MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  smuval2 Structured version   Visualization version   GIF version

Theorem smuval2 15204
Description: The partial sum sequence stabilizes at 𝑁 after the 𝑁 + 1-th element of the sequence; this stable value is the value of the sequence multiplication. (Contributed by Mario Carneiro, 9-Sep-2016.)
Hypotheses
Ref Expression
smuval.a (𝜑𝐴 ⊆ ℕ0)
smuval.b (𝜑𝐵 ⊆ ℕ0)
smuval.p 𝑃 = seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚𝐴 ∧ (𝑛𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))
smuval.n (𝜑𝑁 ∈ ℕ0)
smuval2.m (𝜑𝑀 ∈ (ℤ‘(𝑁 + 1)))
Assertion
Ref Expression
smuval2 (𝜑 → (𝑁 ∈ (𝐴 smul 𝐵) ↔ 𝑁 ∈ (𝑃𝑀)))
Distinct variable groups:   𝑚,𝑛,𝑝,𝐴   𝑛,𝑁   𝜑,𝑛   𝐵,𝑚,𝑛,𝑝
Allowed substitution hints:   𝜑(𝑚,𝑝)   𝑃(𝑚,𝑛,𝑝)   𝑀(𝑚,𝑛,𝑝)   𝑁(𝑚,𝑝)

Proof of Theorem smuval2
Dummy variables 𝑘 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 smuval2.m . 2 (𝜑𝑀 ∈ (ℤ‘(𝑁 + 1)))
2 fveq2 6191 . . . . . 6 (𝑥 = (𝑁 + 1) → (𝑃𝑥) = (𝑃‘(𝑁 + 1)))
32eleq2d 2687 . . . . 5 (𝑥 = (𝑁 + 1) → (𝑁 ∈ (𝑃𝑥) ↔ 𝑁 ∈ (𝑃‘(𝑁 + 1))))
43bibi2d 332 . . . 4 (𝑥 = (𝑁 + 1) → ((𝑁 ∈ (𝐴 smul 𝐵) ↔ 𝑁 ∈ (𝑃𝑥)) ↔ (𝑁 ∈ (𝐴 smul 𝐵) ↔ 𝑁 ∈ (𝑃‘(𝑁 + 1)))))
54imbi2d 330 . . 3 (𝑥 = (𝑁 + 1) → ((𝜑 → (𝑁 ∈ (𝐴 smul 𝐵) ↔ 𝑁 ∈ (𝑃𝑥))) ↔ (𝜑 → (𝑁 ∈ (𝐴 smul 𝐵) ↔ 𝑁 ∈ (𝑃‘(𝑁 + 1))))))
6 fveq2 6191 . . . . . 6 (𝑥 = 𝑘 → (𝑃𝑥) = (𝑃𝑘))
76eleq2d 2687 . . . . 5 (𝑥 = 𝑘 → (𝑁 ∈ (𝑃𝑥) ↔ 𝑁 ∈ (𝑃𝑘)))
87bibi2d 332 . . . 4 (𝑥 = 𝑘 → ((𝑁 ∈ (𝐴 smul 𝐵) ↔ 𝑁 ∈ (𝑃𝑥)) ↔ (𝑁 ∈ (𝐴 smul 𝐵) ↔ 𝑁 ∈ (𝑃𝑘))))
98imbi2d 330 . . 3 (𝑥 = 𝑘 → ((𝜑 → (𝑁 ∈ (𝐴 smul 𝐵) ↔ 𝑁 ∈ (𝑃𝑥))) ↔ (𝜑 → (𝑁 ∈ (𝐴 smul 𝐵) ↔ 𝑁 ∈ (𝑃𝑘)))))
10 fveq2 6191 . . . . . 6 (𝑥 = (𝑘 + 1) → (𝑃𝑥) = (𝑃‘(𝑘 + 1)))
1110eleq2d 2687 . . . . 5 (𝑥 = (𝑘 + 1) → (𝑁 ∈ (𝑃𝑥) ↔ 𝑁 ∈ (𝑃‘(𝑘 + 1))))
