![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > cznnring | Structured version Visualization version GIF version |
Description: The ring constructed from a ℤ/nℤ structure with 1 < 𝑛 by replacing the (multiplicative) ring operation by a constant operation is not a unital ring. (Contributed by AV, 17-Feb-2020.) |
Ref | Expression |
---|---|
cznrng.y | ⊢ 𝑌 = (ℤ/nℤ‘𝑁) |
cznrng.b | ⊢ 𝐵 = (Base‘𝑌) |
cznrng.x | ⊢ 𝑋 = (𝑌 sSet 〈(.r‘ndx), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶)〉) |
cznrng.0 | ⊢ 0 = (0g‘𝑌) |
Ref | Expression |
---|---|
cznnring | ⊢ ((𝑁 ∈ (ℤ≥‘2) ∧ 𝐶 ∈ 𝐵) → 𝑋 ∉ Ring) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2622 | . . . . . . 7 ⊢ (mulGrp‘𝑋) = (mulGrp‘𝑋) | |
2 | cznrng.y | . . . . . . . 8 ⊢ 𝑌 = (ℤ/nℤ‘𝑁) | |
3 | cznrng.b | . . . . . . . 8 ⊢ 𝐵 = (Base‘𝑌) | |
4 | cznrng.x | . . . . . . . 8 ⊢ 𝑋 = (𝑌 sSet 〈(.r‘ndx), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶)〉) | |
5 | 2, 3, 4 | cznrnglem 41953 | . . . . . . 7 ⊢ 𝐵 = (Base‘𝑋) |
6 | 1, 5 | mgpbas 18495 | . . . . . 6 ⊢ 𝐵 = (Base‘(mulGrp‘𝑋)) |
7 | 4 | fveq2i 6194 | . . . . . . . 8 ⊢ (mulGrp‘𝑋) = (mulGrp‘(𝑌 sSet 〈(.r‘ndx), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶)〉)) |
8 | fvex 6201 | . . . . . . . . . 10 ⊢ (ℤ/nℤ‘𝑁) ∈ V | |
9 | 2, 8 | eqeltri 2697 | . . . . . . . . 9 ⊢ 𝑌 ∈ V |
10 | fvex 6201 | . . . . . . . . . . 11 ⊢ (Base‘𝑌) ∈ V | |
11 | 3, 10 | eqeltri 2697 | . . . . . . . . . 10 ⊢ 𝐵 ∈ V |
12 | 11, 11 | mpt2ex 7247 | . . . . . . . . 9 ⊢ (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶) ∈ V |
13 | mulrid 15997 | . . . . . . . . . 10 ⊢ .r = Slot (.r‘ndx) | |
14 | 13 | setsid 15914 | . . . . . . . . 9 ⊢ ((𝑌 ∈ V ∧ (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶) ∈ V) → (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶) = (.r‘(𝑌 sSet 〈(.r‘ndx), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶)〉))) |
15 | 9, 12, 14 | mp2an 708 | . . . . . . . 8 ⊢ (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶) = (.r‘(𝑌 sSet 〈(.r‘ndx), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶)〉)) |
16 | 7, 15 | mgpplusg 18493 | . . . . . . 7 ⊢ (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶) = (+g‘(mulGrp‘𝑋)) |
17 | 16 | eqcomi 2631 | . . . . . 6 ⊢ (+g‘(mulGrp‘𝑋)) = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶) |
18 | simpr 477 | . . . . . 6 ⊢ ((𝑁 ∈ (ℤ≥‘2) ∧ 𝐶 ∈ 𝐵) → 𝐶 ∈ 𝐵) | |
19 | eluz2 11693 | . . . . . . . . 9 ⊢ (𝑁 ∈ (ℤ≥‘2) ↔ (2 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 2 ≤ 𝑁)) | |
20 | 1lt2 11194 | . . . . . . . . . 10 ⊢ 1 < 2 | |
21 | 1red 10055 | . . . . . . . . . . . . . 14 ⊢ (𝑁 ∈ ℤ → 1 ∈ ℝ) | |
22 | 2re 11090 | . . . . . . . . . . . . . . 15 ⊢ 2 ∈ ℝ | |
23 | 22 | a1i 11 | . . . . . . . . . . . . . 14 ⊢ (𝑁 ∈ ℤ → 2 ∈ ℝ) |
