MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvcjbr Structured version   Visualization version   Unicode version

Theorem dvcjbr 23712
Description: The derivative of the conjugate of a function. For the (simpler but more limited) function version, see dvcj 23713. (This doesn't follow from dvcobr 23709 because  * is not a function on the reals, and even if we used complex derivatives,  * is not complex-differentiable.) (Contributed by Mario Carneiro, 1-Sep-2014.) (Revised by Mario Carneiro, 10-Feb-2015.)
Hypotheses
Ref Expression
dvcj.f  |-  ( ph  ->  F : X --> CC )
dvcj.x  |-  ( ph  ->  X  C_  RR )
dvcj.c  |-  ( ph  ->  C  e.  dom  ( RR  _D  F ) )
Assertion
Ref Expression
dvcjbr  |-  ( ph  ->  C ( RR  _D  ( *  o.  F
) ) ( * `
 ( ( RR 
_D  F ) `  C ) ) )

Proof of Theorem dvcjbr
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ax-resscn 9993 . . . . 5  |-  RR  C_  CC
21a1i 11 . . . 4  |-  ( ph  ->  RR  C_  CC )
3 dvcj.f . . . 4  |-  ( ph  ->  F : X --> CC )
4 dvcj.x . . . 4  |-  ( ph  ->  X  C_  RR )
5 eqid 2622 . . . . 5  |-  ( TopOpen ` fld )  =  ( TopOpen ` fld )
65tgioo2 22606 . . . 4  |-  ( topGen ` 
ran  (,) )  =  ( ( TopOpen ` fld )t  RR )
72, 3, 4, 6, 5dvbssntr 23664 . . 3  |-  ( ph  ->  dom  ( RR  _D  F )  C_  (
( int `  ( topGen `
 ran  (,) )
) `  X )
)
8 dvcj.c . . 3  |-  ( ph  ->  C  e.  dom  ( RR  _D  F ) )
97, 8sseldd 3604 . 2  |-  ( ph  ->  C  e.  ( ( int `  ( topGen ` 
ran  (,) ) ) `  X ) )
104, 1syl6ss 3615 . . . . . 6  |-  ( ph  ->  X  C_  CC )
111a1i 11 . . . . . . . . 9  |-  ( ( F : X --> CC  /\  X  C_  RR )  ->  RR  C_  CC )
12 simpl 473 . . . . . . . . 9  |-  ( ( F : X --> CC  /\  X  C_  RR )  ->  F : X --> CC )
13 simpr 477 . . . . . . . . 9  |-  ( ( F : X --> CC  /\  X  C_  RR )  ->  X  C_  RR )
1411, 12, 13dvbss 23665 . . . . . . . 8  |-  ( ( F : X --> CC  /\  X  C_  RR )  ->  dom  ( RR  _D  F
)  C_  X )
153, 4, 14syl2anc 693 . . . . . . 7  |-  ( ph  ->  dom  ( RR  _D  F )  C_  X
)
1615, 8sseldd 3604 . . . . . 6  |-  ( ph  ->  C  e.  X )
173, 10, 16dvlem 23660 . . . . 5  |-  ( (
ph  /\  x  e.  ( X  \  { C } ) )  -> 
( ( ( F `
 x )  -  ( F `  C ) )  /  ( x  -  C ) )  e.  CC )
18 eqid 2622 . . . . 5  |-  ( x  e.  ( X  \  { C } )  |->  ( ( ( F `  x )  -  ( F `  C )
)  /  ( x  -  C ) ) )  =  ( x  e.  ( X  \  { C } )  |->  ( ( ( F `  x )  -  ( F `  C )
)  /  ( x  -  C ) ) )
1917, 18fmptd 6385 . . . 4  |-  ( ph  ->  ( x  e.  ( X  \  { C } )  |->  ( ( ( F `  x
)  -  ( F `
 C ) )  /  ( x  -  C ) ) ) : ( X  \  { C } ) --> CC )
20 ssid 3624 . . . . 5  |-  CC  C_  CC
2120a1i 11 . . . 4  |-  ( ph  ->  CC  C_  CC )
225cnfldtopon 22586 . . . . . 6  |-  ( TopOpen ` fld )  e.  (TopOn `  CC )
