MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cphipval Structured version   Visualization version   GIF version

Theorem cphipval 23042
Description: Value of the inner product expressed by a sum of terms with the norm defined by the inner product. Equation 6.45 of [Ponnusamy] p. 361. (Contributed by NM, 31-Jan-2007.) (Revised by AV, 18-Oct-2021.)
Hypotheses
Ref Expression
cphipfval.x 𝑋 = (Base‘𝑊)
cphipfval.p + = (+g𝑊)
cphipfval.s · = ( ·𝑠𝑊)
cphipfval.n 𝑁 = (norm‘𝑊)
cphipfval.i , = (·𝑖𝑊)
cphipval.f 𝐹 = (Scalar‘𝑊)
cphipval.k 𝐾 = (Base‘𝐹)
Assertion
Ref Expression
cphipval (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (𝐴 , 𝐵) = (Σ𝑘 ∈ (1...4)((i↑𝑘) · ((𝑁‘(𝐴 + ((i↑𝑘) · 𝐵)))↑2)) / 4))
Distinct variable groups:   𝑘,𝑁   𝐴,𝑘   𝐵,𝑘   𝑘,𝑋   𝑘,𝐾   𝑘,𝑊   + ,𝑘   · ,𝑘
Allowed substitution hints:   𝐹(𝑘)   , (𝑘)

Proof of Theorem cphipval
StepHypRef Expression
1 cphipfval.x . . 3 𝑋 = (Base‘𝑊)
2 cphipfval.p . . 3 + = (+g𝑊)
3 cphipfval.s . . 3 · = ( ·𝑠𝑊)
4 cphipfval.n . . 3 𝑁 = (norm‘𝑊)
5 cphipfval.i . . 3 , = (·𝑖𝑊)
6 eqid 2622 . . 3 (-g𝑊) = (-g𝑊)
7 cphipval.f . . 3 𝐹 = (Scalar‘𝑊)
8 cphipval.k . . 3 𝐾 = (Base‘𝐹)
91, 2, 3, 4, 5, 6, 7, 8cphipval2 23040 . 2 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (𝐴 , 𝐵) = (((((𝑁‘(𝐴 + 𝐵))↑2) − ((𝑁‘(𝐴(-g𝑊)𝐵))↑2)) + (i · (((𝑁‘(𝐴 + (i · 𝐵)))↑2) − ((𝑁‘(𝐴(-g𝑊)(i · 𝐵)))↑2)))) / 4))
10 ax-icn 9995 . . . . . . . . . 10 i ∈ ℂ
1110a1i 11 . . . . . . . . 9 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → i ∈ ℂ)
12 simp1l 1085 . . . . . . . . . . 11 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → 𝑊 ∈ ℂPreHil)
13 cphngp 22973 . . . . . . . . . . . . . . 15 (𝑊 ∈ ℂPreHil → 𝑊 ∈ NrmGrp)
14 ngpgrp 22403 . . . . . . . . . . . . . . 15 (𝑊 ∈ NrmGrp → 𝑊 ∈ Grp)
1513, 14syl 17 . . . . . . . . . . . . . 14 (𝑊 ∈ ℂPreHil → 𝑊 ∈ Grp)
1615adantr 481 . . . . . . . . . . . . 13 ((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) → 𝑊 ∈ Grp)
17163ad2ant1 1082 . . . . . . . . . . . 12 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → 𝑊 ∈ Grp)
18 simp2 1062 . . . . . . . . . . . 12 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → 𝐴𝑋)
19 cphlmod 22974 . . . . . . . . . . . . . . . 16 (𝑊 ∈ ℂPreHil → 𝑊 ∈ LMod)
20193anim1i 1248 . . . . . . . . . . . . . . 15 ((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾𝐵𝑋) → (𝑊 ∈ LMod ∧ i ∈ 𝐾𝐵𝑋))
21203expa 1265 . . . . . . . . . . . . . 14 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐵𝑋) → (𝑊 ∈ LMod ∧ i ∈ 𝐾𝐵𝑋))
221, 7, 3, 8lmodvscl 18880 . . . . . . . . . . . . . 14 ((𝑊 ∈ LMod ∧ i ∈ 𝐾𝐵𝑋) → (i · 𝐵) ∈ 𝑋)
2321, 22syl 17 . . . . . . . . . . . . 13 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐵𝑋) → (i · 𝐵) ∈ 𝑋)
24233adant2 1080 . . . . . . . . . . . 12 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (i · 𝐵) ∈ 𝑋)
251, 2grpcl 17430 . . . . . . . . . . . 12 ((𝑊 ∈ Grp ∧ 𝐴𝑋 ∧ (i · 𝐵) ∈ 𝑋) → (𝐴 + (i · 𝐵)) ∈ 𝑋)
2617, 18, 24, 25syl3anc 1326 . . . . . . . . . . 11 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (𝐴 + (i · 𝐵)) ∈ 𝑋)
271, 5, 4nmsq 22994 . . . . . . . . . . 11 ((𝑊 ∈ ℂPreHil ∧ (𝐴 + (i · 𝐵)) ∈ 𝑋) → ((𝑁‘(𝐴 + (i · 𝐵)))↑2) = ((𝐴 + (i · 𝐵)) , (𝐴 + (i · 𝐵))))
2812, 26, 27syl2anc 693 . . . . . . . . . 10 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → ((𝑁‘(𝐴 + (i · 𝐵)))↑2) = ((𝐴 + (i · 𝐵)) , (𝐴 + (i · 𝐵))))
291, 5reipcl 22997 . . . . . . . . . . . 12 ((𝑊 ∈ ℂPreHil ∧ (𝐴 + (i · 𝐵)) ∈ 𝑋) → ((𝐴 + (i · 𝐵)) , (𝐴 + (i · 𝐵))) ∈ ℝ)
3012, 26, 29syl2anc 693 . . . . . . . . . . 11 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → ((𝐴 + (i · 𝐵)) , (𝐴 + (i · 𝐵))) ∈ ℝ)
3130recnd 10068 . . . . . . . . . 10 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → ((𝐴 + (i · 𝐵)) , (𝐴 + (i · 𝐵))) ∈ ℂ)
3228, 31eqeltrd 2701 . . . . . . . . 9 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → ((𝑁‘(𝐴 + (i · 𝐵)))↑2) ∈ ℂ)
3311, 32mulcld 10060 . . . . . . . 8 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (i · ((𝑁‘(𝐴 + (i · 𝐵)))↑2)) ∈ ℂ)
3419adantr 481 . . . . . . . . . . . . . 14 ((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) → 𝑊 ∈ LMod)
35343ad2ant1 1082 . . . . . . . . . . . . 13 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → 𝑊 ∈ LMod)
36 cphclm 22989 . . . . . . . . . . . . . . . 16 (𝑊 ∈ ℂPreHil → 𝑊 ∈ ℂMod)
377, 8clmneg1 22882 . . . . . . . . . . . . . . . 16 (𝑊 ∈ ℂMod → -1 ∈ 𝐾)
3836, 37syl 17 . . . . . . . . . . . . . . 15 (𝑊 ∈ ℂPreHil → -1 ∈ 𝐾)
3938adantr 481 . . . . . . . . . . . . . 14 ((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) → -1 ∈ 𝐾)
40393ad2ant1 1082 . . . . . . . . . . . . 13 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → -1 ∈ 𝐾)
41 simp3 1063 . . . . . . . . . . . . 13 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → 𝐵𝑋)
421, 7, 3, 8lmodvscl 18880 . . . . . . . . . . . . 13 ((𝑊 ∈ LMod ∧ -1 ∈ 𝐾𝐵𝑋) → (-1 · 𝐵) ∈ 𝑋)
4335, 40, 41, 42syl3anc 1326 . . . . . . . . . . . 12 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (-1 · 𝐵) ∈ 𝑋)
441, 2grpcl 17430 . . . . . . . . . . . 12 ((𝑊 ∈ Grp ∧ 𝐴𝑋 ∧ (-1 · 𝐵) ∈ 𝑋) → (𝐴 + (-1 · 𝐵)) ∈ 𝑋)
4517, 18, 43, 44syl3anc 1326 . . . . . . . . . . 11 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (𝐴 + (-1 · 𝐵)) ∈ 𝑋)
461, 5, 4nmsq 22994 . . . . . . . . . . 11 ((𝑊 ∈ ℂPreHil ∧ (𝐴 + (-1 · 𝐵)) ∈ 𝑋) → ((𝑁‘(𝐴 + (-1 · 𝐵)))↑2) = ((𝐴 + (-1 · 𝐵)) , (𝐴 + (-1 · 𝐵))))
4712, 45, 46syl2anc 693 . . . . . . . . . 10 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → ((𝑁‘(𝐴 + (-1 · 𝐵)))↑2) = ((𝐴 + (-1 · 𝐵)) , (𝐴 + (-1 · 𝐵))))
481, 5reipcl 22997 . . . . . . . . . . 11 ((𝑊 ∈ ℂPreHil ∧ (𝐴 + (-1 · 𝐵)) ∈ 𝑋) → ((𝐴 + (-1 · 𝐵)) , (𝐴 + (-1 · 𝐵))) ∈ ℝ)
4912, 45, 48syl2anc 693 . . . . . . . . . 10 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → ((𝐴 + (-1 · 𝐵)) , (𝐴 + (-1 · 𝐵))) ∈ ℝ)
5047, 49eqeltrd 2701 . . . . . . . . 9 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → ((𝑁‘(𝐴 + (-1 · 𝐵)))↑2) ∈ ℝ)
5150recnd 10068 . . . . . . . 8 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → ((𝑁‘(𝐴 + (-1 · 𝐵)))↑2) ∈ ℂ)
52 addneg1mul 10472 . . . . . . . 8 (((i · ((𝑁‘(𝐴 + (i · 𝐵)))↑2)) ∈ ℂ ∧ ((𝑁‘(𝐴 + (-1 · 𝐵)))↑2) ∈ ℂ) → ((i · ((𝑁‘(𝐴 + (i · 𝐵)))↑2)) + (-1 · ((𝑁‘(𝐴 + (-1 · 𝐵)))↑2))) = ((i · ((𝑁‘(𝐴 + (i · 𝐵)))↑2)) − ((𝑁‘(𝐴 + (-1 · 𝐵)))↑2)))
5333, 51, 52syl2anc 693 . . . . . . 7 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → ((i · ((𝑁‘(𝐴 + (i · 𝐵)))↑2)) + (-1 · ((𝑁‘(𝐴 + (-1 · 𝐵)))↑2))) = ((i · ((𝑁‘(𝐴 + (i · 𝐵)))↑2)) − ((𝑁‘(𝐴 + (-1 · 𝐵)))↑2)))
5436adantr 481 . . . . . . . . . . 11 ((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) → 𝑊 ∈ ℂMod)
551, 2, 6, 7, 3clmvsubval 22909 . . . . . . . . . . . 12 ((𝑊 ∈ ℂMod ∧ 𝐴𝑋𝐵𝑋) → (𝐴(-g𝑊)𝐵) = (𝐴 + (-1 · 𝐵)))
5655eqcomd 2628 . . . . . . . . . . 11 ((𝑊 ∈ ℂMod ∧ 𝐴𝑋𝐵𝑋) → (𝐴 + (-1 · 𝐵)) = (𝐴(-g𝑊)𝐵))
5754, 56syl3an1 1359 . . . . . . . . . 10 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (𝐴 + (-1 · 𝐵)) = (𝐴(-g𝑊)𝐵))
5857fveq2d 6195 . . . . . . . . 9 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (𝑁‘(𝐴 + (-1 · 𝐵))) = (𝑁‘(𝐴(-g𝑊)𝐵)))
5958oveq1d 6665 . . . . . . . 8 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → ((𝑁‘(𝐴 + (-1 · 𝐵)))↑2) = ((𝑁‘(𝐴(-g𝑊)𝐵))↑2))
6059oveq2d 6666 . . . . . . 7 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → ((i · ((𝑁‘(𝐴 + (i · 𝐵)))↑2)) − ((𝑁‘(𝐴 + (-1 · 𝐵)))↑2)) = ((i · ((𝑁‘(𝐴 + (i · 𝐵)))↑2)) − ((𝑁‘(𝐴(-g𝑊)𝐵))↑2)))
6153, 60eqtrd 2656 . . . . . 6 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → ((i · ((𝑁‘(𝐴 + (i · 𝐵)))↑2)) + (-1 · ((𝑁‘(𝐴 + (-1 · 𝐵)))↑2))) = ((i · ((𝑁‘(𝐴 + (i · 𝐵)))↑2)) − ((𝑁‘(𝐴(-g𝑊)𝐵))↑2)))
62 eqid 2622 . . . . . . . . . . . . 13 (invg𝑊) = (invg𝑊)
63543ad2ant1 1082 . . . . . . . . . . . . 13 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → 𝑊 ∈ ℂMod)
64 simp1r 1086 . . . . . . . . . . . . 13 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → i ∈ 𝐾)
651, 7, 3, 62, 8, 63, 41, 64clmvsneg 22900 . . . . . . . . . . . 12 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → ((invg𝑊)‘(i · 𝐵)) = (-i · 𝐵))
6665eqcomd 2628 . . . . . . . . . . 11 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (-i · 𝐵) = ((invg𝑊)‘(i · 𝐵)))
6766oveq2d 6666 . . . . . . . . . 10 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (𝐴 + (-i · 𝐵)) = (𝐴 + ((invg𝑊)‘(i · 𝐵))))
681, 2, 62, 6grpsubval 17465 . . . . . . . . . . 11 ((𝐴𝑋 ∧ (i · 𝐵) ∈ 𝑋) → (𝐴(-g𝑊)(i · 𝐵)) = (𝐴 + ((invg𝑊)‘(i · 𝐵))))
6918, 24, 68syl2anc 693 . . . . . . . . . 10 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (𝐴(-g𝑊)(i · 𝐵)) = (𝐴 + ((invg𝑊)‘(i · 𝐵))))
7067, 69eqtr4d 2659 . . . . . . . . 9 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (𝐴 + (-i · 𝐵)) = (𝐴(-g𝑊)(i · 𝐵)))
7170fveq2d 6195 . . . . . . . 8 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (𝑁‘(𝐴 + (-i · 𝐵))) = (𝑁‘(𝐴(-g𝑊)(i · 𝐵))))
7271oveq1d 6665 . . . . . . 7 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → ((𝑁‘(𝐴 + (-i · 𝐵)))↑2) = ((𝑁‘(𝐴(-g𝑊)(i · 𝐵)))↑2))
7372oveq2d 6666 . . . . . 6 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (-i · ((𝑁‘(𝐴 + (-i · 𝐵)))↑2)) = (-i · ((𝑁‘(𝐴(-g𝑊)(i · 𝐵)))↑2)))
7461, 73oveq12d 6668 . . . . 5 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (((i · ((𝑁‘(𝐴 + (i · 𝐵)))↑2)) + (-1 · ((𝑁‘(𝐴 + (-1 · 𝐵)))↑2))) + (-i · ((𝑁‘(𝐴 + (-i · 𝐵)))↑2))) = (((i · ((𝑁‘(𝐴 + (i · 𝐵)))↑2)) − ((𝑁‘(𝐴(-g𝑊)𝐵))↑2)) + (-i · ((𝑁‘(𝐴(-g𝑊)(i · 𝐵)))↑2))))
7554anim1i 592 . . . . . . . . . . . 12 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐵𝑋) → (𝑊 ∈ ℂMod ∧ 𝐵𝑋))
76753adant2 1080 . . . . . . . . . . 11 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (𝑊 ∈ ℂMod ∧ 𝐵𝑋))
771, 3clmvs1 22893 . . . . . . . . . . 11 ((𝑊 ∈ ℂMod ∧ 𝐵𝑋) → (1 · 𝐵) = 𝐵)
7876, 77syl 17 . . . . . . . . . 10 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (1 · 𝐵) = 𝐵)
7978oveq2d 6666 . . . . . . . . 9 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (𝐴 + (1 · 𝐵)) = (𝐴 + 𝐵))
8079fveq2d 6195 . . . . . . . 8 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (𝑁‘(𝐴 + (1 · 𝐵))) = (𝑁‘(𝐴 + 𝐵)))
8180oveq1d 6665 . . . . . . 7 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → ((𝑁‘(𝐴 + (1 · 𝐵)))↑2) = ((𝑁‘(𝐴 + 𝐵))↑2))
8281oveq2d 6666 . . . . . 6 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (1 · ((𝑁‘(𝐴 + (1 · 𝐵)))↑2)) = (1 · ((𝑁‘(𝐴 + 𝐵))↑2)))
831, 2grpcl 17430 . . . . . . . . . . 11 ((𝑊 ∈ Grp ∧ 𝐴𝑋𝐵𝑋) → (𝐴 + 𝐵) ∈ 𝑋)
8416, 83syl3an1 1359 . . . . . . . . . 10 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (𝐴 + 𝐵) ∈ 𝑋)
851, 5, 4nmsq 22994 . . . . . . . . . 10 ((𝑊 ∈ ℂPreHil ∧ (𝐴 + 𝐵) ∈ 𝑋) → ((𝑁‘(𝐴 + 𝐵))↑2) = ((𝐴 + 𝐵) , (𝐴 + 𝐵)))
8612, 84, 85syl2anc 693 . . . . . . . . 9 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → ((𝑁‘(𝐴 + 𝐵))↑2) = ((𝐴 + 𝐵) , (𝐴 + 𝐵)))
871, 5reipcl 22997 . . . . . . . . . 10 ((𝑊 ∈ ℂPreHil ∧ (𝐴 + 𝐵) ∈ 𝑋) → ((𝐴 + 𝐵) , (𝐴 + 𝐵)) ∈ ℝ)
8812, 84, 87syl2anc 693 . . . . . . . . 9 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → ((𝐴 + 𝐵) , (𝐴 + 𝐵)) ∈ ℝ)
8986, 88eqeltrd 2701 . . . . . . . 8 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → ((𝑁‘(𝐴 + 𝐵))↑2) ∈ ℝ)
9089recnd 10068 . . . . . . 7 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → ((𝑁‘(𝐴 + 𝐵))↑2) ∈ ℂ)
9190mulid2d 10058 . . . . . 6 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (1 · ((𝑁‘(𝐴 + 𝐵))↑2)) = ((𝑁‘(𝐴 + 𝐵))↑2))