24 | zre 11381 | . . . . . . . . . . . . . 14 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℝ) | |
25 | ltletr 10129 | . . . . . . . . . . . . . 14 ⊢ ((1 ∈ ℝ ∧ 2 ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((1 < 2 ∧ 2 ≤ 𝑁) → 1 < 𝑁)) | |
26 | 21, 23, 24, 25 | syl3anc 1326 | . . . . . . . . . . . . 13 ⊢ (𝑁 ∈ ℤ → ((1 < 2 ∧ 2 ≤ 𝑁) → 1 < 𝑁)) |
27 | 26 | expcomd 454 | . . . . . . . . . . . 12 ⊢ (𝑁 ∈ ℤ → (2 ≤ 𝑁 → (1 < 2 → 1 < 𝑁))) |
28 | 27 | a1i 11 | . . . . . . . . . . 11 ⊢ (2 ∈ ℤ → (𝑁 ∈ ℤ → (2 ≤ 𝑁 → (1 < 2 → 1 < 𝑁)))) |
29 | 28 | 3imp 1256 | . . . . . . . . . 10 ⊢ ((2 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 2 ≤ 𝑁) → (1 < 2 → 1 < 𝑁)) |
30 | 20, 29 | mpi 20 | . . . . . . . . 9 ⊢ ((2 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 2 ≤ 𝑁) → 1 < 𝑁) |
31 | 19, 30 | sylbi 207 | . . . . . . . 8 ⊢ (𝑁 ∈ (ℤ≥‘2) → 1 < 𝑁) |
32 | eluz2nn 11726 | . . . . . . . . 9 ⊢ (𝑁 ∈ (ℤ≥‘2) → 𝑁 ∈ ℕ) | |
33 | 2, 3 | znhash 19907 | . . . . . . . . 9 ⊢ (𝑁 ∈ ℕ → (#‘𝐵) = 𝑁) |
34 | 32, 33 | syl 17 | . . . . . . . 8 ⊢ (𝑁 ∈ (ℤ≥‘2) → (#‘𝐵) = 𝑁) |
35 | 31, 34 | breqtrrd 4681 | . . . . . . 7 ⊢ (𝑁 ∈ (ℤ≥‘2) → 1 < (#‘𝐵)) |
36 | 35 | adantr 481 | . . . . . 6 ⊢ ((𝑁 ∈ (ℤ≥‘2) ∧ 𝐶 ∈ 𝐵) → 1 < (#‘𝐵)) |
37 | 6, 17, 18, 36 | copisnmnd 41809 | . . . . 5 ⊢ ((𝑁 ∈ (ℤ≥‘2) ∧ 𝐶 ∈ 𝐵) → (mulGrp‘𝑋) ∉ Mnd) |
38 | df-nel 2898 | . . . . 5 ⊢ ((mulGrp‘𝑋) ∉ Mnd ↔ ¬ (mulGrp‘𝑋) ∈ Mnd) | |
39 | 37, 38 | sylib 208 | . . . 4 ⊢ ((𝑁 ∈ (ℤ≥‘2) ∧ 𝐶 ∈ 𝐵) → ¬ (mulGrp‘𝑋) ∈ Mnd) |
40 | 39 | intn3an2d 1443 | . . 3 ⊢ ((𝑁 ∈ (ℤ≥‘2) ∧ 𝐶 ∈ 𝐵) → ¬ (𝑋 ∈ Grp ∧ (mulGrp‘𝑋) ∈ Mnd ∧ ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 ∀𝑐 ∈ 𝐵 ((𝑎(.r‘(𝑌 sSet 〈(.r‘ndx), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶)〉))(𝑏(+g‘𝑋)𝑐)) = ((𝑎(.r‘(𝑌 sSet 〈(.r‘ndx), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶)〉))𝑏)(+g‘𝑋)(𝑎(.r‘(𝑌 sSet 〈(.r‘ndx), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶)〉))𝑐)) ∧ ((𝑎(+g‘𝑋)𝑏)(.r‘(𝑌 sSet 〈(.r‘ndx), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶)〉))𝑐) = ((𝑎(.r‘(𝑌 sSet 〈(.r‘ndx), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶)〉))𝑐)(+g‘𝑋)(𝑏(.r‘(𝑌 sSet 〈(.r‘ndx), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶)〉))𝑐))))) |
41 | eqid 2622 | . . . 4 ⊢ (+g‘𝑋) = (+g‘𝑋) | |
42 | 4 | eqcomi 2631 | . . . . 5 ⊢ (𝑌 sSet 〈(.r‘ndx), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶)〉) = 𝑋 |
43 | 42 | fveq2i 6194 | . . . 4 ⊢ (.r‘(𝑌 sSet 〈(.r‘ndx), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶)〉)) = (.r‘𝑋) |
44 | 5, 1, 41, 43 | isring 18551 | . . 3 ⊢ (𝑋 ∈ Ring ↔ (𝑋 ∈ Grp ∧ (mulGrp‘𝑋) ∈ Mnd ∧ ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 ∀𝑐 ∈ 𝐵 ((𝑎(.r‘(𝑌 sSet 〈(.r‘ndx), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶)〉))(𝑏(+g‘𝑋)𝑐)) = ((𝑎(.r‘(𝑌 sSet 〈(.r‘ndx), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶)〉))𝑏)(+g‘𝑋)(𝑎(.r‘(𝑌 sSet 〈(.r‘ndx), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶)〉))𝑐)) ∧ ((𝑎(+g‘𝑋)𝑏)(.r‘(𝑌 sSet 〈(.r‘ndx), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶)〉))𝑐) = ((𝑎(.r‘(𝑌 sSet 〈(.r‘ndx), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶)〉))𝑐)(+g‘𝑋)(𝑏(.r‘(𝑌 sSet 〈(.r‘ndx), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶)〉))𝑐))))) |
45 | 40, 44 | sylnibr 319 | . 2 ⊢ ((𝑁 ∈ (ℤ≥‘2) ∧ 𝐶 ∈ 𝐵) → ¬ 𝑋 ∈ Ring) |
46 | df-nel 2898 | . 2 ⊢ (𝑋 ∉ Ring ↔ ¬ 𝑋 ∈ Ring) | |
47 | 45, 46 | sylibr 224 | 1 ⊢ ((𝑁 ∈ (ℤ≥‘2) ∧ 𝐶 ∈ 𝐵) → 𝑋 ∉ Ring) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 384 ∧ w3a 1037 = wceq 1483 ∈ wcel 1990 ∉ wnel 2897 ∀wral 2912 Vcvv 3200 〈cop 4183 class class class wbr 4653 ‘cfv 5888 (class class class)co 6650 ↦ cmpt2 6652 ℝcr 9935 1c1 9937 < clt 10074 ≤ cle 10075 ℕcn 11020 2c2 11070 ℤcz 11377 ℤ≥cuz 11687 #chash 13117 ndxcnx 15854 sSet csts 15855 Basecbs 15857 +gcplusg 15941 .rcmulr 15942 0gc0g 16100 Mndcmnd 17294 Grpcgrp 17422 mulGrpcmgp 18489 Ringcrg 18547 ℤ/nℤczn 19851 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-inf2 8538 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 ax-pre-sup 10014 ax-addf 10015 ax-mulf 10016 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-int 4476 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-1st 7168 df-2nd 7169 df-tpos 7352 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-1o 7560 df-oadd 7564 df-er 7742 df-ec 7744 df-qs 7748 df-map 7859 df-en 7956 df-dom 7957 df-sdom 7958 df-fin 7959 df-sup 8348 df-inf 8349 df-card 8765 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-div 10685 df-nn 11021 df-2 11079 df-3 11080 df-4 11081 df-5 11082 df-6 11083 df-7 11084 df-8 11085 df-9 11086 df-n0 11293 df-xnn0 11364 df-z 11378 df-dec 11494 df-uz 11688 df-rp 11833 df-fz 12327 df-fzo 12466 df-fl 12593 df-mod 12669 df-seq 12802 df-hash 13118 df-dvds 14984 df-struct 15859 df-ndx 15860 df-slot 15861 df-base 15863 df-sets 15864 df-ress 15865 df-plusg 15954 df-mulr 15955 df-starv 15956 df-sca 15957 df-vsca 15958 df-ip 15959 df-tset 15960 df-ple 15961 df-ds 15964 df-unif 15965 df-0g 16102 df-imas 16168 df-qus 16169 df-mgm 17242 df-sgrp 17284 df-mnd 17295 df-mhm 17335 df-grp 17425 df-minusg 17426 df-sbg 17427 df-mulg 17541 df-subg 17591 df-nsg 17592 df-eqg 17593 df-ghm 17658 df-cmn 18195 df-abl 18196 df-mgp 18490 df-ur 18502 df-ring 18549 df-cring 18550 df-oppr 18623 df-dvdsr 18641 df-rnghom 18715 df-subrg 18778 df-lmod 18865 df-lss 18933 df-lsp 18972 df-sra 19172 df-rgmod 19173 df-lidl 19174 df-rsp 19175 df-2idl 19232 df-cnfld 19747 df-zring 19819 df-zrh 19852 df-zn 19855 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |