MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psgnghm Structured version   Visualization version   GIF version

Theorem psgnghm 19926
Description: The sign is a homomorphism from the finitary permutation group to the numeric signs. (Contributed by Stefan O'Rear, 28-Aug-2015.)
Hypotheses
Ref Expression
psgnghm.s 𝑆 = (SymGrp‘𝐷)
psgnghm.n 𝑁 = (pmSgn‘𝐷)
psgnghm.f 𝐹 = (𝑆s dom 𝑁)
psgnghm.u 𝑈 = ((mulGrp‘ℂfld) ↾s {1, -1})
Assertion
Ref Expression
psgnghm (𝐷𝑉𝑁 ∈ (𝐹 GrpHom 𝑈))

Proof of Theorem psgnghm
Dummy variables 𝑥 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 psgnghm.s . . . . . 6 𝑆 = (SymGrp‘𝐷)
2 eqid 2622 . . . . . 6 (Base‘𝑆) = (Base‘𝑆)
3 eqid 2622 . . . . . 6 {𝑥 ∈ (Base‘𝑆) ∣ dom (𝑥 ∖ I ) ∈ Fin} = {𝑥 ∈ (Base‘𝑆) ∣ dom (𝑥 ∖ I ) ∈ Fin}
4 psgnghm.n . . . . . 6 𝑁 = (pmSgn‘𝐷)
51, 2, 3, 4psgnfn 17921 . . . . 5 𝑁 Fn {𝑥 ∈ (Base‘𝑆) ∣ dom (𝑥 ∖ I ) ∈ Fin}
6 fndm 5990 . . . . 5 (𝑁 Fn {𝑥 ∈ (Base‘𝑆) ∣ dom (𝑥 ∖ I ) ∈ Fin} → dom 𝑁 = {𝑥 ∈ (Base‘𝑆) ∣ dom (𝑥 ∖ I ) ∈ Fin})
75, 6ax-mp 5 . . . 4 dom 𝑁 = {𝑥 ∈ (Base‘𝑆) ∣ dom (𝑥 ∖ I ) ∈ Fin}
8 ssrab2 3687 . . . 4 {𝑥 ∈ (Base‘𝑆) ∣ dom (𝑥 ∖ I ) ∈ Fin} ⊆ (Base‘𝑆)
97, 8eqsstri 3635 . . 3 dom 𝑁 ⊆ (Base‘𝑆)
10 psgnghm.f . . . 4 𝐹 = (𝑆s dom 𝑁)
1110, 2ressbas2 15931 . . 3 (dom 𝑁 ⊆ (Base‘𝑆) → dom 𝑁 = (Base‘𝐹))
129, 11ax-mp 5 . 2 dom 𝑁 = (Base‘𝐹)
13 psgnghm.u . . 3 𝑈 = ((mulGrp‘ℂfld) ↾s {1, -1})
1413cnmsgnbas 19924 . 2 {1, -1} = (Base‘𝑈)
15 fvex 6201 . . . 4 (Base‘𝐹) ∈ V
1612, 15eqeltri 2697 . . 3 dom 𝑁 ∈ V
17 eqid 2622 . . . 4 (+g𝑆) = (+g𝑆)
1810, 17ressplusg 15993 . . 3 (dom 𝑁 ∈ V → (+g𝑆) = (+g𝐹))
1916, 18ax-mp 5 . 2 (+g𝑆) = (+g𝐹)
20 prex 4909 . . 3 {1, -1} ∈ V
21 eqid 2622 . . . . 5 (mulGrp‘ℂfld) = (mulGrp‘ℂfld)
22 cnfldmul 19752 . . . . 5 · = (.r‘ℂfld)