9282, 91eqtrd 2656 . . . . 5 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (1 · ((𝑁‘(𝐴 + (1 · 𝐵)))↑2)) = ((𝑁‘(𝐴 + 𝐵))↑2))
9374, 92oveq12d 6668 . . . 4 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → ((((i · ((𝑁‘(𝐴 + (i · 𝐵)))↑2)) + (-1 · ((𝑁‘(𝐴 + (-1 · 𝐵)))↑2))) + (-i · ((𝑁‘(𝐴 + (-i · 𝐵)))↑2))) + (1 · ((𝑁‘(𝐴 + (1 · 𝐵)))↑2))) = ((((i · ((𝑁‘(𝐴 + (i · 𝐵)))↑2)) − ((𝑁‘(𝐴(-g𝑊)𝐵))↑2)) + (-i · ((𝑁‘(𝐴(-g𝑊)(i · 𝐵)))↑2))) + ((𝑁‘(𝐴 + 𝐵))↑2)))
94 nnuz 11723 . . . . . 6 ℕ = (ℤ‘1)
95 df-4 11081 . . . . . 6 4 = (3 + 1)
96 oveq2 6658 . . . . . . . 8 (𝑘 = 4 → (i↑𝑘) = (i↑4))
97 i4 12967 . . . . . . . 8 (i↑4) = 1
9896, 97syl6eq 2672 . . . . . . 7 (𝑘 = 4 → (i↑𝑘) = 1)
9998oveq1d 6665 . . . . . . . . . 10 (𝑘 = 4 → ((i↑𝑘) · 𝐵) = (1 · 𝐵))
10099oveq2d 6666 . . . . . . . . 9 (𝑘 = 4 → (𝐴 + ((i↑𝑘) · 𝐵)) = (𝐴 + (1 · 𝐵)))
101100fveq2d 6195 . . . . . . . 8 (𝑘 = 4 → (𝑁‘(𝐴 + ((i↑𝑘) · 𝐵))) = (𝑁‘(𝐴 + (1 · 𝐵))))
102101oveq1d 6665 . . . . . . 7 (𝑘 = 4 → ((𝑁‘(𝐴 + ((i↑𝑘) · 𝐵)))↑2) = ((𝑁‘(𝐴 + (1 · 𝐵)))↑2))
10398, 102oveq12d 6668 . . . . . 6 (𝑘 = 4 → ((i↑𝑘) · ((𝑁‘(𝐴 + ((i↑𝑘) · 𝐵)))↑2)) = (1 · ((𝑁‘(𝐴 + (1 · 𝐵)))↑2)))
10410a1i 11 . . . . . . . . 9 (𝑘 ∈ ℕ → i ∈ ℂ)
105 nnnn0 11299 . . . . . . . . 9 (𝑘 ∈ ℕ → 𝑘 ∈ ℕ0)
106104, 105expcld 13008 . . . . . . . 8 (𝑘 ∈ ℕ → (i↑𝑘) ∈ ℂ)
107106adantl 482 . . . . . . 7 ((((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) ∧ 𝑘 ∈ ℕ) → (i↑𝑘) ∈ ℂ)
10812adantr 481 . . . . . . . . 9 ((((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) ∧ 𝑘 ∈ ℕ) → 𝑊 ∈ ℂPreHil)
10917adantr 481 . . . . . . . . . 10 ((((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) ∧ 𝑘 ∈ ℕ) → 𝑊 ∈ Grp)
11018adantr 481 . . . . . . . . . 10 ((((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) ∧ 𝑘 ∈ ℕ) → 𝐴𝑋)
11135adantr 481 . . . . . . . . . . 11 ((((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) ∧ 𝑘 ∈ ℕ) → 𝑊 ∈ LMod)
11236anim1i 592 . . . . . . . . . . . . 13 ((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) → (𝑊 ∈ ℂMod ∧ i ∈ 𝐾))
1131123ad2ant1 1082 . . . . . . . . . . . 12 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (𝑊 ∈ ℂMod ∧ i ∈ 𝐾))
1147, 8cmodscexp 22921 . . . . . . . . . . . 12 (((𝑊 ∈ ℂMod ∧ i ∈ 𝐾) ∧ 𝑘 ∈ ℕ) → (i↑𝑘) ∈ 𝐾)
115113, 114sylan 488 . . . . . . . . . . 11 ((((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) ∧ 𝑘 ∈ ℕ) → (i↑𝑘) ∈ 𝐾)
11641adantr 481 . . . . . . . . . . 11 ((((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) ∧ 𝑘 ∈ ℕ) → 𝐵𝑋)
1171, 7, 3, 8lmodvscl 18880 . . . . . . . . . . 11 ((𝑊 ∈ LMod ∧ (i↑𝑘) ∈ 𝐾𝐵𝑋) → ((i↑𝑘) · 𝐵) ∈ 𝑋)
118111, 115, 116, 117syl3anc 1326 . . . . . . . . . 10 ((((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) ∧ 𝑘 ∈ ℕ) → ((i↑𝑘) · 𝐵) ∈ 𝑋)
1191, 2grpcl 17430 . . . . . . . . . 10 ((𝑊 ∈ Grp ∧ 𝐴𝑋 ∧ ((i↑𝑘) · 𝐵) ∈ 𝑋) → (𝐴 + ((i↑𝑘) · 𝐵)) ∈ 𝑋)
120109, 110, 118, 119syl3anc 1326 . . . . . . . . 9 ((((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) ∧ 𝑘 ∈ ℕ) → (𝐴 + ((i↑𝑘) · 𝐵)) ∈ 𝑋)
1211, 5, 4nmsq 22994 . . . . . . . . 9 ((𝑊 ∈ ℂPreHil ∧ (𝐴 + ((i↑𝑘) · 𝐵)) ∈ 𝑋) → ((𝑁‘(𝐴 + ((i↑𝑘) · 𝐵)))↑2) = ((𝐴 + ((i↑𝑘) · 𝐵)) , (𝐴 + ((i↑𝑘) · 𝐵))))
122108, 120, 121syl2anc 693 . . . . . . . 8 ((((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) ∧ 𝑘 ∈ ℕ) → ((𝑁‘(𝐴 + ((i↑𝑘) · 𝐵)))↑2) = ((𝐴 + ((i↑𝑘) · 𝐵)) , (𝐴 + ((i↑𝑘) · 𝐵))))
1231, 5reipcl 22997 . . . . . . . . . 10 ((𝑊 ∈ ℂPreHil ∧ (𝐴 + ((i↑𝑘) · 𝐵)) ∈ 𝑋) → ((𝐴 + ((i↑𝑘) · 𝐵)) , (𝐴 + ((i↑𝑘) · 𝐵))) ∈ ℝ)
124108, 120, 123syl2anc 693 . . . . . . . . 9 ((((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) ∧ 𝑘 ∈ ℕ) → ((𝐴 + ((i↑𝑘) · 𝐵)) , (𝐴 + ((i↑𝑘) · 𝐵))) ∈ ℝ)
125124recnd 10068 . . . . . . . 8 ((((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) ∧ 𝑘 ∈ ℕ) → ((𝐴 + ((i↑𝑘) · 𝐵)) , (𝐴 + ((i↑𝑘) · 𝐵))) ∈ ℂ)
126122, 125eqeltrd 2701 . . . . . . 7 ((((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) ∧ 𝑘 ∈ ℕ) → ((𝑁‘(𝐴 + ((i↑𝑘) · 𝐵)))↑2) ∈ ℂ)
127107, 126mulcld 10060 . . . . . 6 ((((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) ∧ 𝑘 ∈ ℕ) → ((i↑𝑘) · ((𝑁‘(𝐴 + ((i↑𝑘) · 𝐵)))↑2)) ∈ ℂ)
128 df-3 11080 . . . . . . 7 3 = (2 + 1)
129 oveq2 6658 . . . . . . . . 9 (𝑘 = 3 → (i↑𝑘) = (i↑3))
130 i3 12966 . . . . . . . . 9 (i↑3) = -i
131129, 130syl6eq 2672 . . . . . . . 8 (𝑘 = 3 → (i↑𝑘) = -i)
132131oveq1d 6665 . . . . . . . . . . 11 (𝑘 = 3 → ((i↑𝑘) · 𝐵) = (-i · 𝐵))
133132oveq2d 6666 . . . . . . . . . 10 (𝑘 = 3 → (𝐴 + ((i↑𝑘) · 𝐵)) = (𝐴 + (-i · 𝐵)))
134133fveq2d 6195 . . . . . . . . 9 (𝑘 = 3 → (𝑁‘(𝐴 + ((i↑𝑘) · 𝐵))) = (𝑁‘(𝐴 + (-i · 𝐵))))
135134oveq1d 6665 . . . . . . . 8 (𝑘 = 3 → ((𝑁‘(𝐴 + ((i↑𝑘) · 𝐵)))↑2) = ((𝑁‘(𝐴 + (-i · 𝐵)))↑2))
136131, 135oveq12d 6668 . . . . . . 7 (𝑘 = 3 → ((i↑𝑘) · ((𝑁‘(𝐴 + ((i↑𝑘) · 𝐵)))↑2)) = (-i · ((𝑁‘(𝐴 + (-i · 𝐵)))↑2)))
13710a1i 11 . . . . . . . . 9 ((((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) ∧ 𝑘 ∈ ℕ) → i ∈ ℂ)
138105adantl 482 . . . . . . . . 9 ((((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℕ0)
139137, 138expcld 13008 . . . . . . . 8 ((((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) ∧ 𝑘 ∈ ℕ) → (i↑𝑘) ∈ ℂ)
140123recnd 10068 . . . . . . . . . 10 ((𝑊 ∈ ℂPreHil ∧ (𝐴 + ((i↑𝑘) · 𝐵)) ∈ 𝑋) → ((𝐴 + ((i↑𝑘) · 𝐵)) , (𝐴 + ((i↑𝑘) · 𝐵))) ∈ ℂ)
141108, 120, 140syl2anc 693 . . . . . . . . 9 ((((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) ∧ 𝑘 ∈ ℕ) → ((𝐴 + ((i↑𝑘) · 𝐵)) , (𝐴 + ((i↑𝑘) · 𝐵))) ∈ ℂ)
142122, 141eqeltrd 2701 . . . . . . . 8 ((((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) ∧ 𝑘 ∈ ℕ) → ((𝑁‘(𝐴 + ((i↑𝑘) · 𝐵)))↑2) ∈ ℂ)
143139, 142mulcld 10060 . . . . . . 7 ((((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) ∧ 𝑘 ∈ ℕ) → ((i↑𝑘) · ((𝑁‘(𝐴 + ((i↑𝑘) · 𝐵)))↑2)) ∈ ℂ)
144 df-2 11079 . . . . . . . 8 2 = (1 + 1)
145 oveq2 6658 . . . . . . . . . 10 (𝑘 = 2 → (i↑𝑘) = (i↑2))
146 i2 12965 . . . . . . . . . 10 (i↑2) = -1
147145, 146syl6eq 2672 . . . . . . . . 9 (𝑘 = 2 → (i↑𝑘) = -1)
148147oveq1d 6665 . . . . . . . . . . . 12 (𝑘 = 2 → ((i↑𝑘) · 𝐵) = (-1 · 𝐵))
149148oveq2d 6666 . . . . . . . . . . 11 (𝑘 = 2 → (𝐴 + ((i↑𝑘) · 𝐵)) = (𝐴 + (-1 · 𝐵)))
150149fveq2d 6195 . . . . . . . . . 10 (𝑘 = 2 → (𝑁‘(𝐴 + ((i↑𝑘) · 𝐵))) = (𝑁‘(𝐴 + (-1 · 𝐵))))
151150oveq1d 6665 . . . . . . . . 9 (𝑘 = 2 → ((𝑁‘(𝐴 + ((i↑𝑘) · 𝐵)))↑2) = ((𝑁‘(𝐴 + (-1 · 𝐵)))↑2))
152147, 151oveq12d 6668 . . . . . . . 8 (𝑘 = 2 → ((i↑𝑘) · ((𝑁‘(𝐴 + ((i↑𝑘) · 𝐵)))↑2)) = (-1 · ((𝑁‘(𝐴 + (-1 · 𝐵)))↑2)))
153139, 126mulcld 10060 . . . . . . . 8 ((((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) ∧ 𝑘 ∈ ℕ) → ((i↑𝑘) · ((𝑁‘(𝐴 + ((i↑𝑘) · 𝐵)))↑2)) ∈ ℂ)
154 1z 11407 . . . . . . . . . 10 1 ∈ ℤ
155 oveq2 6658 . . . . . . . . . . . . 13 (𝑘 = 1 → (i↑𝑘) = (i↑1))
156 exp1 12866 . . . . . . . . . . . . . 14 (i ∈ ℂ → (i↑1) = i)
15710, 156ax-mp 5 . . . . . . . . . . . . 13 (i↑1) = i
158155, 157syl6eq 2672 . . . . . . . . . . . 12 (𝑘 = 1 → (i↑𝑘) = i)
159158oveq1d 6665 . . . . . . . . . . . . . . 15 (𝑘 = 1 → ((i↑𝑘) · 𝐵) = (i · 𝐵))
160159oveq2d 6666 . . . . . . . . . . . . . 14 (𝑘 = 1 → (𝐴 + ((i↑𝑘) · 𝐵)) = (𝐴 + (i · 𝐵)))
161160fveq2d 6195 . . . . . . . . . . . . 13 (𝑘 = 1 → (𝑁‘(𝐴 + ((i↑𝑘) · 𝐵))) = (𝑁‘(𝐴 + (i · 𝐵))))
162161oveq1d 6665 . . . . . . . . . . . 12 (𝑘 = 1 → ((𝑁‘(𝐴 + ((i↑𝑘) · 𝐵)))↑2) = ((𝑁‘(𝐴 + (i · 𝐵)))↑2))
163158, 162oveq12d 6668 . . . . . . . . . . 11 (𝑘 = 1 → ((i↑𝑘) · ((𝑁‘(𝐴 + ((i↑𝑘) · 𝐵)))↑2)) = (i · ((𝑁‘(𝐴 + (i · 𝐵)))↑2)))
164163fsum1 14476 . . . . . . . . . 10 ((1 ∈ ℤ ∧ (i · ((𝑁‘(𝐴 + (i · 𝐵)))↑2)) ∈ ℂ) → Σ𝑘 ∈ (1...1)((i↑𝑘) · ((𝑁‘(𝐴 + ((i↑𝑘) · 𝐵)))↑2)) = (i · ((𝑁‘(𝐴 + (i · 𝐵)))↑2)))
