V  /\  ( p  e.  V  /\  { P ,  p }  e.  X ) ) )  /\  ( ( {
<. 0 ,  P >. ,  <. 1 ,  p >. }  e. Word  V  /\  ( # `  { <. 0 ,  P >. , 
<. 1 ,  p >. } )  =  2 )  /\  ( ( { <. 0 ,  P >. ,  <. 1 ,  p >. } `  0 )  =  P  /\  ( { <. 0 ,  P >. ,  <. 1 ,  p >. } `  1 )  =  p ) ) )  ->  ( (
u  e. Word  V  /\  ( ( # `  u
)  =  2  /\  ( u `  0
)  =  P  /\  { ( u `  0
) ,  ( u `
 1 ) }  e.  X ) )  /\  p  =  ( u `  1 ) ) )
6463exp31 630 . . . . . . . . . . . 12  |-  ( {
<. 0 ,  P >. ,  <. 1 ,  p >. }  =  u  -> 
( ( P  e.  V  /\  ( p  e.  V  /\  { P ,  p }  e.  X ) )  -> 
( ( ( {
<. 0 ,  P >. ,  <. 1 ,  p >. }  e. Word  V  /\  ( # `  { <. 0 ,  P >. , 
<. 1 ,  p >. } )  =  2 )  /\  ( ( { <. 0 ,  P >. ,  <. 1 ,  p >. } `  0 )  =  P  /\  ( { <. 0 ,  P >. ,  <. 1 ,  p >. } `  1 )  =  p ) )  ->  ( ( u  e. Word  V  /\  (
( # `  u )  =  2  /\  (
u `  0 )  =  P  /\  { ( u `  0 ) ,  ( u ` 
1 ) }  e.  X ) )  /\  p  =  ( u `  1 ) ) ) ) )
6564eqcoms 2630 . . . . . . . . . . 11  |-  ( u  =  { <. 0 ,  P >. ,  <. 1 ,  p >. }  ->  (
( P  e.  V  /\  ( p  e.  V  /\  { P ,  p }  e.  X )
)  ->  ( (
( { <. 0 ,  P >. ,  <. 1 ,  p >. }  e. Word  V  /\  ( # `  { <. 0 ,  P >. , 
<. 1 ,  p >. } )  =  2 )  /\  ( ( { <. 0 ,  P >. ,  <. 1 ,  p >. } `  0 )  =  P  /\  ( { <. 0 ,  P >. ,  <. 1 ,  p >. } `  1 )  =  p ) )  ->  ( ( u  e. Word  V  /\  (
( # `  u )  =  2  /\  (
u `  0 )  =  P  /\  { ( u `  0 ) ,  ( u ` 
1 ) }  e.  X ) )  /\  p  =  ( u `  1 ) ) ) ) )
6665impcom 446 . . . . . . . . . 10  |-  ( ( ( P  e.  V  /\  ( p  e.  V  /\  { P ,  p }  e.  X )
)  /\  u  =  { <. 0 ,  P >. ,  <. 1 ,  p >. } )  ->  (
( ( { <. 0 ,  P >. , 
<. 1 ,  p >. }  e. Word  V  /\  ( # `  { <. 0 ,  P >. , 
<. 1 ,  p >. } )  =  2 )  /\  ( ( { <. 0 ,  P >. ,  <. 1 ,  p >. } `  0 )  =  P  /\  ( { <. 0 ,  P >. ,  <. 1 ,  p >. } `  1 )  =  p ) )  ->  ( ( u  e. Word  V  /\  (
( # `  u )  =  2  /\  (
u `  0 )  =  P  /\  { ( u `  0 ) ,  ( u ` 
1 ) }  e.  X ) )  /\  p  =  ( u `  1 ) ) ) )
6715, 66spcimedv 3292 . . . . . . . . 9  |-  ( ( P  e.  V  /\  ( p  e.  V  /\  { P ,  p }  e.  X )
)  ->  ( (
( { <. 0 ,  P >. ,  <. 1 ,  p >. }  e. Word  V  /\  ( # `  { <. 0 ,  P >. , 