1211bibi2d 332 . . . 4 (𝑥 = (𝑘 + 1) → ((𝑁 ∈ (𝐴 smul 𝐵) ↔ 𝑁 ∈ (𝑃𝑥)) ↔ (𝑁 ∈ (𝐴 smul 𝐵) ↔ 𝑁 ∈ (𝑃‘(𝑘 + 1)))))
1312imbi2d 330 . . 3 (𝑥 = (𝑘 + 1) → ((𝜑 → (𝑁 ∈ (𝐴 smul 𝐵) ↔ 𝑁 ∈ (𝑃𝑥))) ↔ (𝜑 → (𝑁 ∈ (𝐴 smul 𝐵) ↔ 𝑁 ∈ (𝑃‘(𝑘 + 1))))))
14 fveq2 6191 . . . . . 6 (𝑥 = 𝑀 → (𝑃𝑥) = (𝑃𝑀))
1514eleq2d 2687 . . . . 5 (𝑥 = 𝑀 → (𝑁 ∈ (𝑃𝑥) ↔ 𝑁 ∈ (𝑃𝑀)))
1615bibi2d 332 . . . 4 (𝑥 = 𝑀 → ((𝑁 ∈ (𝐴 smul 𝐵) ↔ 𝑁 ∈ (𝑃𝑥)) ↔ (𝑁 ∈ (𝐴 smul 𝐵) ↔ 𝑁 ∈ (𝑃𝑀))))
1716imbi2d 330 . . 3 (𝑥 = 𝑀 → ((𝜑 → (𝑁 ∈ (𝐴 smul 𝐵) ↔ 𝑁 ∈ (𝑃𝑥))) ↔ (𝜑 → (𝑁 ∈ (𝐴 smul 𝐵) ↔ 𝑁 ∈ (𝑃𝑀)))))
18 smuval.a . . . . 5 (𝜑𝐴 ⊆ ℕ0)
19 smuval.b . . . . 5 (𝜑𝐵 ⊆ ℕ0)
20 smuval.p . . . . 5 𝑃 = seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚𝐴 ∧ (𝑛𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))
21 smuval.n . . . . 5 (𝜑𝑁 ∈ ℕ0)
2218, 19, 20, 21smuval 15203 . . . 4 (𝜑 → (𝑁 ∈ (𝐴 smul 𝐵) ↔ 𝑁 ∈ (𝑃‘(𝑁 + 1))))
2322a1i 11 . . 3 ((𝑁 + 1) ∈ ℤ → (𝜑 → (𝑁 ∈ (𝐴 smul 𝐵) ↔ 𝑁 ∈ (𝑃‘(𝑁 + 1)))))
2418adantr 481 . . . . . . . . . 10 ((𝜑𝑘 ∈ (ℤ‘(𝑁 + 1))) → 𝐴 ⊆ ℕ0)
2519adantr 481 . . . . . . . . . 10 ((𝜑𝑘 ∈ (ℤ‘(𝑁 + 1))) → 𝐵 ⊆ ℕ0)
26 peano2nn0 11333 . . . . . . . . . . . 12 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ0)
2721, 26syl 17 . . . . . . . . . . 11 (𝜑 → (𝑁 + 1) ∈ ℕ0)
28 eluznn0 11757 . . . . . . . . . . 11 (((𝑁 + 1) ∈ ℕ0𝑘 ∈ (ℤ‘(𝑁 + 1))) → 𝑘 ∈ ℕ0)
2927, 28sylan 488 . . . . . . . . . 10 ((𝜑𝑘 ∈ (ℤ‘(𝑁 + 1))) → 𝑘 ∈ ℕ0)
3024, 25, 20, 29smupp1 15202 . . . . . . . . 9 ((𝜑𝑘 ∈ (ℤ‘(𝑁 + 1))) → (𝑃‘(𝑘 + 1)) = ((𝑃𝑘) sadd {𝑛 ∈ ℕ0 ∣ (𝑘𝐴 ∧ (𝑛𝑘) ∈ 𝐵)}))
3130eleq2d 2687 . . . . . . . 8 ((𝜑𝑘 ∈ (ℤ‘(𝑁 + 1))) → (𝑁 ∈ (𝑃‘(𝑘 + 1)) ↔ 𝑁 ∈ ((𝑃𝑘) sadd {𝑛 ∈ ℕ0 ∣ (𝑘𝐴 ∧ (𝑛𝑘) ∈ 𝐵)})))
3224, 25, 20smupf 15200 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ (ℤ‘(𝑁 + 1))) → 𝑃:ℕ0⟶𝒫 ℕ0)