2321, 22mgpplusg 18493 . . . 4 · = (+g‘(mulGrp‘ℂfld))
2413, 23ressplusg 15993 . . 3 ({1, -1} ∈ V → · = (+g𝑈))
2520, 24ax-mp 5 . 2 · = (+g𝑈)
261, 4psgndmsubg 17922 . . 3 (𝐷𝑉 → dom 𝑁 ∈ (SubGrp‘𝑆))
2710subggrp 17597 . . 3 (dom 𝑁 ∈ (SubGrp‘𝑆) → 𝐹 ∈ Grp)
2826, 27syl 17 . 2 (𝐷𝑉𝐹 ∈ Grp)
2913cnmsgngrp 19925 . . 3 𝑈 ∈ Grp
3029a1i 11 . 2 (𝐷𝑉𝑈 ∈ Grp)
31 fnfun 5988 . . . . . 6 (𝑁 Fn {𝑥 ∈ (Base‘𝑆) ∣ dom (𝑥 ∖ I ) ∈ Fin} → Fun 𝑁)
325, 31ax-mp 5 . . . . 5 Fun 𝑁
33 funfn 5918 . . . . 5 (Fun 𝑁𝑁 Fn dom 𝑁)
3432, 33mpbi 220 . . . 4 𝑁 Fn dom 𝑁
3534a1i 11 . . 3 (𝐷𝑉𝑁 Fn dom 𝑁)
36 eqid 2622 . . . . . 6 ran (pmTrsp‘𝐷) = ran (pmTrsp‘𝐷)
371, 36, 4psgnvali 17928 . . . . 5 (𝑥 ∈ dom 𝑁 → ∃𝑧 ∈ Word ran (pmTrsp‘𝐷)(𝑥 = (𝑆 Σg 𝑧) ∧ (𝑁𝑥) = (-1↑(#‘𝑧))))
38 lencl 13324 . . . . . . . . . . 11 (𝑧 ∈ Word ran (pmTrsp‘𝐷) → (#‘𝑧) ∈ ℕ0)
3938nn0zd 11480 . . . . . . . . . 10 (𝑧 ∈ Word ran (pmTrsp‘𝐷) → (#‘𝑧) ∈ ℤ)
40 m1expcl2 12882 . . . . . . . . . . 11 ((#‘𝑧) ∈ ℤ → (-1↑(#‘𝑧)) ∈ {-1, 1})
41 prcom 4267 . . . . . . . . . . 11 {-1, 1} = {1, -1}
4240, 41syl6eleq 2711 . . . . . . . . . 10 ((#‘𝑧) ∈ ℤ → (-1↑(#‘𝑧)) ∈ {1, -1})
4339, 42syl 17 . . . . . . . . 9 (𝑧 ∈ Word ran (pmTrsp‘𝐷) → (-1↑(#‘𝑧)) ∈ {1, -1})
4443adantl 482 . . . . . . . 8 ((𝐷𝑉𝑧 ∈ Word ran (pmTrsp‘𝐷)) → (-1↑(#‘𝑧)) ∈ {1, -1})
45 eleq1a 2696 . . . . . . . 8 ((-1↑(#‘𝑧)) ∈ {1, -1} → ((𝑁𝑥) = (-1↑(#‘𝑧)) → (𝑁𝑥) ∈ {1, -1}))
4644, 45syl 17 . . . . . . 7 ((𝐷𝑉𝑧 ∈ Word ran (pmTrsp‘𝐷)) → ((𝑁𝑥) = (-1↑(#‘𝑧)) → (𝑁𝑥) ∈ {1, -1}))
4746adantld 483 . . . . . 6 ((𝐷𝑉𝑧 ∈ Word ran (pmTrsp‘𝐷)) → ((𝑥 = (𝑆 Σg 𝑧) ∧ (𝑁𝑥) = (-1↑(#‘𝑧))) → (𝑁𝑥) ∈ {1, -1}))
4847rexlimdva 3031 . . . . 5 (𝐷𝑉 → (∃𝑧 ∈ Word ran (pmTrsp‘𝐷)(𝑥 = (𝑆 Σg 𝑧) ∧ (𝑁𝑥) = (-1↑(#‘𝑧))) → (𝑁𝑥) ∈ {1, -1}))
4937, 48syl5 34 . . . 4 (𝐷𝑉 → (𝑥 ∈ dom 𝑁 → (𝑁𝑥) ∈ {1, -1}))