<. 1 ,  p >. } )  =  2 )  /\  ( ( { <. 0 ,  P >. ,  <. 1 ,  p >. } `  0 )  =  P  /\  ( { <. 0 ,  P >. ,  <. 1 ,  p >. } `  1 )  =  p ) )  ->  E. u ( ( u  e. Word  V  /\  ( ( # `  u
)  =  2  /\  ( u `  0
)  =  P  /\  { ( u `  0
) ,  ( u `
 1 ) }  e.  X ) )  /\  p  =  ( u `  1 ) ) ) )
6813, 67mpd 15 . . . . . . . 8  |-  ( ( P  e.  V  /\  ( p  e.  V  /\  { P ,  p }  e.  X )
)  ->  E. u
( ( u  e. Word  V  /\  ( ( # `  u )  =  2  /\  ( u ` 
0 )  =  P  /\  { ( u `
 0 ) ,  ( u `  1
) }  e.  X
) )  /\  p  =  ( u ` 
1 ) ) )
69 fveq2 6191 . . . . . . . . . . . . 13  |-  ( w  =  u  ->  ( # `
 w )  =  ( # `  u
) )
7069eqeq1d 2624 . . . . . . . . . . . 12  |-  ( w  =  u  ->  (
( # `  w )  =  2  <->  ( # `  u
)  =  2 ) )
71 fveq1 6190 . . . . . . . . . . . . 13  |-  ( w  =  u  ->  (
w `  0 )  =  ( u ` 
0 ) )
7271eqeq1d 2624 . . . . . . . . . . . 12  |-  ( w  =  u  ->  (
( w `  0
)  =  P  <->  ( u `  0 )  =  P ) )
73 fveq1 6190 . . . . . . . . . . . . . 14  |-  ( w  =  u  ->  (
w `  1 )  =  ( u ` 
1 ) )
7471, 73preq12d 4276 . . . . . . . . . . . . 13  |-  ( w  =  u  ->  { ( w `  0 ) ,  ( w ` 
1 ) }  =  { ( u ` 
0 ) ,  ( u `  1 ) } )
7574eleq1d 2686 . . . . . . . . . . . 12  |-  ( w  =  u  ->  ( { ( w ` 
0 ) ,  ( w `  1 ) }  e.  X  <->  { (
u `  0 ) ,  ( u ` 
1 ) }  e.  X ) )
7670, 72, 753anbi123d 1399 . . . . . . . . . . 11  |-  ( w  =  u  ->  (
( ( # `  w
)  =  2  /\  ( w `  0
)  =  P  /\  { ( w `  0
) ,  ( w `
 1 ) }  e.  X )  <->  ( ( # `
 u )  =  2  /\  ( u `
 0 )  =  P  /\  { ( u `  0 ) ,  ( u ` 
1 ) }  e.  X ) ) )
7776elrab 3363 . . . . . . . . . 10  |-  ( u  e.  { w  e. Word  V  |  ( ( # `
 w )  =  2  /\  ( w `
 0 )  =  P  /\  { ( w `  0 ) ,  ( w ` 
1 ) }  e.  X ) }  <->  ( u  e. Word  V  /\  ( (
# `  u )  =  2  /\  (
u `  0 )  =  P  /\  { ( u `  0 ) ,  ( u ` 
1 ) }  e.  X ) ) )
7877anbi1i 731 . . . . . . . . 9  |-  ( ( u  e.  { w  e. Word  V  |  ( (
# `  w )  =  2  /\  (
w `  0 )  =  P  /\  { ( w `  0 ) ,  ( w ` 
1 ) }  e.  X ) }  /\  p  =  ( u `  1 ) )  <-> 
( ( u  e. Word  V  /\  ( ( # `  u )  =  2  /\  ( u ` 
0 )  =  P  /\  { ( u `
 0 ) ,  ( u `  1
) }  e.  X
) )  /\  p  =  ( u ` 
1 ) ) )
7978exbii 1774 . . . . . . . 8  |-  ( E. u ( u  e. 
{ w  e. Word  V  |  ( ( # `  w )  =  2  /\  ( w ` 
0 )  =  P  /\  { ( w `
 0 ) ,  ( w `  1
) }  e.  X
) }  /\  p  =  ( u ` 
1 ) )  <->  E. u
( ( u  e. Word  V  /\  ( ( # `  u )  =  2  /\  ( u ` 
0 )  =  P  /\  { ( u `
 0 ) ,  ( u `  1
) }  e.  X
) )  /\  p  =  ( u ` 
1 ) ) )
8068, 79sylibr 224 . . . . . . 7  |-  ( ( P  e.  V  /\  ( p  e.  V  /\  { P ,  p }  e.  X )
)  ->  E. u
( u  e.  {
w  e. Word  V  | 
( ( # `  w
)  =  2  /\  ( w `  0
)  =  P  /\  { ( w `  0
) ,  ( w `
 1 ) }  e.  X ) }  /\  p  =  ( u `  1 ) ) )
81 df-rex 2918 . . . . . . 7  |-  ( E. u  e.  { w  e. Word  V  |  ( (
# `  w )  =  2  /\  (
w `  0 )  =  P  /\  { ( w `  0 ) ,  ( w ` 
1 ) }  e.  X ) } p  =  ( u ` 
1 )  <->  E. u
( u  e.  {
w  e. Word  V  | 
( ( # `  w
)  =  2  /\  ( w `  0
)  =  P  /\  { ( w `  0
) ,  ( w `
 1 ) }  e.  X ) }  /\  p  =  ( u `  1 ) ) )
8280, 81sylibr 224 . . . . . 6  |-  ( ( P  e.  V  /\  ( p  e.  V  /\  { P ,  p }  e.  X )
)  ->  E. u  e.  { w  e. Word  V  |  ( ( # `  w )  =  2  /\  ( w ` 
0 )  =  P  /\  { ( w `
 0 ) ,  ( w `  1
) }  e.  X
) } p  =  ( u `  1
) )
831rexeqi 3143 . . . . . 6  |-  ( E. u  e.  D  p  =  ( u ` 
1 )  <->  E. u  e.  { w  e. Word  V  |  ( ( # `  w )  =  2  /\  ( w ` 
0 )  =  P  /\  { ( w `
 0 ) ,  ( w `  1
) }  e.  X
) } p  =  ( u `  1
) )
8482, 83sylibr 224 . . . . 5  |-  ( ( P  e.  V  /\  ( p  e.  V  /\  { P ,  p }  e.  X )
)  ->  E. u  e.  D  p  =  ( u `  1
) )
85 fveq1 6190 . . . . . . . 8  |-  ( t  =  u  ->  (
t `  1 )  =  ( u ` 
1 ) )
86 fvex 6201 . . . . . . . 8  |-  ( u `
 1 )  e. 
_V
8785, 3, 86fvmpt 6282 . . . . . . 7  |-  ( u  e.  D  ->  ( F `  u )  =  ( u ` 
1 ) )
8887eqeq2d 2632 . . . . . 6  |-  ( u  e.  D  ->  (
p  =  ( F `
 u )  <->  p  =  ( u `  1
) ) )
8988rexbiia 3040 . . . . 5  |-  ( E. u  e.  D  p  =  ( F `  u )  <->  E. u  e.  D  p  =  ( u `  1
) )
9084, 89sylibr 224 . . . 4  |-  ( ( P  e.  V  /\  ( p  e.  V  /\  { P ,  p }  e.  X )
)  ->  E. u  e.  D  p  =  ( F `  u ) )
918, 90sylan2b 492 . . 3  |-  ( ( P  e.  V  /\  p  e.  R )  ->  E. u  e.  D  p  =  ( F `  u ) )
9291ralrimiva 2966 . 2  |-  ( P  e.  V  ->  A. p  e.  R  E. u  e.  D  p  =  ( F `  u ) )
93 dffo3 6374 . 2  |-  ( F : D -onto-> R  <->  ( F : D --> R  /\  A. p  e.  R  E. u  e.  D  p  =  ( F `  u ) ) )
945, 92, 93sylanbrc 698 1  |-  ( P  e.  V  ->  F : D -onto-> R )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483   E.wex 1704    e. wcel 1990   A.wral 2912   E.wrex 2913   {crab 2916   _Vcvv 3200   {cpr 4179   <.cop 4183    |-> cmpt 4729   -->wf 5884   -onto->wfo 5886   ` cfv 5888   0cc0 9936   1c1 9937   2c2 11070   #chash 13117  Word cword 13291
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466  df-hash 13118  df-word 13299
This theorem is referenced by:  wwlktovf1o  13702
  Copyright terms: Public domain W3C validator