2322toponunii 20721 . . . . . . 7  |-  CC  =  U. ( TopOpen ` fld )
2423restid 16094 . . . . . 6  |-  ( (
TopOpen ` fld )  e.  (TopOn `  CC )  ->  ( (
TopOpen ` fld )t  CC )  =  (
TopOpen ` fld ) )
2522, 24ax-mp 5 . . . . 5  |-  ( (
TopOpen ` fld )t  CC )  =  (
TopOpen ` fld )
2625eqcomi 2631 . . . 4  |-  ( TopOpen ` fld )  =  ( ( TopOpen ` fld )t  CC )
27 dvf 23671 . . . . . . . 8  |-  ( RR 
_D  F ) : dom  ( RR  _D  F ) --> CC
28 ffun 6048 . . . . . . . 8  |-  ( ( RR  _D  F ) : dom  ( RR 
_D  F ) --> CC 
->  Fun  ( RR  _D  F ) )
29 funfvbrb 6330 . . . . . . . 8  |-  ( Fun  ( RR  _D  F
)  ->  ( C  e.  dom  ( RR  _D  F )  <->  C ( RR  _D  F ) ( ( RR  _D  F
) `  C )
) )
3027, 28, 29mp2b 10 . . . . . . 7  |-  ( C  e.  dom  ( RR 
_D  F )  <->  C ( RR  _D  F ) ( ( RR  _D  F
) `  C )
)
318, 30sylib 208 . . . . . 6  |-  ( ph  ->  C ( RR  _D  F ) ( ( RR  _D  F ) `
 C ) )
326, 5, 18, 2, 3, 4eldv 23662 . . . . . 6  |-  ( ph  ->  ( C ( RR 
_D  F ) ( ( RR  _D  F
) `  C )  <->  ( C  e.  ( ( int `  ( topGen ` 
ran  (,) ) ) `  X )  /\  (
( RR  _D  F
) `  C )  e.  ( ( x  e.  ( X  \  { C } )  |->  ( ( ( F `  x
)  -  ( F `
 C ) )  /  ( x  -  C ) ) ) lim
CC  C ) ) ) )
3331, 32mpbid 222 . . . . 5  |-  ( ph  ->  ( C  e.  ( ( int `  ( topGen `
 ran  (,) )
) `  X )  /\  ( ( RR  _D  F ) `  C
)  e.  ( ( x  e.  ( X 
\  { C }
)  |->  ( ( ( F `  x )  -  ( F `  C ) )  / 
( x  -  C
) ) ) lim CC  C ) ) )
3433simprd 479 . . . 4  |-  ( ph  ->  ( ( RR  _D  F ) `  C
)  e.  ( ( x  e.  ( X 
\  { C }
)  |->  ( ( ( F `  x )  -  ( F `  C ) )  / 
( x  -  C
) ) ) lim CC  C ) )
35 cjcncf 22707 . . . . . 6  |-  *  e.  ( CC -cn-> CC )
365cncfcn1 22713 . . . . . 6  |-  ( CC
-cn-> CC )  =  ( ( TopOpen ` fld )  Cn  ( TopOpen
` fld
) )
3735, 36eleqtri 2699 . . . . 5  |-  *  e.  ( ( TopOpen ` fld )  Cn  ( TopOpen
` fld
) )
3827ffvelrni 6358 . . . . . 6  |-  ( C  e.  dom  ( RR 
_D  F )  -> 
( ( RR  _D  F ) `  C
)  e.  CC )
398, 38syl 17 . . . . 5  |-  ( ph  ->  ( ( RR  _D  F ) `  C
)  e.  CC )
4023cncnpi 21082 . . . . 5  |-  ( ( *  e.  ( (
TopOpen ` fld )  Cn  ( TopOpen ` fld )
)  /\  ( ( RR  _D  F ) `  C )  e.  CC )  ->  *  e.  ( ( ( TopOpen ` fld )  CnP  ( TopOpen ` fld )
) `  ( ( RR  _D  F ) `  C ) ) )
4137, 39, 40sylancr 695 . . . 4  |-  ( ph  ->  *  e.  ( ( ( TopOpen ` fld )  CnP  ( TopOpen ` fld )
) `  ( ( RR  _D  F ) `  C ) ) )
4219, 21, 5, 26, 34, 41limccnp 23655 . . 3  |-  ( ph  ->  ( * `  (
( RR  _D  F
) `  C )
)  e.  ( ( *  o.  ( x  e.  ( X  \  { C } )  |->  ( ( ( F `  x )  -  ( F `  C )
)  /  ( x  -  C ) ) ) ) lim CC  C
) )
43 eqidd 2623 . . . . . 6  |-  ( ph  ->  ( x  e.  ( X  \  { C } )  |->  ( ( ( F `  x
)  -  ( F `
 C ) )  /  ( x  -  C ) ) )  =  ( x  e.  ( X  \  { C } )  |->  ( ( ( F `  x
