![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dchreq | Structured version Visualization version GIF version |
Description: A Dirichlet character is determined by its values on the unit group. (Contributed by Mario Carneiro, 28-Apr-2016.) |
Ref | Expression |
---|---|
dchrresb.g | ⊢ 𝐺 = (DChr‘𝑁) |
dchrresb.z | ⊢ 𝑍 = (ℤ/nℤ‘𝑁) |
dchrresb.b | ⊢ 𝐷 = (Base‘𝐺) |
dchrresb.u | ⊢ 𝑈 = (Unit‘𝑍) |
dchrresb.x | ⊢ (𝜑 → 𝑋 ∈ 𝐷) |
dchrresb.Y | ⊢ (𝜑 → 𝑌 ∈ 𝐷) |
Ref | Expression |
---|---|
dchreq | ⊢ (𝜑 → (𝑋 = 𝑌 ↔ ∀𝑘 ∈ 𝑈 (𝑋‘𝑘) = (𝑌‘𝑘))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dchrresb.g | . . . . . 6 ⊢ 𝐺 = (DChr‘𝑁) | |
2 | dchrresb.z | . . . . . 6 ⊢ 𝑍 = (ℤ/nℤ‘𝑁) | |
3 | dchrresb.b | . . . . . 6 ⊢ 𝐷 = (Base‘𝐺) | |
4 | eqid 2622 | . . . . . 6 ⊢ (Base‘𝑍) = (Base‘𝑍) | |
5 | dchrresb.x | . . . . . 6 ⊢ (𝜑 → 𝑋 ∈ 𝐷) | |
6 | 1, 2, 3, 4, 5 | dchrf 24967 | . . . . 5 ⊢ (𝜑 → 𝑋:(Base‘𝑍)⟶ℂ) |
7 | ffn 6045 | . . . . 5 ⊢ (𝑋:(Base‘𝑍)⟶ℂ → 𝑋 Fn (Base‘𝑍)) | |
8 | 6, 7 | syl 17 | . . . 4 ⊢ (𝜑 → 𝑋 Fn (Base‘𝑍)) |
9 | dchrresb.Y | . . . . . 6 ⊢ (𝜑 → 𝑌 ∈ 𝐷) | |
10 | 1, 2, 3, 4, 9 | dchrf 24967 | . . . . 5 ⊢ (𝜑 → 𝑌:(Base‘𝑍)⟶ℂ) |
11 | ffn 6045 | . . . . 5 ⊢ (𝑌:(Base‘𝑍)⟶ℂ → 𝑌 Fn (Base‘𝑍)) | |
12 | 10, 11 | syl 17 | . . . 4 ⊢ (𝜑 → 𝑌 Fn (Base‘𝑍)) |
13 | eqfnfv 6311 | . . . 4 ⊢ ((𝑋 Fn (Base‘𝑍) ∧ 𝑌 Fn (Base‘𝑍)) → (𝑋 = 𝑌 ↔ ∀𝑘 ∈ (Base‘𝑍)(𝑋‘𝑘) = (𝑌‘𝑘))) | |
14 | 8, 12, 13 | syl2anc 693 | . . 3 ⊢ (𝜑 → (𝑋 = 𝑌 ↔ ∀𝑘 ∈ (Base‘𝑍)(𝑋‘𝑘) = (𝑌‘𝑘))) |
15 | dchrresb.u | . . . . . . 7 ⊢ 𝑈 = (Unit‘𝑍) | |
16 | 4, 15 | unitss 18660 | . . . . . 6 ⊢ 𝑈 ⊆ (Base‘𝑍) |
17 | undif 4049 | . . . . . 6 ⊢ (𝑈 ⊆ (Base‘𝑍) ↔ (𝑈 ∪ ((Base‘𝑍) ∖ 𝑈)) = (Base‘𝑍)) | |
18 | 16, 17 | mpbi 220 | . . . . 5 ⊢ (𝑈 ∪ ((Base‘𝑍) ∖ 𝑈)) = (Base‘𝑍) |
19 | 18 | raleqi 3142 | . . . 4 ⊢ (∀𝑘 ∈ (𝑈 ∪ ((Base‘𝑍) ∖ 𝑈))(𝑋‘𝑘) = (𝑌‘𝑘) ↔ ∀𝑘 ∈ (Base‘𝑍)(𝑋‘𝑘) = (𝑌‘𝑘)) |
20 | ralunb 3794 | . . . 4 ⊢ (∀𝑘 ∈ (𝑈 ∪ ((Base‘𝑍) ∖ 𝑈))(𝑋‘𝑘) = (𝑌‘𝑘) ↔ (∀𝑘 ∈ 𝑈 (𝑋‘𝑘) = (𝑌‘𝑘) ∧ ∀𝑘 ∈ ((Base‘𝑍) ∖ 𝑈)(𝑋‘𝑘) = (𝑌‘𝑘))) | |