5049ralrimiv 2965 . . 3 (𝐷𝑉 → ∀𝑥 ∈ dom 𝑁(𝑁𝑥) ∈ {1, -1})
51 ffnfv 6388 . . 3 (𝑁:dom 𝑁⟶{1, -1} ↔ (𝑁 Fn dom 𝑁 ∧ ∀𝑥 ∈ dom 𝑁(𝑁𝑥) ∈ {1, -1}))
5235, 50, 51sylanbrc 698 . 2 (𝐷𝑉𝑁:dom 𝑁⟶{1, -1})
531, 36, 4psgnvali 17928 . . . . . 6 (𝑦 ∈ dom 𝑁 → ∃𝑤 ∈ Word ran (pmTrsp‘𝐷)(𝑦 = (𝑆 Σg 𝑤) ∧ (𝑁𝑦) = (-1↑(#‘𝑤))))
5437, 53anim12i 590 . . . . 5 ((𝑥 ∈ dom 𝑁𝑦 ∈ dom 𝑁) → (∃𝑧 ∈ Word ran (pmTrsp‘𝐷)(𝑥 = (𝑆 Σg 𝑧) ∧ (𝑁𝑥) = (-1↑(#‘𝑧))) ∧ ∃𝑤 ∈ Word ran (pmTrsp‘𝐷)(𝑦 = (𝑆 Σg 𝑤) ∧ (𝑁𝑦) = (-1↑(#‘𝑤)))))
55 reeanv 3107 . . . . 5 (∃𝑧 ∈ Word ran (pmTrsp‘𝐷)∃𝑤 ∈ Word ran (pmTrsp‘𝐷)((𝑥 = (𝑆 Σg 𝑧) ∧ (𝑁𝑥) = (-1↑(#‘𝑧))) ∧ (𝑦 = (𝑆 Σg 𝑤) ∧ (𝑁𝑦) = (-1↑(#‘𝑤)))) ↔ (∃𝑧 ∈ Word ran (pmTrsp‘𝐷)(𝑥 = (𝑆 Σg 𝑧) ∧ (𝑁𝑥) = (-1↑(#‘𝑧))) ∧ ∃𝑤 ∈ Word ran (pmTrsp‘𝐷)(𝑦 = (𝑆 Σg 𝑤) ∧ (𝑁𝑦) = (-1↑(#‘𝑤)))))
5654, 55sylibr 224 . . . 4 ((𝑥 ∈ dom 𝑁𝑦 ∈ dom 𝑁) → ∃𝑧 ∈ Word ran (pmTrsp‘𝐷)∃𝑤 ∈ Word ran (pmTrsp‘𝐷)((𝑥 = (𝑆 Σg 𝑧) ∧ (𝑁𝑥) = (-1↑(#‘𝑧))) ∧ (𝑦 = (𝑆 Σg 𝑤) ∧ (𝑁𝑦) = (-1↑(#‘𝑤)))))
57 ccatcl 13359 . . . . . . . 8 ((𝑧 ∈ Word ran (pmTrsp‘𝐷) ∧ 𝑤 ∈ Word ran (pmTrsp‘𝐷)) → (𝑧 ++ 𝑤) ∈ Word ran (pmTrsp‘𝐷))
581, 36, 4psgnvalii 17929 . . . . . . . 8 ((𝐷𝑉 ∧ (𝑧 ++ 𝑤) ∈ Word ran (pmTrsp‘𝐷)) → (𝑁‘(𝑆 Σg (𝑧 ++ 𝑤))) = (-1↑(#‘(𝑧 ++ 𝑤))))
5957, 58sylan2 491 . . . . . . 7 ((𝐷𝑉 ∧ (𝑧 ∈ Word ran (pmTrsp‘𝐷) ∧ 𝑤 ∈ Word ran (pmTrsp‘𝐷))) → (𝑁‘(𝑆 Σg (𝑧 ++ 𝑤))) = (-1↑(#‘(𝑧 ++ 𝑤))))
601symggrp 17820 . . . . . . . . . . 11 (𝐷𝑉𝑆 ∈ Grp)
61 grpmnd 17429 . . . . . . . . . . 11 (𝑆 ∈ Grp → 𝑆 ∈ Mnd)
6260, 61syl 17 . . . . . . . . . 10 (𝐷𝑉𝑆 ∈ Mnd)
6336, 1, 2symgtrf 17889 . . . . . . . . . . . 12 ran (pmTrsp‘𝐷) ⊆ (Base‘𝑆)
64 sswrd 13313 . . . . . . . . . . . 12 (ran (pmTrsp‘𝐷) ⊆ (Base‘𝑆) → Word ran (pmTrsp‘𝐷) ⊆ Word (Base‘𝑆))
6563, 64ax-mp 5 . . . . . . . . . . 11 Word ran (pmTrsp‘𝐷) ⊆ Word (Base‘𝑆)
6665sseli 3599 . . . . . . . . . 10 (𝑧 ∈ Word ran (pmTrsp‘𝐷) → 𝑧 ∈ Word (Base‘𝑆))
6765sseli 3599 . . . . . . . . . 10 (𝑤 ∈ Word ran (pmTrsp‘𝐷) → 𝑤 ∈ Word (Base‘𝑆))
682, 17gsumccat 17378 . . . . . . . . . 10 ((𝑆 ∈ Mnd ∧ 𝑧 ∈ Word (Base‘𝑆) ∧ 𝑤 ∈ Word (Base‘𝑆)) → (𝑆 Σg (𝑧 ++ 𝑤)) = ((𝑆 Σg 𝑧)(+g𝑆)(𝑆 Σg 𝑤)))
6962, 66, 67, 68syl3an 1368 . . . . . . . . 9 ((𝐷𝑉𝑧 ∈ Word ran (pmTrsp‘𝐷) ∧ 𝑤 ∈ Word ran (pmTrsp‘𝐷)) → (𝑆 Σg (𝑧 ++ 𝑤)) = ((𝑆 Σg 𝑧)(+g𝑆)(𝑆 Σg 𝑤)))
70693expb 1266 . . . . . . . 8 ((𝐷𝑉 ∧ (𝑧 ∈ Word ran (pmTrsp‘𝐷) ∧ 𝑤 ∈ Word ran (pmTrsp‘𝐷))) → (𝑆 Σg (𝑧 ++ 𝑤)) = ((𝑆 Σg 𝑧)(+g𝑆)(𝑆 Σg 𝑤)))
7170fveq2d 6195 . . . . . . 7 ((𝐷𝑉 ∧ (𝑧 ∈ Word ran (pmTrsp‘𝐷) ∧ 𝑤 ∈ Word ran (pmTrsp‘𝐷))) → (𝑁‘(𝑆 Σg (𝑧 ++ 𝑤))) = (𝑁‘((𝑆 Σg 𝑧)(+g𝑆)(𝑆 Σg 𝑤))))
72 ccatlen 13360 . . . . . . . . . 10 ((𝑧 ∈ Word ran (pmTrsp‘𝐷) ∧ 𝑤 ∈ Word ran (pmTrsp‘𝐷)) → (#‘(𝑧 ++ 𝑤)) = ((#‘𝑧) + (#‘𝑤)))
7372adantl 482 . . . . . . . . 9 ((𝐷𝑉 ∧ (𝑧 ∈ Word ran (pmTrsp‘𝐷) ∧ 𝑤 ∈ Word ran (pmTrsp‘𝐷))) → (#‘(𝑧 ++ 𝑤)) = ((#‘𝑧) + (#‘𝑤)))
7473oveq2d 6666 . . . . . . . 8 ((𝐷𝑉 ∧ (𝑧 ∈ Word ran (pmTrsp‘𝐷) ∧ 𝑤 ∈ Word ran (pmTrsp‘𝐷))) → (-1↑(#‘(𝑧 ++ 𝑤))) = (-1↑((#‘𝑧) + (#‘𝑤))))
75 neg1cn 11124 . . . . . . . . . 10 -1 ∈ ℂ
7675a1i 11 . . . . . . . . 9 ((𝐷𝑉 ∧ (𝑧 ∈ Word ran (pmTrsp‘𝐷) ∧ 𝑤 ∈ Word ran (pmTrsp‘𝐷))) → -1 ∈ ℂ)
77 lencl 13324 . . . . . . . . . 10 (𝑤 ∈ Word ran (pmTrsp‘𝐷) → (#‘𝑤) ∈ ℕ0)
7877ad2antll 765 . . . . . . . . 9 ((𝐷𝑉 ∧ (𝑧 ∈ Word ran (pmTrsp‘𝐷) ∧ 𝑤 ∈ Word ran (pmTrsp‘𝐷))) → (#‘𝑤) ∈ ℕ0)
7938ad2antrl 764 . . . . . . . . 9 ((𝐷𝑉 ∧ (𝑧 ∈ Word ran (pmTrsp‘𝐷) ∧ 𝑤 ∈ Word ran (pmTrsp‘𝐷))) → (#‘𝑧) ∈ ℕ0)
8076, 78, 79expaddd 13010 . . . . . . . 8 ((𝐷𝑉 ∧ (𝑧 ∈ Word ran (pmTrsp‘𝐷) ∧ 𝑤 ∈ Word ran (pmTrsp‘𝐷))) → (-1↑((#‘𝑧) + (#‘𝑤))) = ((-1↑(#‘𝑧)) · (-1↑(#‘𝑤))))