)  -  ( F `
 C ) )  /  ( x  -  C ) ) ) )
44 cjf 13844 . . . . . . . 8  |-  * : CC --> CC
4544a1i 11 . . . . . . 7  |-  ( ph  ->  * : CC --> CC )
4645feqmptd 6249 . . . . . 6  |-  ( ph  ->  *  =  ( y  e.  CC  |->  ( * `
 y ) ) )
47 fveq2 6191 . . . . . 6  |-  ( y  =  ( ( ( F `  x )  -  ( F `  C ) )  / 
( x  -  C
) )  ->  (
* `  y )  =  ( * `  ( ( ( F `
 x )  -  ( F `  C ) )  /  ( x  -  C ) ) ) )
4817, 43, 46, 47fmptco 6396 . . . . 5  |-  ( ph  ->  ( *  o.  (
x  e.  ( X 
\  { C }
)  |->  ( ( ( F `  x )  -  ( F `  C ) )  / 
( x  -  C
) ) ) )  =  ( x  e.  ( X  \  { C } )  |->  ( * `
 ( ( ( F `  x )  -  ( F `  C ) )  / 
( x  -  C
) ) ) ) )
493adantr 481 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( X  \  { C } ) )  ->  F : X --> CC )
50 eldifi 3732 . . . . . . . . . . 11  |-  ( x  e.  ( X  \  { C } )  ->  x  e.  X )
5150adantl 482 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( X  \  { C } ) )  ->  x  e.  X )
5249, 51ffvelrnd 6360 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( X  \  { C } ) )  -> 
( F `  x
)  e.  CC )
533, 16ffvelrnd 6360 . . . . . . . . . 10  |-  ( ph  ->  ( F `  C
)  e.  CC )
5453adantr 481 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( X  \  { C } ) )  -> 
( F `  C
)  e.  CC )
5552, 54subcld 10392 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( X  \  { C } ) )  -> 
( ( F `  x )  -  ( F `  C )
)  e.  CC )
564sselda 3603 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  X )  ->  x  e.  RR )
5750, 56sylan2 491 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( X  \  { C } ) )  ->  x  e.  RR )
584, 16sseldd 3604 . . . . . . . . . . 11  |-  ( ph  ->  C  e.  RR )
5958adantr 481 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( X  \  { C } ) )  ->  C  e.  RR )
6057, 59resubcld 10458 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( X  \  { C } ) )  -> 
( x  -  C
)  e.  RR )
6160recnd 10068 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( X  \  { C } ) )  -> 
( x  -  C
)  e.  CC )
6257recnd 10068 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( X  \  { C } ) )  ->  x  e.  CC )
6359recnd 10068 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( X  \  { C } ) )  ->  C  e.  CC )
64 eldifsni 4320 . . . . . . . . . 10  |-  ( x  e.  ( X  \  { C } )  ->  x  =/=  C )
6564adantl 482 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( X  \  { C } ) )  ->  x  =/=  C )
6662, 63, 65subne0d 10401 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( X  \  { C } ) )  -> 
( x  -  C
)  =/=  0 )
6755, 61, 66cjdivd 13963 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( X  \  { C } ) )  -> 
( * `  (
( ( F `  x )  -  ( F `  C )
)  /  ( x  -  C ) ) )  =  ( ( * `  ( ( F `  x )  -  ( F `  C ) ) )  /  ( * `  ( x  -  C
) ) ) )
68 cjsub 13889 . . . . . . . . . 10  |-  ( ( ( F `  x
)  e.  CC  /\  ( F `  C )  e.  CC )  -> 
( * `  (
( F `  x
)  -  ( F `
 C ) ) )  =  ( ( * `  ( F `
 x ) )  -  ( * `  ( F `  C ) ) ) )
6952, 54, 68syl2anc 693 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( X  \  { C } ) )  -> 
( * `  (
( F `  x
)  -  ( F `
 C ) ) )  =  ( ( * `  ( F `
 x ) )  -  ( * `  ( F `  C ) ) ) )
70 fvco3 6275 . . . . . . . . . . 11  |-  ( ( F : X --> CC  /\  x  e.  X )  ->  ( ( *  o.  F ) `  x
)  =  ( * `
 ( F `  x ) ) )
713, 50, 70syl2an 494 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( X  \  { C } ) )  -> 
( ( *  o.  F ) `  x
)  =  ( * `
 ( F `  x ) ) )
72 fvco3 6275 . . . . . . . . . . . 12  |-  ( ( F : X --> CC  /\  C  e.  X )  ->  ( ( *  o.  F ) `  C
)  =  ( * `
 ( F `  C ) ) )
733, 16, 72syl2anc 693 . . . . . . . . . . 11  |-  ( ph  ->  ( ( *  o.  F ) `  C
)  =  ( * `
 ( F `  C ) ) )
7473adantr 481 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( X  \  { C } ) )  -> 
( ( *  o.  F ) `  C
)  =  ( * `
 ( F `  C ) ) )
7571, 74oveq12d 6668 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( X  \  { C } ) )  -> 
( ( ( *  o.  F ) `  x )  -  (
( *  o.  F
) `  C )
)  =  ( ( * `  ( F `
 x ) )  -  ( * `  ( F `  C ) ) ) )
7669, 75eqtr4d 2659 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( X  \  { C } ) )  -> 
( * `  (
( F `  x
)  -  ( F `
 C ) ) )  =  ( ( ( *  o.  F
) `  x )  -  ( ( *  o.  F ) `  C ) ) )
7760cjred 13966 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( X  \  { C } ) )  -> 
( * `  (
x  -  C ) )  =  ( x  -  C ) )
7876, 77oveq12d 6668 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( X  \  { C } ) )  -> 
( ( * `  ( ( F `  x )  -  ( F `  C )
) )  /  (
* `  ( x  -  C ) ) )  =  ( ( ( ( *  o.  F
) `  x )  -  ( ( *  o.  F ) `  C ) )  / 
( x  -  C
) ) )
7967, 78eqtrd 2656 . . . . . 6  |-  ( (
ph  /\  x  e.  ( X  \  { C } ) )  -> 
( * `  (
( ( F `  x )  -  ( F `  C )
)  /  ( x  -  C ) ) )  =  ( ( ( ( *  o.  F ) `  x
)  -  ( ( *  o.  F ) `
 C ) )  /  ( x  -  C ) ) )
8079mpteq2dva 4744 . . . . 5  |-  ( ph  ->  ( x  e.  ( X  \  { C } )  |->  ( * `
 ( ( ( F `  x )  -  ( F `  C ) )  / 
( x  -  C
) ) ) )  =  ( x  e.  ( X  \  { C } )  |->  ( ( ( ( *  o.  F ) `  x
)  -  ( ( *  o.  F ) `
 C ) )  /  ( x  -  C ) ) ) )
8148, 80eqtrd 2656 . . . 4  |-  ( ph  ->  ( *  o.  (
x  e.  ( X 
\  { C }
)  |->  ( ( ( F `  x )  -  ( F `  C ) )  / 
( x  -  C
) ) ) )  =  ( x  e.  ( X  \  { C } )  |->  ( ( ( ( *  o.  F ) `  x
)  -  ( ( *  o.  F ) `
 C ) )  /  ( x  -  C ) ) ) )