165154, 33, 164sylancr 695 . . . . . . . . 9 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → Σ𝑘 ∈ (1...1)((i↑𝑘) · ((𝑁‘(𝐴 + ((i↑𝑘) · 𝐵)))↑2)) = (i · ((𝑁‘(𝐴 + (i · 𝐵)))↑2)))
166 1nn 11031 . . . . . . . . 9 1 ∈ ℕ
167165, 166jctil 560 . . . . . . . 8 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (1 ∈ ℕ ∧ Σ𝑘 ∈ (1...1)((i↑𝑘) · ((𝑁‘(𝐴 + ((i↑𝑘) · 𝐵)))↑2)) = (i · ((𝑁‘(𝐴 + (i · 𝐵)))↑2))))
168 eqidd 2623 . . . . . . . 8 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → ((i · ((𝑁‘(𝐴 + (i · 𝐵)))↑2)) + (-1 · ((𝑁‘(𝐴 + (-1 · 𝐵)))↑2))) = ((i · ((𝑁‘(𝐴 + (i · 𝐵)))↑2)) + (-1 · ((𝑁‘(𝐴 + (-1 · 𝐵)))↑2))))
16994, 144, 152, 153, 167, 168fsump1i 14500 . . . . . . 7 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (2 ∈ ℕ ∧ Σ𝑘 ∈ (1...2)((i↑𝑘) · ((𝑁‘(𝐴 + ((i↑𝑘) · 𝐵)))↑2)) = ((i · ((𝑁‘(𝐴 + (i · 𝐵)))↑2)) + (-1 · ((𝑁‘(𝐴 + (-1 · 𝐵)))↑2)))))
170 eqidd 2623 . . . . . . 7 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (((i · ((𝑁‘(𝐴 + (i · 𝐵)))↑2)) + (-1 · ((𝑁‘(𝐴 + (-1 · 𝐵)))↑2))) + (-i · ((𝑁‘(𝐴 + (-i · 𝐵)))↑2))) = (((i · ((𝑁‘(𝐴 + (i · 𝐵)))↑2)) + (-1 · ((𝑁‘(𝐴 + (-1 · 𝐵)))↑2))) + (-i · ((𝑁‘(𝐴 + (-i · 𝐵)))↑2))))
17194, 128, 136, 143, 169, 170fsump1i 14500 . . . . . 6 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (3 ∈ ℕ ∧ Σ𝑘 ∈ (1...3)((i↑𝑘) · ((𝑁‘(𝐴 + ((i↑𝑘) · 𝐵)))↑2)) = (((i · ((𝑁‘(𝐴 + (i · 𝐵)))↑2)) + (-1 · ((𝑁‘(𝐴 + (-1 · 𝐵)))↑2))) + (-i · ((𝑁‘(𝐴 + (-i · 𝐵)))↑2)))))
172 eqidd 2623 . . . . . 6 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → ((((i · ((𝑁‘(𝐴 + (i · 𝐵)))↑2)) + (-1 · ((𝑁‘(𝐴 + (-1 · 𝐵)))↑2))) + (-i · ((𝑁‘(𝐴 + (-i · 𝐵)))↑2))) + (1 · ((𝑁‘(𝐴 + (1 · 𝐵)))↑2))) = ((((i · ((𝑁‘(𝐴 + (i · 𝐵)))↑2)) + (-1 · ((𝑁‘(𝐴 + (-1 · 𝐵)))↑2))) + (-i · ((𝑁‘(𝐴 + (-i · 𝐵)))↑2))) + (1 · ((𝑁‘(𝐴 + (1 · 𝐵)))↑2))))
17394, 95, 103, 127, 171, 172fsump1i 14500 . . . . 5 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (4 ∈ ℕ ∧ Σ𝑘 ∈ (1...4)((i↑𝑘) · ((𝑁‘(𝐴 + ((i↑𝑘) · 𝐵)))↑2)) = ((((i · ((𝑁‘(𝐴 + (i · 𝐵)))↑2)) + (-1 · ((𝑁‘(𝐴 + (-1 · 𝐵)))↑2))) + (-i · ((𝑁‘(𝐴 + (-i · 𝐵)))↑2))) + (1 · ((𝑁‘(𝐴 + (1 · 𝐵)))↑2)))))
174173simprd 479 . . . 4 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → Σ𝑘 ∈ (1...4)((i↑𝑘) · ((𝑁‘(𝐴 + ((i↑𝑘) · 𝐵)))↑2)) = ((((i · ((𝑁‘(𝐴 + (i · 𝐵)))↑2)) + (-1 · ((𝑁‘(𝐴 + (-1 · 𝐵)))↑2))) + (-i · ((𝑁‘(𝐴 + (-i · 𝐵)))↑2))) + (1 · ((𝑁‘(𝐴 + (1 · 𝐵)))↑2))))
1751, 6grpsubcl 17495 . . . . . . . . . . . 12 ((𝑊 ∈ Grp ∧ 𝐴𝑋𝐵𝑋) → (𝐴(-g𝑊)𝐵) ∈ 𝑋)
17616, 175syl3an1 1359 . . . . . . . . . . 11 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (𝐴(-g𝑊)𝐵) ∈ 𝑋)
1771, 5, 4nmsq 22994 . . . . . . . . . . 11 ((𝑊 ∈ ℂPreHil ∧ (𝐴(-g𝑊)𝐵) ∈ 𝑋) → ((𝑁‘(𝐴(-g𝑊)𝐵))↑2) = ((𝐴(-g𝑊)𝐵) , (𝐴(-g𝑊)𝐵)))
17812, 176, 177syl2anc 693 . . . . . . . . . 10 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → ((𝑁‘(𝐴(-g𝑊)𝐵))↑2) = ((𝐴(-g𝑊)𝐵) , (𝐴(-g𝑊)𝐵)))
1791, 5reipcl 22997 . . . . . . . . . . 11 ((𝑊 ∈ ℂPreHil ∧ (𝐴(-g𝑊)𝐵) ∈ 𝑋) → ((𝐴(-g𝑊)𝐵) , (𝐴(-g𝑊)𝐵)) ∈ ℝ)
18012, 176, 179syl2anc 693 . . . . . . . . . 10 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → ((𝐴(-g𝑊)𝐵) , (𝐴(-g𝑊)𝐵)) ∈ ℝ)
181178, 180eqeltrd 2701 . . . . . . . . 9 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → ((𝑁‘(𝐴(-g𝑊)𝐵))↑2) ∈ ℝ)
182181recnd 10068 . . . . . . . 8 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → ((𝑁‘(𝐴(-g𝑊)𝐵))↑2) ∈ ℂ)
18390, 182subcld 10392 . . . . . . 7 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (((𝑁‘(𝐴 + 𝐵))↑2) − ((𝑁‘(𝐴(-g𝑊)𝐵))↑2)) ∈ ℂ)
1841, 6grpsubcl 17495 . . . . . . . . . . . . 13 ((𝑊 ∈ Grp ∧ 𝐴𝑋 ∧ (i · 𝐵) ∈ 𝑋) → (𝐴(-g𝑊)(i · 𝐵)) ∈ 𝑋)
18517, 18, 24, 184syl3anc 1326 . . . . . . . . . . . 12 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (𝐴(-g𝑊)(i · 𝐵)) ∈ 𝑋)
1861, 5, 4nmsq 22994 . . . . . . . . . . . 12 ((𝑊 ∈ ℂPreHil ∧ (𝐴(-g𝑊)(i · 𝐵)) ∈ 𝑋) → ((𝑁‘(𝐴(-g𝑊)(i · 𝐵)))↑2) = ((𝐴(-g𝑊)(i · 𝐵)) , (𝐴(-g𝑊)(i · 𝐵))))