21 | 19, 20 | bitr3i 266 | . . 3 ⊢ (∀𝑘 ∈ (Base‘𝑍)(𝑋‘𝑘) = (𝑌‘𝑘) ↔ (∀𝑘 ∈ 𝑈 (𝑋‘𝑘) = (𝑌‘𝑘) ∧ ∀𝑘 ∈ ((Base‘𝑍) ∖ 𝑈)(𝑋‘𝑘) = (𝑌‘𝑘))) |
22 | 14, 21 | syl6bb 276 | . 2 ⊢ (𝜑 → (𝑋 = 𝑌 ↔ (∀𝑘 ∈ 𝑈 (𝑋‘𝑘) = (𝑌‘𝑘) ∧ ∀𝑘 ∈ ((Base‘𝑍) ∖ 𝑈)(𝑋‘𝑘) = (𝑌‘𝑘)))) |
23 | eldif 3584 | . . . . . 6 ⊢ (𝑘 ∈ ((Base‘𝑍) ∖ 𝑈) ↔ (𝑘 ∈ (Base‘𝑍) ∧ ¬ 𝑘 ∈ 𝑈)) | |
24 | 5 | adantr 481 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑘 ∈ (Base‘𝑍)) → 𝑋 ∈ 𝐷) |
25 | simpr 477 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑘 ∈ (Base‘𝑍)) → 𝑘 ∈ (Base‘𝑍)) | |
26 | 1, 2, 3, 4, 15, 24, 25 | dchrn0 24975 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑘 ∈ (Base‘𝑍)) → ((𝑋‘𝑘) ≠ 0 ↔ 𝑘 ∈ 𝑈)) |
27 | 26 | biimpd 219 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑘 ∈ (Base‘𝑍)) → ((𝑋‘𝑘) ≠ 0 → 𝑘 ∈ 𝑈)) |
28 | 27 | necon1bd 2812 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ (Base‘𝑍)) → (¬ 𝑘 ∈ 𝑈 → (𝑋‘𝑘) = 0)) |
29 | 28 | impr 649 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑘 ∈ (Base‘𝑍) ∧ ¬ 𝑘 ∈ 𝑈)) → (𝑋‘𝑘) = 0) |
30 | 23, 29 | sylan2b 492 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ ((Base‘𝑍) ∖ 𝑈)) → (𝑋‘𝑘) = 0) |
31 | 9 | adantr 481 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑘 ∈ (Base‘𝑍)) → 𝑌 ∈ 𝐷) |
32 | 1, 2, 3, 4, 15, 31, 25 | dchrn0 24975 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑘 ∈ (Base‘𝑍)) → ((𝑌‘𝑘) ≠ 0 ↔ 𝑘 ∈ 𝑈)) |
33 | 32 | biimpd 219 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑘 ∈ (Base‘𝑍)) → ((𝑌‘𝑘) ≠ 0 → 𝑘 ∈ 𝑈)) |
34 | 33 | necon1bd 2812 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ (Base‘𝑍)) → (¬ 𝑘 ∈ 𝑈 → (𝑌‘𝑘) = 0)) |
35 | 34 | impr 649 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑘 ∈ (Base‘𝑍) ∧ ¬ 𝑘 ∈ 𝑈)) → (𝑌‘𝑘) = 0) |
36 | 23, 35 | sylan2b 492 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ ((Base‘𝑍) ∖ 𝑈)) → (𝑌‘𝑘) = 0) |
37 | 30, 36 | eqtr4d 2659 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ ((Base‘𝑍) ∖ 𝑈)) → (𝑋‘𝑘) = (𝑌‘𝑘)) |
38 | 37 | ralrimiva 2966 | . . 3 ⊢ (𝜑 → ∀𝑘 ∈ ((Base‘𝑍) ∖ 𝑈)(𝑋‘𝑘) = (𝑌‘𝑘)) |
39 | 38 | biantrud 528 | . 2 ⊢ (𝜑 → (∀𝑘 ∈ 𝑈 (𝑋‘𝑘) = (𝑌‘𝑘) ↔ (∀𝑘 ∈ 𝑈 (𝑋‘𝑘) = (𝑌‘𝑘) ∧ ∀𝑘 ∈ ((Base‘𝑍) ∖ 𝑈)(𝑋‘𝑘) = (𝑌‘𝑘)))) |
40 | 22, 39 | bitr4d 271 | 1 ⊢ (𝜑 → (𝑋 = 𝑌 ↔ ∀𝑘 ∈ 𝑈 (𝑋‘𝑘) = (𝑌‘𝑘))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 196 ∧ wa 384 = wceq 1483 ∈ wcel 1990 ≠ wne 2794 ∀wral 2912 ∖ cdif 3571 ∪ cun 3572 ⊆ wss 3574 Fn wfn 5883 ⟶wf 5884 ‘cfv 5888 ℂcc 9934 0cc0 9936 Basecbs 15857 Unitcui 18639 ℤ/nℤczn 19851 DChrcdchr 24957 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 ax-addf 10015 ax-mulf 10016 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-int 4476 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-1st 7168 df-2nd 7169 df-tpos 7352 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-1o 7560 df-oadd 7564 df-er 7742 df-ec 7744 df-qs 7748 df-map 7859 df-en 7956 df-dom 7957 df-sdom 7958 df-fin 7959 df-sup 8348 df-inf 8349 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-nn 11021 df-2 11079 df-3 11080 df-4 11081 df-5 11082 df-6 11083 df-7 11084 df-8 11085 df-9 11086 df-n0 11293 df-z 11378 df-dec 11494 df-uz 11688 df-fz 12327 df-struct 15859 df-ndx 15860 df-slot 15861 df-base 15863 df-sets 15864 df-ress 15865 df-plusg 15954 df-mulr 15955 df-starv 15956 df-sca 15957 df-vsca 15958 df-ip 15959 df-tset 15960 df-ple 15961 df-ds 15964 df-unif 15965 df-0g 16102 df-imas 16168 df-qus 16169 df-mgm 17242 df-sgrp 17284 df-mnd 17295 df-mhm 17335 df-grp 17425 df-minusg 17426 df-sbg 17427 df-subg 17591 df-nsg 17592 df-eqg 17593 df-cmn 18195 df-abl 18196 df-mgp 18490 df-ur 18502 df-ring 18549 df-cring 18550 df-oppr 18623 df-dvdsr 18641 df-unit 18642 df-invr 18672 df-subrg 18778 df-lmod 18865 df-lss 18933 df-lsp 18972 df-sra 19172 df-rgmod 19173 df-lidl 19174 df-rsp 19175 df-2idl 19232 df-cnfld 19747 df-zring 19819 df-zn 19855 df-dchr 24958 |
This theorem is referenced by: dchrresb 24984 dchrinv 24986 dchrsum2 24993 |
Copyright terms: Public domain | W3C validator |