3332, 29ffvelrnd 6360 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ (ℤ‘(𝑁 + 1))) → (𝑃𝑘) ∈ 𝒫 ℕ0)
3433elpwid 4170 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ (ℤ‘(𝑁 + 1))) → (𝑃𝑘) ⊆ ℕ0)
35 ssrab2 3687 . . . . . . . . . . . . . 14 {𝑛 ∈ ℕ0 ∣ (𝑘𝐴 ∧ (𝑛𝑘) ∈ 𝐵)} ⊆ ℕ0
3635a1i 11 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ (ℤ‘(𝑁 + 1))) → {𝑛 ∈ ℕ0 ∣ (𝑘𝐴 ∧ (𝑛𝑘) ∈ 𝐵)} ⊆ ℕ0)
3727adantr 481 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ (ℤ‘(𝑁 + 1))) → (𝑁 + 1) ∈ ℕ0)
3834, 36, 37sadeq 15194 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ (ℤ‘(𝑁 + 1))) → (((𝑃𝑘) sadd {𝑛 ∈ ℕ0 ∣ (𝑘𝐴 ∧ (𝑛𝑘) ∈ 𝐵)}) ∩ (0..^(𝑁 + 1))) = ((((𝑃𝑘) ∩ (0..^(𝑁 + 1))) sadd ({𝑛 ∈ ℕ0 ∣ (𝑘𝐴 ∧ (𝑛𝑘) ∈ 𝐵)} ∩ (0..^(𝑁 + 1)))) ∩ (0..^(𝑁 + 1))))
39 inrab2 3900 . . . . . . . . . . . . . . . . 17 ({𝑛 ∈ ℕ0 ∣ (𝑘𝐴 ∧ (𝑛𝑘) ∈ 𝐵)} ∩ (0..^(𝑁 + 1))) = {𝑛 ∈ (ℕ0 ∩ (0..^(𝑁 + 1))) ∣ (𝑘𝐴 ∧ (𝑛𝑘) ∈ 𝐵)}
40 inss1 3833 . . . . . . . . . . . . . . . . . . . . . . . 24 (ℕ0 ∩ (0..^(𝑁 + 1))) ⊆ ℕ0
41 simpr 477 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑘 ∈ (ℤ‘(𝑁 + 1))) ∧ 𝑛 ∈ (ℕ0 ∩ (0..^(𝑁 + 1)))) → 𝑛 ∈ (ℕ0 ∩ (0..^(𝑁 + 1))))
4240, 41sseldi 3601 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑘 ∈ (ℤ‘(𝑁 + 1))) ∧ 𝑛 ∈ (ℕ0 ∩ (0..^(𝑁 + 1)))) → 𝑛 ∈ ℕ0)
4342nn0red 11352 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑘 ∈ (ℤ‘(𝑁 + 1))) ∧ 𝑛 ∈ (ℕ0 ∩ (0..^(𝑁 + 1)))) → 𝑛 ∈ ℝ)
4421adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑘 ∈ (ℤ‘(𝑁 + 1))) → 𝑁 ∈ ℕ0)
4544adantr 481 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑘 ∈ (ℤ‘(𝑁 + 1))) ∧ 𝑛 ∈ (ℕ0 ∩ (0..^(𝑁 + 1)))) → 𝑁 ∈ ℕ0)
4645nn0red 11352 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑘 ∈ (ℤ‘(𝑁 + 1))) ∧ 𝑛 ∈ (ℕ0 ∩ (0..^(𝑁 + 1)))) → 𝑁 ∈ ℝ)
