| Step | Hyp | Ref
| Expression |
| 1 | | dvcof.f |
. . . . 5
⊢ (𝜑 → 𝐹:𝑋⟶ℂ) |
| 2 | 1 | adantr 481 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑌) → 𝐹:𝑋⟶ℂ) |
| 3 | | dvcof.df |
. . . . . 6
⊢ (𝜑 → dom (𝑆 D 𝐹) = 𝑋) |
| 4 | | dvbsss 23666 |
. . . . . 6
⊢ dom
(𝑆 D 𝐹) ⊆ 𝑆 |
| 5 | 3, 4 | syl6eqssr 3656 |
. . . . 5
⊢ (𝜑 → 𝑋 ⊆ 𝑆) |
| 6 | 5 | adantr 481 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑌) → 𝑋 ⊆ 𝑆) |
| 7 | | dvcof.g |
. . . . 5
⊢ (𝜑 → 𝐺:𝑌⟶𝑋) |
| 8 | 7 | adantr 481 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑌) → 𝐺:𝑌⟶𝑋) |
| 9 | | dvcof.dg |
. . . . . 6
⊢ (𝜑 → dom (𝑇 D 𝐺) = 𝑌) |
| 10 | | dvbsss 23666 |
. . . . . 6
⊢ dom
(𝑇 D 𝐺) ⊆ 𝑇 |
| 11 | 9, 10 | syl6eqssr 3656 |
. . . . 5
⊢ (𝜑 → 𝑌 ⊆ 𝑇) |
| 12 | 11 | adantr 481 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑌) → 𝑌 ⊆ 𝑇) |
| 13 | | dvcof.s |
. . . . 5
⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) |
| 14 | 13 | adantr 481 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑌) → 𝑆 ∈ {ℝ, ℂ}) |
| 15 | | dvcof.t |
. . . . 5
⊢ (𝜑 → 𝑇 ∈ {ℝ, ℂ}) |
| 16 | 15 | adantr 481 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑌) → 𝑇 ∈ {ℝ, ℂ}) |
| 17 | 7 | ffvelrnda 6359 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑌) → (𝐺‘𝑥) ∈ 𝑋) |
| 18 | 3 | adantr 481 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑌) → dom (𝑆 D 𝐹) = 𝑋) |
| 19 | 17, 18 | eleqtrrd 2704 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑌) → (𝐺‘𝑥) ∈ dom (𝑆 D 𝐹)) |
| 20 | 9 | eleq2d 2687 |
. . . . 5
⊢ (𝜑 → (𝑥 ∈ dom (𝑇 D 𝐺) ↔ 𝑥 ∈ 𝑌)) |
| 21 | 20 | biimpar 502 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑌) → 𝑥 ∈ dom (𝑇 D 𝐺)) |
| 22 | 2, 6, 8, 12, 14, 16, 19, 21 | dvco 23710 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑌) → ((𝑇 D (𝐹 ∘ 𝐺))‘𝑥) = (((𝑆 D 𝐹)‘(𝐺‘𝑥)) · ((𝑇 D 𝐺)‘𝑥))) |
| 23 | 22 | mpteq2dva 4744 |
. 2
⊢ (𝜑 → (𝑥 ∈ 𝑌 ↦ ((𝑇 D (𝐹 ∘ 𝐺))‘𝑥)) = (𝑥 ∈ 𝑌 ↦ (((𝑆 D 𝐹)‘(𝐺‘𝑥)) · ((𝑇 D 𝐺)‘𝑥)))) |
| 24 | | dvfg 23670 |
. . . . 5
⊢ (𝑇 ∈ {ℝ, ℂ}
→ (𝑇 D (𝐹 ∘ 𝐺)):dom (𝑇 D (𝐹 ∘ 𝐺))⟶ℂ) |
| 25 | 15, 24 | syl 17 |