18712, 185, 186syl2anc 693 . . . . . . . . . . 11 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → ((𝑁‘(𝐴(-g𝑊)(i · 𝐵)))↑2) = ((𝐴(-g𝑊)(i · 𝐵)) , (𝐴(-g𝑊)(i · 𝐵))))
1881, 5reipcl 22997 . . . . . . . . . . . 12 ((𝑊 ∈ ℂPreHil ∧ (𝐴(-g𝑊)(i · 𝐵)) ∈ 𝑋) → ((𝐴(-g𝑊)(i · 𝐵)) , (𝐴(-g𝑊)(i · 𝐵))) ∈ ℝ)
18912, 185, 188syl2anc 693 . . . . . . . . . . 11 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → ((𝐴(-g𝑊)(i · 𝐵)) , (𝐴(-g𝑊)(i · 𝐵))) ∈ ℝ)
190187, 189eqeltrd 2701 . . . . . . . . . 10 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → ((𝑁‘(𝐴(-g𝑊)(i · 𝐵)))↑2) ∈ ℝ)
191190recnd 10068 . . . . . . . . 9 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → ((𝑁‘(𝐴(-g𝑊)(i · 𝐵)))↑2) ∈ ℂ)
19232, 191subcld 10392 . . . . . . . 8 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (((𝑁‘(𝐴 + (i · 𝐵)))↑2) − ((𝑁‘(𝐴(-g𝑊)(i · 𝐵)))↑2)) ∈ ℂ)
19311, 192mulcld 10060 . . . . . . 7 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (i · (((𝑁‘(𝐴 + (i · 𝐵)))↑2) − ((𝑁‘(𝐴(-g𝑊)(i · 𝐵)))↑2))) ∈ ℂ)
194183, 193addcomd 10238 . . . . . 6 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → ((((𝑁‘(𝐴 + 𝐵))↑2) − ((𝑁‘(𝐴(-g𝑊)𝐵))↑2)) + (i · (((𝑁‘(𝐴 + (i · 𝐵)))↑2) − ((𝑁‘(𝐴(-g𝑊)(i · 𝐵)))↑2)))) = ((i · (((𝑁‘(𝐴 + (i · 𝐵)))↑2) − ((𝑁‘(𝐴(-g𝑊)(i · 𝐵)))↑2))) + (((𝑁‘(𝐴 + 𝐵))↑2) − ((𝑁‘(𝐴(-g𝑊)𝐵))↑2))))
195193, 182, 90subadd23d 10414 . . . . . 6 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (((i · (((𝑁‘(𝐴 + (i · 𝐵)))↑2) − ((𝑁‘(𝐴(-g𝑊)(i · 𝐵)))↑2))) − ((𝑁‘(𝐴(-g𝑊)𝐵))↑2)) + ((𝑁‘(𝐴 + 𝐵))↑2)) = ((i · (((𝑁‘(𝐴 + (i · 𝐵)))↑2) − ((𝑁‘(𝐴(-g𝑊)(i · 𝐵)))↑2))) + (((𝑁‘(𝐴 + 𝐵))↑2) − ((𝑁‘(𝐴(-g𝑊)𝐵))↑2))))
19632, 191, 11subdir2d 10488 . . . . . . . . 9 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (i · (((𝑁‘(𝐴 + (i · 𝐵)))↑2) − ((𝑁‘(𝐴(-g𝑊)(i · 𝐵)))↑2))) = ((i · ((𝑁‘(𝐴 + (i · 𝐵)))↑2)) − (i · ((𝑁‘(𝐴(-g𝑊)(i · 𝐵)))↑2))))
197196oveq1d 6665 . . . . . . . 8 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → ((i · (((𝑁‘(𝐴 + (i · 𝐵)))↑2) − ((𝑁‘(𝐴(-g𝑊)(i · 𝐵)))↑2))) − ((𝑁‘(𝐴(-g𝑊)𝐵))↑2)) = (((i · ((𝑁‘(𝐴 + (i · 𝐵)))↑2)) − (i · ((𝑁‘(𝐴(-g𝑊)(i · 𝐵)))↑2))) − ((𝑁‘(𝐴(-g𝑊)𝐵))↑2)))
19811, 191mulcld 10060 . . . . . . . . 9 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (i · ((𝑁‘(𝐴(-g𝑊)(i · 𝐵)))↑2)) ∈ ℂ)
19933, 198, 182sub32d 10424 . . . . . . . 8 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (((i · ((𝑁‘(𝐴 + (i · 𝐵)))↑2)) − (i · ((𝑁‘(𝐴(-g𝑊)(i · 𝐵)))↑2))) − ((𝑁‘(𝐴(-g𝑊)𝐵))↑2)) = (((i · ((𝑁‘(𝐴 + (i · 𝐵)))↑2)) − ((𝑁‘(𝐴(-g𝑊)𝐵))↑2)) − (i · ((𝑁‘(𝐴(-g𝑊)(i · 𝐵)))↑2))))
200197, 199eqtrd 2656 . . . . . . 7 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → ((i · (((𝑁‘(𝐴 + (i · 𝐵)))↑2) − ((𝑁‘(𝐴(-g𝑊)(i · 𝐵)))↑2))) − ((𝑁‘(𝐴(-g𝑊)𝐵))↑2)) = (((i · ((𝑁‘(𝐴 + (i · 𝐵)))↑2)) − ((𝑁‘(𝐴(-g𝑊)𝐵))↑2)) − (i · ((𝑁‘(𝐴(-g𝑊)(i · 𝐵)))↑2))))
201200oveq1d 6665 . . . . . 6 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (((i · (((𝑁‘(𝐴 + (i · 𝐵)))↑2) − ((𝑁‘(𝐴(-g𝑊)(i · 𝐵)))↑2))) − ((𝑁‘(𝐴(-g𝑊)𝐵))↑2)) + ((𝑁‘(𝐴 + 𝐵))↑2)) = ((((i · ((𝑁‘(𝐴 + (i · 𝐵)))↑2)) − ((𝑁‘(𝐴(-g𝑊)𝐵))↑2)) − (i · ((𝑁‘(𝐴(-g𝑊)(i · 𝐵)))↑2))) + ((𝑁‘(𝐴 + 𝐵))↑2)))
202194, 195, 2013eqtr2d 2662 . . . . 5 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → ((((𝑁‘(𝐴 + 𝐵))↑2) − ((𝑁‘(𝐴(-g𝑊)𝐵))↑2)) + (i · (((𝑁‘(𝐴 + (i · 𝐵)))↑2) − ((𝑁‘(𝐴(-g𝑊)(i · 𝐵)))↑2)))) = ((((i · ((𝑁‘(𝐴 + (i · 𝐵)))↑2)) − ((𝑁‘(𝐴(-g𝑊)𝐵))↑2)) − (i · ((𝑁‘(𝐴(-g𝑊)(i · 𝐵)))↑2))) + ((𝑁‘(𝐴 + 𝐵))↑2)))
20333, 182subcld 10392 . . . . . . . 8 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → ((i · ((𝑁‘(𝐴 + (i · 𝐵)))↑2)) − ((𝑁‘(𝐴(-g𝑊)𝐵))↑2)) ∈ ℂ)
204203, 198negsubd 10398 . . . . . . 7 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (((i · ((𝑁‘(𝐴 + (i · 𝐵)))↑2)) − ((𝑁‘(𝐴(-g𝑊)𝐵))↑2)) + -(i · ((𝑁‘(𝐴(-g𝑊)(i · 𝐵)))↑2))) = (((i · ((𝑁‘(𝐴 + (i · 𝐵)))↑2)) − ((𝑁‘(𝐴(-g𝑊)𝐵))↑2)) − (i · ((𝑁‘(𝐴(-g𝑊)(i · 𝐵)))↑2))))