47 1red 10055 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑘 ∈ (ℤ‘(𝑁 + 1))) ∧ 𝑛 ∈ (ℕ0 ∩ (0..^(𝑁 + 1)))) → 1 ∈ ℝ)
4846, 47readdcld 10069 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑘 ∈ (ℤ‘(𝑁 + 1))) ∧ 𝑛 ∈ (ℕ0 ∩ (0..^(𝑁 + 1)))) → (𝑁 + 1) ∈ ℝ)
4929adantr 481 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑘 ∈ (ℤ‘(𝑁 + 1))) ∧ 𝑛 ∈ (ℕ0 ∩ (0..^(𝑁 + 1)))) → 𝑘 ∈ ℕ0)
5049nn0red 11352 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑘 ∈ (ℤ‘(𝑁 + 1))) ∧ 𝑛 ∈ (ℕ0 ∩ (0..^(𝑁 + 1)))) → 𝑘 ∈ ℝ)
51 inss2 3834 . . . . . . . . . . . . . . . . . . . . . . . 24 (ℕ0 ∩ (0..^(𝑁 + 1))) ⊆ (0..^(𝑁 + 1))
5251, 41sseldi 3601 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑘 ∈ (ℤ‘(𝑁 + 1))) ∧ 𝑛 ∈ (ℕ0 ∩ (0..^(𝑁 + 1)))) → 𝑛 ∈ (0..^(𝑁 + 1)))
53 elfzolt2 12479 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑛 ∈ (0..^(𝑁 + 1)) → 𝑛 < (𝑁 + 1))
5452, 53syl 17 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑘 ∈ (ℤ‘(𝑁 + 1))) ∧ 𝑛 ∈ (ℕ0 ∩ (0..^(𝑁 + 1)))) → 𝑛 < (𝑁 + 1))
55 eluzle 11700 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑘 ∈ (ℤ‘(𝑁 + 1)) → (𝑁 + 1) ≤ 𝑘)
5655ad2antlr 763 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑘 ∈ (ℤ‘(𝑁 + 1))) ∧ 𝑛 ∈ (ℕ0 ∩ (0..^(𝑁 + 1)))) → (𝑁 + 1) ≤ 𝑘)
5743, 48, 50, 54, 56ltletrd 10197 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑘 ∈ (ℤ‘(𝑁 + 1))) ∧ 𝑛 ∈ (ℕ0 ∩ (0..^(𝑁 + 1)))) → 𝑛 < 𝑘)
5843, 50ltnled 10184 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑘 ∈ (ℤ‘(𝑁 + 1))) ∧ 𝑛 ∈ (ℕ0 ∩ (0..^(𝑁 + 1)))) → (𝑛 < 𝑘 ↔ ¬ 𝑘𝑛))
5957, 58mpbid 222 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑘 ∈ (ℤ‘(𝑁 + 1))) ∧ 𝑛 ∈ (ℕ0 ∩ (0..^(𝑁 + 1)))) → ¬ 𝑘𝑛)
6025adantr 481 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑘 ∈ (ℤ‘(𝑁 + 1))) ∧ 𝑛 ∈ (ℕ0 ∩ (0..^(𝑁 + 1)))) → 𝐵 ⊆ ℕ0)