. . . 4
⊢ (𝜑 → (𝑇 D (𝐹 ∘ 𝐺)):dom (𝑇 D (𝐹 ∘ 𝐺))⟶ℂ) |
| 26 | | recnprss 23668 |
. . . . . . . 8
⊢ (𝑇 ∈ {ℝ, ℂ}
→ 𝑇 ⊆
ℂ) |
| 27 | 15, 26 | syl 17 |
. . . . . . 7
⊢ (𝜑 → 𝑇 ⊆ ℂ) |
| 28 | | fco 6058 |
. . . . . . . 8
⊢ ((𝐹:𝑋⟶ℂ ∧ 𝐺:𝑌⟶𝑋) → (𝐹 ∘ 𝐺):𝑌⟶ℂ) |
| 29 | 1, 7, 28 | syl2anc 693 |
. . . . . . 7
⊢ (𝜑 → (𝐹 ∘ 𝐺):𝑌⟶ℂ) |
| 30 | 27, 29, 11 | dvbss 23665 |
. . . . . 6
⊢ (𝜑 → dom (𝑇 D (𝐹 ∘ 𝐺)) ⊆ 𝑌) |
| 31 | | recnprss 23668 |
. . . . . . . . . . 11
⊢ (𝑆 ∈ {ℝ, ℂ}
→ 𝑆 ⊆
ℂ) |
| 32 | 14, 31 | syl 17 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑌) → 𝑆 ⊆ ℂ) |
| 33 | 16, 26 | syl 17 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑌) → 𝑇 ⊆ ℂ) |
| 34 | | fvexd 6203 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑌) → ((𝑆 D 𝐹)‘(𝐺‘𝑥)) ∈ V) |
| 35 | | fvexd 6203 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑌) → ((𝑇 D 𝐺)‘𝑥) ∈ V) |
| 36 | | dvfg 23670 |
. . . . . . . . . . . 12
⊢ (𝑆 ∈ {ℝ, ℂ}
→ (𝑆 D 𝐹):dom (𝑆 D 𝐹)⟶ℂ) |
| 37 | | ffun 6048 |
. . . . . . . . . . . 12
⊢ ((𝑆 D 𝐹):dom (𝑆 D 𝐹)⟶ℂ → Fun (𝑆 D 𝐹)) |
| 38 | | funfvbrb 6330 |
. . . . . . . . . . . 12
⊢ (Fun
(𝑆 D 𝐹) → ((𝐺‘𝑥) ∈ dom (𝑆 D 𝐹) ↔ (𝐺‘𝑥)(𝑆 D 𝐹)((𝑆 D 𝐹)‘(𝐺‘𝑥)))) |
| 39 | 14, 36, 37, 38 | 4syl 19 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑌) → ((𝐺‘𝑥) ∈ dom (𝑆 D 𝐹) ↔ (𝐺‘𝑥)(𝑆 D 𝐹)((𝑆 D 𝐹)‘(𝐺‘𝑥)))) |
| 40 | 19, 39 | mpbid 222 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑌) → (𝐺‘𝑥)(𝑆 D 𝐹)((𝑆 D 𝐹)‘(𝐺‘𝑥))) |
| 41 | | dvfg 23670 |
. . . . . . . . . . . 12
⊢ (𝑇 ∈ {ℝ, ℂ}
→ (𝑇 D 𝐺):dom (𝑇 D 𝐺)⟶ℂ) |
| 42 | | ffun 6048 |
. . . . . . . . . . . 12
⊢ ((𝑇 D 𝐺):dom (𝑇 D 𝐺)⟶ℂ → Fun (𝑇 D 𝐺)) |
| 43 | | funfvbrb 6330 |
. . . . . . . . . . . 12
⊢ (Fun
(𝑇 D 𝐺) → (𝑥 ∈ dom (𝑇 D 𝐺) ↔ 𝑥(𝑇 D 𝐺)((𝑇 D 𝐺)‘𝑥))) |
| 44 | 16, 41, 42, 43 | 4syl 19 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑌) → (𝑥 ∈ dom (𝑇 D 𝐺) ↔ 𝑥(𝑇 D 𝐺)((𝑇 D 𝐺)‘𝑥))) |
| 45 | 21, 44 | mpbid 222 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑌) → 𝑥(𝑇 D 𝐺)((𝑇 D 𝐺)‘𝑥)) |
| 46 | | eqid 2622 |
. . . . . . . . . 10
⊢
(TopOpen‘ℂfld) =
(TopOpen‘ℂfld) |