8281oveq1d 6665 . . 3  |-  ( ph  ->  ( ( *  o.  ( x  e.  ( X  \  { C } )  |->  ( ( ( F `  x
)  -  ( F `
 C ) )  /  ( x  -  C ) ) ) ) lim CC  C )  =  ( ( x  e.  ( X  \  { C } )  |->  ( ( ( ( *  o.  F ) `  x )  -  (
( *  o.  F
) `  C )
)  /  ( x  -  C ) ) ) lim CC  C ) )
8342, 82eleqtrd 2703 . 2  |-  ( ph  ->  ( * `  (
( RR  _D  F
) `  C )
)  e.  ( ( x  e.  ( X 
\  { C }
)  |->  ( ( ( ( *  o.  F
) `  x )  -  ( ( *  o.  F ) `  C ) )  / 
( x  -  C
) ) ) lim CC  C ) )
84 eqid 2622 . . 3  |-  ( x  e.  ( X  \  { C } )  |->  ( ( ( ( *  o.  F ) `  x )  -  (
( *  o.  F
) `  C )
)  /  ( x  -  C ) ) )  =  ( x  e.  ( X  \  { C } )  |->  ( ( ( ( *  o.  F ) `  x )  -  (
( *  o.  F
) `  C )
)  /  ( x  -  C ) ) )
85 fco 6058 . . . 4  |-  ( ( * : CC --> CC  /\  F : X --> CC )  ->  ( *  o.  F ) : X --> CC )
8644, 3, 85sylancr 695 . . 3  |-  ( ph  ->  ( *  o.  F
) : X --> CC )
876, 5, 84, 2, 86, 4eldv 23662 . 2  |-  ( ph  ->  ( C ( RR 
_D  ( *  o.  F ) ) ( * `  ( ( RR  _D  F ) `
 C ) )  <-> 
( C  e.  ( ( int `  ( topGen `
 ran  (,) )
) `  X )  /\  ( * `  (
( RR  _D  F
) `  C )
)  e.  ( ( x  e.  ( X 
\  { C }
)  |->  ( ( ( ( *  o.  F
) `  x )  -  ( ( *  o.  F ) `  C ) )  / 
( x  -  C
) ) ) lim CC  C ) ) ) )
889, 83, 87mpbir2and 957 1  |-  ( ph  ->  C ( RR  _D  ( *  o.  F
) ) ( * `
 ( ( RR 
_D  F ) `  C ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794    \ cdif 3571    C_ wss 3574   {csn 4177   class class class wbr 4653    |-> cmpt 4729   dom cdm 5114   ran crn 5115    o. ccom 5118   Fun wfun 5882   -->wf 5884   ` cfv 5888  (class class class)co 6650   CCcc 9934   RRcr 9935    - cmin 10266    / cdiv 10684   (,)cioo 12175   *ccj 13836   ↾t crest 16081   TopOpenctopn 16082   topGenctg 16098  ℂfldccnfld 19746  TopOnctopon 20715   intcnt 20821    Cn ccn 21028    CnP ccnp 21029   -cn->ccncf 22679   lim CC climc 23626    _D cdv 23627
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fi 8317  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ioo 12179  df-icc 12182  df-fz 12327  df-seq 12802  df-exp 12861  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-plusg 15954  df-mulr 15955  df-starv 15956  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-rest 16083  df-topn 16084  df-topgen 16104  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-fbas 19743  df-fg 19744  df-cnfld 19747  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cld 20823  df-ntr 20824  df-cls 20825  df-nei 20902  df-lp 20940  df-perf 20941  df-cn 21031  df-cnp 21032  df-haus 21119  df-fil 21650  df-fm 21742  df-flim 21743  df-flf 21744  df-xms 22125  df-ms 22126  df-cncf 22681  df-limc 23630  df-dv 23631
This theorem is referenced by:  dvcj  23713
  Copyright terms: Public domain W3C validator