8174, 80eqtrd 2656 . . . . . . 7 ((𝐷𝑉 ∧ (𝑧 ∈ Word ran (pmTrsp‘𝐷) ∧ 𝑤 ∈ Word ran (pmTrsp‘𝐷))) → (-1↑(#‘(𝑧 ++ 𝑤))) = ((-1↑(#‘𝑧)) · (-1↑(#‘𝑤))))
8259, 71, 813eqtr3d 2664 . . . . . 6 ((𝐷𝑉 ∧ (𝑧 ∈ Word ran (pmTrsp‘𝐷) ∧ 𝑤 ∈ Word ran (pmTrsp‘𝐷))) → (𝑁‘((𝑆 Σg 𝑧)(+g𝑆)(𝑆 Σg 𝑤))) = ((-1↑(#‘𝑧)) · (-1↑(#‘𝑤))))
83 oveq12 6659 . . . . . . . . 9 ((𝑥 = (𝑆 Σg 𝑧) ∧ 𝑦 = (𝑆 Σg 𝑤)) → (𝑥(+g𝑆)𝑦) = ((𝑆 Σg 𝑧)(+g𝑆)(𝑆 Σg 𝑤)))
8483fveq2d 6195 . . . . . . . 8 ((𝑥 = (𝑆 Σg 𝑧) ∧ 𝑦 = (𝑆 Σg 𝑤)) → (𝑁‘(𝑥(+g𝑆)𝑦)) = (𝑁‘((𝑆 Σg 𝑧)(+g𝑆)(𝑆 Σg 𝑤))))
85 oveq12 6659 . . . . . . . 8 (((𝑁𝑥) = (-1↑(#‘𝑧)) ∧ (𝑁𝑦) = (-1↑(#‘𝑤))) → ((𝑁𝑥) · (𝑁𝑦)) = ((-1↑(#‘𝑧)) · (-1↑(#‘𝑤))))
8684, 85eqeqan12d 2638 . . . . . . 7 (((𝑥 = (𝑆 Σg 𝑧) ∧ 𝑦 = (𝑆 Σg 𝑤)) ∧ ((𝑁𝑥) = (-1↑(#‘𝑧)) ∧ (𝑁𝑦) = (-1↑(#‘𝑤)))) → ((𝑁‘(𝑥(+g𝑆)𝑦)) = ((𝑁𝑥) · (𝑁𝑦)) ↔ (𝑁‘((𝑆 Σg 𝑧)(+g𝑆)(𝑆 Σg 𝑤))) = ((-1↑(#‘𝑧)) · (-1↑(#‘𝑤)))))
8786an4s 869 . . . . . 6 (((𝑥 = (𝑆 Σg 𝑧) ∧ (𝑁𝑥) = (-1↑(#‘𝑧))) ∧ (𝑦 = (𝑆 Σg 𝑤) ∧ (𝑁𝑦) = (-1↑(#‘𝑤)))) → ((𝑁‘(𝑥(+g𝑆)𝑦)) = ((𝑁𝑥) · (𝑁𝑦)) ↔ (𝑁‘((𝑆 Σg 𝑧)(+g𝑆)(𝑆 Σg 𝑤))) = ((-1↑(#‘𝑧)) · (-1↑(#‘𝑤)))))
8882, 87syl5ibrcom 237 . . . . 5 ((𝐷𝑉 ∧ (𝑧 ∈ Word ran (pmTrsp‘𝐷) ∧ 𝑤 ∈ Word ran (pmTrsp‘𝐷))) → (((𝑥 = (𝑆 Σg 𝑧) ∧ (𝑁𝑥) = (-1↑(#‘𝑧))) ∧ (𝑦 = (𝑆 Σg 𝑤) ∧ (𝑁𝑦) = (-1↑(#‘𝑤)))) → (𝑁‘(𝑥(+g𝑆)𝑦)) = ((𝑁𝑥) · (𝑁𝑦))))
8988rexlimdvva 3038 . . . 4 (𝐷𝑉 → (∃𝑧 ∈ Word ran (pmTrsp‘𝐷)∃𝑤 ∈ Word ran (pmTrsp‘𝐷)((𝑥 = (𝑆 Σg 𝑧) ∧ (𝑁𝑥) = (-1↑(#‘𝑧))) ∧ (𝑦 = (𝑆 Σg 𝑤) ∧ (𝑁𝑦) = (-1↑(#‘𝑤)))) → (𝑁‘(𝑥(+g𝑆)𝑦)) = ((𝑁𝑥) · (𝑁𝑦))))
9056, 89syl5 34 . . 3 (𝐷𝑉 → ((𝑥 ∈ dom 𝑁𝑦 ∈ dom 𝑁) → (𝑁‘(𝑥(+g𝑆)𝑦)) = ((𝑁𝑥) · (𝑁𝑦))))
9190imp 445 . 2 ((𝐷𝑉 ∧ (𝑥 ∈ dom 𝑁𝑦 ∈ dom 𝑁)) → (𝑁‘(𝑥(+g𝑆)𝑦)) = ((𝑁𝑥) · (𝑁𝑦)))
9212, 14, 19, 25, 28, 30, 52, 91isghmd 17669 1 (𝐷𝑉𝑁 ∈ (𝐹 GrpHom 𝑈))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1483  wcel 1990  wral 2912  wrex 2913  {crab 2916  Vcvv 3200  cdif 3571  wss 3574  {cpr 4179   I cid 5023  dom cdm 5114  ran crn 5115  Fun wfun 5882   Fn wfn 5883  wf 5884  cfv 5888  (class class class)co 6650  Fincfn 7955  cc 9934  1c1 9937   + caddc 9939   · cmul 9941  -cneg 10267  0cn0 11292  cz 11377  cexp 12860  #chash 13117  Word cword 13291   ++ cconcat 13293  Basecbs 15857  s cress 15858  +gcplusg 15941   Σg cgsu 16101  Mndcmnd 17294  Grpcgrp 17422  SubGrpcsubg 17588   GrpHom cghm 17657  SymGrpcsymg 17797  pmTrspcpmtr 17861  pmSgncpsgn 17909  mulGrpcmgp 18489  fldccnfld 19746
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-xor 1465  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-ot 4186  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-tpos 7352  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-xnn0 11364  df-z 11378  df-dec 11494  df-uz 11688  df-rp 11833  df-fz 12327  df-fzo 12466  df-seq 12802  df-exp 12861  df-hash 13118  df-word 13299  df-lsw 13300  df-concat 13301  df-s1 13302  df-substr 13303  df-splice 13304  df-reverse 13305  df-s2 13593  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-0g 16102  df-gsum 16103  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-mhm 17335  df-submnd 17336  df-grp 17425  df-minusg 17426  df-subg 17591  df-ghm 17658  df-gim 17701  df-oppg 17776  df-symg 17798  df-pmtr 17862  df-psgn 17911  df-cmn 18195  df-abl 18196  df-mgp 18490  df-ur 18502  df-ring 18549  df-cring 18550  df-oppr 18623  df-dvdsr 18641  df-unit 18642  df-invr 18672  df-dvr 18683  df-drng 18749  df-cnfld 19747
This theorem is referenced by:  psgnghm2  19927  evpmss  19932
  Copyright terms: Public domain W3C validator