| 47 | 2, 6, 8, 12, 32, 33, 34, 35, 40, 45, 46 | dvcobr 23709 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑌) → 𝑥(𝑇 D (𝐹 ∘ 𝐺))(((𝑆 D 𝐹)‘(𝐺‘𝑥)) · ((𝑇 D 𝐺)‘𝑥))) |
| 48 | | reldv 23634 |
. . . . . . . . . 10
⊢ Rel
(𝑇 D (𝐹 ∘ 𝐺)) |
| 49 | 48 | releldmi 5362 |
. . . . . . . . 9
⊢ (𝑥(𝑇 D (𝐹 ∘ 𝐺))(((𝑆 D 𝐹)‘(𝐺‘𝑥)) · ((𝑇 D 𝐺)‘𝑥)) → 𝑥 ∈ dom (𝑇 D (𝐹 ∘ 𝐺))) |
| 50 | 47, 49 | syl 17 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑌) → 𝑥 ∈ dom (𝑇 D (𝐹 ∘ 𝐺))) |
| 51 | 50 | ex 450 |
. . . . . . 7
⊢ (𝜑 → (𝑥 ∈ 𝑌 → 𝑥 ∈ dom (𝑇 D (𝐹 ∘ 𝐺)))) |
| 52 | 51 | ssrdv 3609 |
. . . . . 6
⊢ (𝜑 → 𝑌 ⊆ dom (𝑇 D (𝐹 ∘ 𝐺))) |
| 53 | 30, 52 | eqssd 3620 |
. . . . 5
⊢ (𝜑 → dom (𝑇 D (𝐹 ∘ 𝐺)) = 𝑌) |
| 54 | 53 | feq2d 6031 |
. . . 4
⊢ (𝜑 → ((𝑇 D (𝐹 ∘ 𝐺)):dom (𝑇 D (𝐹 ∘ 𝐺))⟶ℂ ↔ (𝑇 D (𝐹 ∘ 𝐺)):𝑌⟶ℂ)) |
| 55 | 25, 54 | mpbid 222 |
. . 3
⊢ (𝜑 → (𝑇 D (𝐹 ∘ 𝐺)):𝑌⟶ℂ) |
| 56 | 55 | feqmptd 6249 |
. 2
⊢ (𝜑 → (𝑇 D (𝐹 ∘ 𝐺)) = (𝑥 ∈ 𝑌 ↦ ((𝑇 D (𝐹 ∘ 𝐺))‘𝑥))) |
| 57 | 15, 11 | ssexd 4805 |
. . 3
⊢ (𝜑 → 𝑌 ∈ V) |
| 58 | 7 | feqmptd 6249 |
. . . 4
⊢ (𝜑 → 𝐺 = (𝑥 ∈ 𝑌 ↦ (𝐺‘𝑥))) |
| 59 | 13, 36 | syl 17 |
. . . . . 6
⊢ (𝜑 → (𝑆 D 𝐹):dom (𝑆 D 𝐹)⟶ℂ) |
| 60 | 3 | feq2d 6031 |
. . . . . 6
⊢ (𝜑 → ((𝑆 D 𝐹):dom (𝑆 D 𝐹)⟶ℂ ↔ (𝑆 D 𝐹):𝑋⟶ℂ)) |
| 61 | 59, 60 | mpbid 222 |
. . . . 5
⊢ (𝜑 → (𝑆 D 𝐹):𝑋⟶ℂ) |
| 62 | 61 | feqmptd 6249 |
. . . 4
⊢ (𝜑 → (𝑆 D 𝐹) = (𝑦 ∈ 𝑋 ↦ ((𝑆 D 𝐹)‘𝑦))) |
| 63 | | fveq2 6191 |
. . . 4
⊢ (𝑦 = (𝐺‘𝑥) → ((𝑆 D 𝐹)‘𝑦) = ((𝑆 D 𝐹)‘(𝐺‘𝑥))) |
| 64 | 17, 58, 62, 63 | fmptco 6396 |
. . 3
⊢ (𝜑 → ((𝑆 D 𝐹) ∘ 𝐺) = (𝑥 ∈ 𝑌 ↦ ((𝑆 D 𝐹)‘(𝐺‘𝑥)))) |
| 65 | 15, 41 | syl 17 |
. . . . 5
⊢ (𝜑 → (𝑇 D 𝐺):dom (𝑇 D 𝐺)⟶ℂ) |
| 66 | 9 | feq2d 6031 |
. . . . 5
⊢ (𝜑 → ((𝑇 D 𝐺):dom (𝑇 D 𝐺)⟶ℂ ↔ (𝑇 D 𝐺):𝑌⟶ℂ)) |
| 67 | 65, 66 | mpbid 222 |
. . . 4
⊢ (𝜑 → (𝑇 D 𝐺):𝑌⟶ℂ) |
| 68 | 67 | feqmptd 6249 |
. . 3
⊢ (𝜑 → (𝑇 D 𝐺) = (𝑥 ∈ 𝑌 ↦ ((𝑇 D 𝐺)‘𝑥))) |
| 69 | 57, 34, 35, 64, 68 | offval2 6914 |
. 2
⊢ (𝜑 → (((𝑆 D 𝐹) ∘ 𝐺) ∘𝑓 ·
(𝑇 D 𝐺)) = (𝑥 ∈ 𝑌 ↦ (((𝑆 D 𝐹)‘(𝐺‘𝑥)) · ((𝑇 D 𝐺)‘𝑥)))) |
| 70 | 23, 56, 69 | 3eqtr4d 2666 |
1
⊢ (𝜑 → (𝑇 D (𝐹 ∘ 𝐺)) = (((𝑆 D 𝐹) ∘ 𝐺) ∘𝑓 ·
(𝑇 D 𝐺))) |