6160sseld 3602 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑘 ∈ (ℤ‘(𝑁 + 1))) ∧ 𝑛 ∈ (ℕ0 ∩ (0..^(𝑁 + 1)))) → ((𝑛𝑘) ∈ 𝐵 → (𝑛𝑘) ∈ ℕ0))
62 nn0ge0 11318 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑛𝑘) ∈ ℕ0 → 0 ≤ (𝑛𝑘))
6361, 62syl6 35 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑘 ∈ (ℤ‘(𝑁 + 1))) ∧ 𝑛 ∈ (ℕ0 ∩ (0..^(𝑁 + 1)))) → ((𝑛𝑘) ∈ 𝐵 → 0 ≤ (𝑛𝑘)))
6443, 50subge0d 10617 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑘 ∈ (ℤ‘(𝑁 + 1))) ∧ 𝑛 ∈ (ℕ0 ∩ (0..^(𝑁 + 1)))) → (0 ≤ (𝑛𝑘) ↔ 𝑘𝑛))
6563, 64sylibd 229 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑘 ∈ (ℤ‘(𝑁 + 1))) ∧ 𝑛 ∈ (ℕ0 ∩ (0..^(𝑁 + 1)))) → ((𝑛𝑘) ∈ 𝐵𝑘𝑛))
6665adantld 483 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑘 ∈ (ℤ‘(𝑁 + 1))) ∧ 𝑛 ∈ (ℕ0 ∩ (0..^(𝑁 + 1)))) → ((𝑘𝐴 ∧ (𝑛𝑘) ∈ 𝐵) → 𝑘𝑛))
6759, 66mtod 189 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑘 ∈ (ℤ‘(𝑁 + 1))) ∧ 𝑛 ∈ (ℕ0 ∩ (0..^(𝑁 + 1)))) → ¬ (𝑘𝐴 ∧ (𝑛𝑘) ∈ 𝐵))
6867ralrimiva 2966 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑘 ∈ (ℤ‘(𝑁 + 1))) → ∀𝑛 ∈ (ℕ0 ∩ (0..^(𝑁 + 1))) ¬ (𝑘𝐴 ∧ (𝑛𝑘) ∈ 𝐵))
69 rabeq0 3957 . . . . . . . . . . . . . . . . . 18 ({𝑛 ∈ (ℕ0 ∩ (0..^(𝑁 + 1))) ∣ (𝑘𝐴 ∧ (𝑛𝑘) ∈ 𝐵)} = ∅ ↔ ∀𝑛 ∈ (ℕ0 ∩ (0..^(𝑁 + 1))) ¬ (𝑘𝐴 ∧ (𝑛𝑘) ∈ 𝐵))
7068, 69sylibr 224 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘 ∈ (ℤ‘(𝑁 + 1))) → {𝑛 ∈ (ℕ0 ∩ (0..^(𝑁 + 1))) ∣ (𝑘𝐴 ∧ (𝑛𝑘) ∈ 𝐵)} = ∅)
7139, 70syl5eq 2668 . . . . . . . . . . . . . . . 16 ((𝜑𝑘 ∈ (ℤ‘(𝑁 + 1))) → ({𝑛 ∈ ℕ0 ∣ (𝑘𝐴 ∧ (𝑛𝑘) ∈ 𝐵)} ∩ (0..^(𝑁 + 1))) = ∅)
7271oveq2d 6666 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ (ℤ‘(𝑁 + 1))) → (((𝑃𝑘) ∩ (0..^(𝑁 + 1))) sadd ({𝑛 ∈ ℕ0 ∣ (𝑘𝐴 ∧ (𝑛𝑘) ∈ 𝐵)} ∩ (0..^(𝑁 + 1)))) = (((𝑃𝑘) ∩ (0..^(𝑁 + 1))) sadd ∅))
73 inss1 3833 . . . . . . . . . . . . . . . . 17 ((𝑃𝑘) ∩ (0..^(𝑁 + 1))) ⊆ (𝑃𝑘)
7473, 34syl5ss 3614 . . . . . . . . . . . . . . . 16 ((𝜑𝑘 ∈ (ℤ‘(𝑁 + 1))) → ((𝑃𝑘) ∩ (0..^(𝑁 + 1))) ⊆ ℕ0)
75 sadid1 15190 . . . . . . . . . . . . . . . 16 (((𝑃𝑘) ∩ (0..^(𝑁 + 1))) ⊆ ℕ0 → (((𝑃𝑘) ∩ (0..^(𝑁 + 1))) sadd ∅) = ((𝑃𝑘) ∩ (0..^(𝑁 + 1))))
7674, 75syl 17 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ (ℤ‘(𝑁 + 1))) → (((𝑃𝑘) ∩ (0..^(𝑁 + 1))) sadd ∅) = ((𝑃𝑘) ∩ (0..^(𝑁 + 1))))
7772, 76eqtrd 2656 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ (ℤ‘(𝑁 + 1))) → (((𝑃𝑘) ∩ (0..^(𝑁 + 1))) sadd ({𝑛 ∈ ℕ0 ∣ (𝑘𝐴 ∧ (𝑛𝑘) ∈ 𝐵)} ∩ (0..^(𝑁 + 1)))) = ((𝑃𝑘) ∩ (0..^(𝑁 + 1))))
7877ineq1d 3813 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ (ℤ‘(𝑁 + 1))) → ((((𝑃𝑘) ∩ (0..^(𝑁 + 1))) sadd ({𝑛 ∈ ℕ0 ∣ (𝑘𝐴 ∧ (𝑛𝑘) ∈ 𝐵)} ∩ (0..^(𝑁 + 1)))) ∩ (0..^(𝑁 + 1))) = (((𝑃𝑘) ∩ (0..^(𝑁 + 1))) ∩ (0..^(𝑁 + 1))))
79 inass 3823 . . . . . . . . . . . . . 14 (((𝑃𝑘) ∩ (0..^(𝑁 + 1))) ∩ (0..^(𝑁 + 1))) = ((𝑃𝑘) ∩ ((0..^(𝑁 + 1)) ∩ (0..^(𝑁 + 1))))
80 inidm 3822 . . . . . . . . . . . . . . 15 ((0..^(𝑁 + 1)) ∩ (0..^(𝑁 + 1))) = (0..^(𝑁 + 1))
8180ineq2i 3811 . . . . . . . . . . . . . 14 ((𝑃𝑘) ∩ ((0..^(𝑁 + 1)) ∩ (0..^(𝑁 + 1)))) = ((𝑃𝑘) ∩ (0..^(𝑁 + 1)))
8279, 81eqtri 2644 . . . . . . . . . . . . 13 (((𝑃𝑘) ∩ (0..^(𝑁 + 1))) ∩ (0..^(𝑁 + 1))) = ((𝑃𝑘) ∩ (0..^(𝑁 + 1)))
8378, 82syl6eq 2672 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ (ℤ‘(𝑁 + 1))) → ((((𝑃𝑘) ∩ (0..^(𝑁 + 1))) sadd ({𝑛 ∈ ℕ0 ∣ (𝑘𝐴 ∧ (𝑛𝑘) ∈ 𝐵)} ∩ (0..^(𝑁 + 1)))) ∩ (0..^(𝑁 + 1))) = ((𝑃𝑘) ∩ (0..^(𝑁 + 1))))
8438, 83eqtrd 2656 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (ℤ‘(𝑁 + 1))) → (((𝑃𝑘) sadd {𝑛 ∈ ℕ0 ∣ (𝑘𝐴 ∧ (𝑛𝑘) ∈ 𝐵)}) ∩ (0..^(𝑁 + 1))) = ((𝑃𝑘) ∩ (0..^(𝑁 + 1))))
8584eleq2d 2687 . . . . . . . . . 10 ((𝜑𝑘 ∈ (ℤ‘(𝑁 + 1))) → (𝑁 ∈ (((𝑃𝑘) sadd {𝑛 ∈ ℕ0 ∣ (𝑘𝐴 ∧ (𝑛𝑘) ∈ 𝐵)}) ∩ (0..^(𝑁 + 1))) ↔ 𝑁 ∈ ((𝑃𝑘) ∩ (0..^(𝑁 + 1)))))
86 elin 3796 . . . . . . . . . 10 (𝑁 ∈ (((𝑃𝑘) sadd {𝑛 ∈ ℕ0 ∣ (𝑘𝐴 ∧ (𝑛𝑘) ∈ 𝐵)}) ∩ (0..^(𝑁 + 1))) ↔ (𝑁 ∈ ((𝑃𝑘) sadd {𝑛 ∈ ℕ0 ∣ (𝑘𝐴 ∧ (𝑛𝑘) ∈ 𝐵)}) ∧ 𝑁 ∈ (0..^(𝑁 + 1))))
87 elin 3796 . . . . . . . . . 10 (𝑁 ∈ ((𝑃𝑘) ∩ (0..^(𝑁 + 1))) ↔ (𝑁 ∈ (𝑃𝑘) ∧ 𝑁 ∈ (0..^(𝑁 + 1))))
8885, 86, 873bitr3g 302 . . . . . . . . 9 ((𝜑𝑘 ∈ (ℤ‘(𝑁 + 1))) → ((𝑁 ∈ ((𝑃𝑘) sadd {𝑛 ∈ ℕ0 ∣ (𝑘𝐴 ∧ (𝑛𝑘) ∈ 𝐵)}) ∧ 𝑁 ∈ (0..^(𝑁 + 1))) ↔ (𝑁 ∈ (𝑃𝑘) ∧ 𝑁 ∈ (0..^(𝑁 + 1)))))
89 nn0uz 11722 . . . . . . . . . . . . 13 0 = (ℤ‘0)
9044, 89syl6eleq 2711 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ (ℤ‘(𝑁 + 1))) → 𝑁 ∈ (ℤ‘0))
91 eluzfz2 12349 . . . . . . . . . . . 12 (𝑁 ∈ (ℤ‘0) → 𝑁 ∈ (0...𝑁))
9290, 91syl 17 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (ℤ‘(𝑁 + 1))) → 𝑁 ∈ (0...𝑁))
9344nn0zd 11480 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ (ℤ‘(𝑁 + 1))) → 𝑁 ∈ ℤ)
94 fzval3 12536 . . . . . . . . . . . 12 (𝑁 ∈ ℤ → (0...𝑁) = (0..^(𝑁 + 1)))
9593, 94syl 17 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (ℤ‘(𝑁 + 1))) → (0...𝑁) = (0..^(𝑁 + 1)))
9692, 95eleqtrd 2703 . . . . . . . . . 10 ((𝜑𝑘 ∈ (ℤ‘(𝑁 + 1))) → 𝑁 ∈ (0..^(𝑁 + 1)))
9796biantrud 528 . . . . . . . . 9 ((𝜑𝑘 ∈ (ℤ‘(𝑁 + 1))) → (𝑁 ∈ ((𝑃𝑘) sadd {𝑛 ∈ ℕ0 ∣ (𝑘𝐴 ∧ (𝑛𝑘) ∈ 𝐵)}) ↔ (𝑁 ∈ ((𝑃𝑘) sadd {𝑛 ∈ ℕ0 ∣ (𝑘𝐴 ∧ (𝑛𝑘) ∈ 𝐵)}) ∧ 𝑁 ∈ (0..^(𝑁 + 1)))))
9896biantrud 528 . . . . . . . . 9 ((𝜑𝑘 ∈ (ℤ‘(𝑁 + 1))) → (𝑁 ∈ (𝑃𝑘) ↔ (𝑁 ∈ (𝑃𝑘) ∧ 𝑁 ∈ (0..^(𝑁 + 1)))))
9988, 97, 983bitr4d 300 . . . . . . . 8 ((𝜑𝑘 ∈ (ℤ‘(𝑁 + 1))) → (𝑁 ∈ ((𝑃𝑘) sadd {𝑛 ∈ ℕ0 ∣ (𝑘𝐴 ∧ (𝑛𝑘) ∈ 𝐵)}) ↔ 𝑁 ∈ (𝑃𝑘)))
10031, 99bitrd 268 . . . . . . 7 ((𝜑𝑘 ∈ (ℤ‘(𝑁 + 1))) → (𝑁 ∈ (𝑃‘(𝑘 + 1)) ↔ 𝑁 ∈ (𝑃𝑘)))
101100bibi2d 332 . . . . . 6 ((𝜑𝑘 ∈ (ℤ‘(𝑁 + 1))) → ((𝑁 ∈ (𝐴 smul 𝐵) ↔ 𝑁 ∈ (𝑃‘(𝑘 + 1))) ↔ (𝑁 ∈ (𝐴 smul 𝐵) ↔ 𝑁 ∈ (𝑃𝑘))))
102101biimprd 238 . . . . 5 ((𝜑𝑘 ∈ (ℤ‘(𝑁 + 1))) → ((𝑁 ∈ (𝐴 smul 𝐵) ↔ 𝑁 ∈ (𝑃𝑘)) → (𝑁 ∈ (𝐴 smul 𝐵) ↔ 𝑁 ∈ (𝑃‘(𝑘 + 1)))))
103102expcom 451 . . . 4 (𝑘 ∈ (ℤ‘(𝑁 + 1)) → (𝜑 → ((𝑁 ∈ (𝐴 smul 𝐵) ↔ 𝑁 ∈ (𝑃𝑘)) → (𝑁 ∈ (𝐴 smul 𝐵) ↔ 𝑁 ∈ (𝑃‘(𝑘 + 1))))))
104103a2d 29 . . 3 (𝑘 ∈ (ℤ‘(𝑁 + 1)) → ((𝜑 → (𝑁 ∈ (𝐴 smul 𝐵) ↔ 𝑁 ∈ (𝑃𝑘))) → (𝜑 → (𝑁 ∈ (𝐴 smul 𝐵) ↔ 𝑁 ∈ (𝑃‘(𝑘 + 1))))))
1055, 9, 13, 17, 23, 104uzind4 11746 . 2 (𝑀 ∈ (ℤ‘(𝑁 + 1)) → (𝜑 → (𝑁 ∈ (𝐴 smul 𝐵) ↔ 𝑁 ∈ (𝑃𝑀))))
1061, 105mpcom 38 1 (𝜑 → (𝑁 ∈ (𝐴 smul 𝐵) ↔ 𝑁 ∈ (𝑃𝑀)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384   = wceq 1483  wcel 1990  wral 2912  {crab 2916  cin 3573  wss 3574  c0 3915  ifcif 4086  𝒫 cpw 4158   class class class wbr 4653  cmpt 4729  cfv 5888  (class class class)co 6650  cmpt2 6652  0cc0 9936  1c1 9937   + caddc 9939   < clt 10074  cle 10075  cmin 10266  0cn0 11292  cz 11377  cuz 11687  ...cfz 12326  ..^cfzo 12465  seqcseq 12801   sadd csad 15142   smul csmu 15143
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-xor 1465  df-tru 1486  df-fal 1489  df-had 1533  df-cad 1546  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-disj 4621  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-xnn0 11364  df-z 11378  df-uz 11688  df-rp 11833  df-fz 12327  df-fzo 12466  df-fl 12593  df-mod 12669  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-sum 14417  df-dvds 14984  df-bits 15144  df-sad 15173  df-smu 15198
This theorem is referenced by:  smupvallem  15205  smueqlem  15212
  Copyright terms: Public domain W3C validator