20511, 191mulneg1d 10483 . . . . . . . . 9 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (-i · ((𝑁‘(𝐴(-g𝑊)(i · 𝐵)))↑2)) = -(i · ((𝑁‘(𝐴(-g𝑊)(i · 𝐵)))↑2)))
206205eqcomd 2628 . . . . . . . 8 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → -(i · ((𝑁‘(𝐴(-g𝑊)(i · 𝐵)))↑2)) = (-i · ((𝑁‘(𝐴(-g𝑊)(i · 𝐵)))↑2)))
207206oveq2d 6666 . . . . . . 7 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (((i · ((𝑁‘(𝐴 + (i · 𝐵)))↑2)) − ((𝑁‘(𝐴(-g𝑊)𝐵))↑2)) + -(i · ((𝑁‘(𝐴(-g𝑊)(i · 𝐵)))↑2))) = (((i · ((𝑁‘(𝐴 + (i · 𝐵)))↑2)) − ((𝑁‘(𝐴(-g𝑊)𝐵))↑2)) + (-i · ((𝑁‘(𝐴(-g𝑊)(i · 𝐵)))↑2))))
208204, 207eqtr3d 2658 . . . . . 6 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (((i · ((𝑁‘(𝐴 + (i · 𝐵)))↑2)) − ((𝑁‘(𝐴(-g𝑊)𝐵))↑2)) − (i · ((𝑁‘(𝐴(-g𝑊)(i · 𝐵)))↑2))) = (((i · ((𝑁‘(𝐴 + (i · 𝐵)))↑2)) − ((𝑁‘(𝐴(-g𝑊)𝐵))↑2)) + (-i · ((𝑁‘(𝐴(-g𝑊)(i · 𝐵)))↑2))))
209208oveq1d 6665 . . . . 5 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → ((((i · ((𝑁‘(𝐴 + (i · 𝐵)))↑2)) − ((𝑁‘(𝐴(-g𝑊)𝐵))↑2)) − (i · ((𝑁‘(𝐴(-g𝑊)(i · 𝐵)))↑2))) + ((𝑁‘(𝐴 + 𝐵))↑2)) = ((((i · ((𝑁‘(𝐴 + (i · 𝐵)))↑2)) − ((𝑁‘(𝐴(-g𝑊)𝐵))↑2)) + (-i · ((𝑁‘(𝐴(-g𝑊)(i · 𝐵)))↑2))) + ((𝑁‘(𝐴 + 𝐵))↑2)))
210202, 209eqtrd 2656 . . . 4 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → ((((𝑁‘(𝐴 + 𝐵))↑2) − ((𝑁‘(𝐴(-g𝑊)𝐵))↑2)) + (i · (((𝑁‘(𝐴 + (i · 𝐵)))↑2) − ((𝑁‘(𝐴(-g𝑊)(i · 𝐵)))↑2)))) = ((((i · ((𝑁‘(𝐴 + (i · 𝐵)))↑2)) − ((𝑁‘(𝐴(-g𝑊)𝐵))↑2)) + (-i · ((𝑁‘(𝐴(-g𝑊)(i · 𝐵)))↑2))) + ((𝑁‘(𝐴 + 𝐵))↑2)))
21193, 174, 2103eqtr4rd 2667 . . 3 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → ((((𝑁‘(𝐴 + 𝐵))↑2) − ((𝑁‘(𝐴(-g𝑊)𝐵))↑2)) + (i · (((𝑁‘(𝐴 + (i · 𝐵)))↑2) − ((𝑁‘(𝐴(-g𝑊)(i · 𝐵)))↑2)))) = Σ𝑘 ∈ (1...4)((i↑𝑘) · ((𝑁‘(𝐴 + ((i↑𝑘) · 𝐵)))↑2)))
212211oveq1d 6665 . 2 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (((((𝑁‘(𝐴 + 𝐵))↑2) − ((𝑁‘(𝐴(-g𝑊)𝐵))↑2)) + (i · (((𝑁‘(𝐴 + (i · 𝐵)))↑2) − ((𝑁‘(𝐴(-g𝑊)(i · 𝐵)))↑2)))) / 4) = (Σ𝑘 ∈ (1...4)((i↑𝑘) · ((𝑁‘(𝐴 + ((i↑𝑘) · 𝐵)))↑2)) / 4))
2139, 212eqtrd 2656 1 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (𝐴 , 𝐵) = (Σ𝑘 ∈ (1...4)((i↑𝑘) · ((𝑁‘(𝐴 + ((i↑𝑘) · 𝐵)))↑2)) / 4))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1037   = wceq 1483  wcel 1990  cfv 5888  (class class class)co 6650  cc 9934  cr 9935  1c1 9937  ici 9938   + caddc 9939   · cmul 9941  cmin 10266  -cneg 10267   / cdiv 10684  cn 11020  2c2 11070  3c3 11071  4c4 11072  0cn0 11292  cz 11377  ...cfz 12326  cexp 12860  Σcsu 14416  Basecbs 15857  +gcplusg 15941  Scalarcsca 15944   ·𝑠 cvsca 15945  ·𝑖cip 15946  Grpcgrp 17422  invgcminusg 17423  -gcsg 17424  LModclmod 18863  normcnm 22381  NrmGrpcngp 22382  ℂModcclm 22862  ℂPreHilccph 22966
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-tpos 7352  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-fz 12327  df-fzo 12466  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-sum 14417  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-0g 16102  df-topgen 16104  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-mhm 17335  df-submnd 17336  df-grp 17425  df-minusg 17426  df-sbg 17427  df-mulg 17541  df-subg 17591  df-ghm 17658  df-cmn 18195  df-abl 18196  df-mgp 18490  df-ur 18502  df-ring 18549  df-cring 18550  df-oppr 18623  df-dvdsr 18641  df-unit 18642  df-rnghom 18715  df-drng 18749  df-subrg 18778  df-staf 18845  df-srng 18846  df-lmod 18865  df-lmhm 19022  df-lvec 19103  df-sra 19172  df-rgmod 19173  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-cnfld 19747  df-phl 19971  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-xms 22125  df-ms 22126  df-nm 22387  df-ngp 22388  df-nlm 22391  df-clm 22863  df-cph 22968
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator