Proof of Theorem chtdif
| Step | Hyp | Ref
| Expression |
| 1 | | eluzelre 11698 |
. . . . 5
⊢ (𝑁 ∈
(ℤ≥‘𝑀) → 𝑁 ∈ ℝ) |
| 2 | | chtval 24836 |
. . . . 5
⊢ (𝑁 ∈ ℝ →
(θ‘𝑁) =
Σ𝑝 ∈ ((0[,]𝑁) ∩ ℙ)(log‘𝑝)) |
| 3 | 1, 2 | syl 17 |
. . . 4
⊢ (𝑁 ∈
(ℤ≥‘𝑀) → (θ‘𝑁) = Σ𝑝 ∈ ((0[,]𝑁) ∩ ℙ)(log‘𝑝)) |
| 4 | | eluzel2 11692 |
. . . . . . . . . 10
⊢ (𝑁 ∈
(ℤ≥‘𝑀) → 𝑀 ∈ ℤ) |
| 5 | | 2z 11409 |
. . . . . . . . . 10
⊢ 2 ∈
ℤ |
| 6 | | ifcl 4130 |
. . . . . . . . . 10
⊢ ((𝑀 ∈ ℤ ∧ 2 ∈
ℤ) → if(𝑀 ≤
2, 𝑀, 2) ∈
ℤ) |
| 7 | 4, 5, 6 | sylancl 694 |
. . . . . . . . 9
⊢ (𝑁 ∈
(ℤ≥‘𝑀) → if(𝑀 ≤ 2, 𝑀, 2) ∈ ℤ) |
| 8 | 5 | a1i 11 |
. . . . . . . . 9
⊢ (𝑁 ∈
(ℤ≥‘𝑀) → 2 ∈ ℤ) |
| 9 | 4 | zred 11482 |
. . . . . . . . . 10
⊢ (𝑁 ∈
(ℤ≥‘𝑀) → 𝑀 ∈ ℝ) |
| 10 | | 2re 11090 |
. . . . . . . . . 10
⊢ 2 ∈
ℝ |
| 11 | | min2 12021 |
. . . . . . . . . 10
⊢ ((𝑀 ∈ ℝ ∧ 2 ∈
ℝ) → if(𝑀 ≤
2, 𝑀, 2) ≤
2) |
| 12 | 9, 10, 11 | sylancl 694 |
. . . . . . . . 9
⊢ (𝑁 ∈
(ℤ≥‘𝑀) → if(𝑀 ≤ 2, 𝑀, 2) ≤ 2) |
| 13 | | eluz2 11693 |
. . . . . . . . 9
⊢ (2 ∈
(ℤ≥‘if(𝑀 ≤ 2, 𝑀, 2)) ↔ (if(𝑀 ≤ 2, 𝑀, 2) ∈ ℤ ∧ 2 ∈ ℤ
∧ if(𝑀 ≤ 2, 𝑀, 2) ≤ 2)) |
| 14 | 7, 8, 12, 13 | syl3anbrc 1246 |
. . . . . . . 8
⊢ (𝑁 ∈
(ℤ≥‘𝑀) → 2 ∈
(ℤ≥‘if(𝑀 ≤ 2, 𝑀, 2))) |
| 15 | | ppisval2 24831 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℝ ∧ 2 ∈
(ℤ≥‘if(𝑀 ≤ 2, 𝑀, 2))) → ((0[,]𝑁) ∩ ℙ) = ((if(𝑀 ≤ 2, 𝑀, 2)...(⌊‘𝑁)) ∩ ℙ)) |
| 16 | 1, 14, 15 | syl2anc 693 |
. . . . . . 7
⊢ (𝑁 ∈
(ℤ≥‘𝑀) → ((0[,]𝑁) ∩ ℙ) = ((if(𝑀 ≤ 2, 𝑀, 2)...(⌊‘𝑁)) ∩ ℙ)) |
| 17 | | eluzelz 11697 |
. . . . . . . . . 10
⊢ (𝑁 ∈
(ℤ≥‘𝑀) → 𝑁 ∈ ℤ) |
| 18 | | flid 12609 |
. . . . . . . . . 10
⊢ (𝑁 ∈ ℤ →
(⌊‘𝑁) = 𝑁) |
| 19 | 17, 18 | syl 17 |
. . . . . . . . 9
⊢ (𝑁 ∈
(ℤ≥‘𝑀) → (⌊‘𝑁) = 𝑁) |
| 20 | 19 | oveq2d 6666 |
. . . . . . . 8
⊢ (𝑁 ∈
(ℤ≥‘𝑀) → (if(𝑀 ≤ 2, 𝑀, 2)...(⌊‘𝑁)) = (if(𝑀 ≤ 2, 𝑀, 2)...𝑁)) |
| 21 | 20 | ineq1d 3813 |
. . . . . . 7
⊢ (𝑁 ∈
(ℤ≥‘𝑀) → ((if(𝑀 ≤ 2, 𝑀, 2)...(⌊‘𝑁)) ∩ ℙ) = ((if(𝑀 ≤ 2, 𝑀, 2)...𝑁) ∩ ℙ)) |
| 22 | 16, 21 | eqtrd 2656 |
. . . . . 6
⊢ (𝑁 ∈
(ℤ≥‘𝑀) → ((0[,]𝑁) ∩ ℙ) = ((if(𝑀 ≤ 2, 𝑀, 2)...𝑁) ∩ ℙ)) |
| 23 | 22 | sumeq1d 14431 |
. . . . 5
⊢ (𝑁 ∈
(ℤ≥‘𝑀) → Σ𝑝 ∈ ((0[,]𝑁) ∩ ℙ)(log‘𝑝) = Σ𝑝 ∈ ((if(𝑀 ≤ 2, 𝑀, 2)...𝑁) ∩ ℙ)(log‘𝑝)) |
| 24 | 9 | ltp1d 10954 |
. . . . . . . . 9
⊢ (𝑁 ∈
(ℤ≥‘𝑀) → 𝑀 < (𝑀 + 1)) |
| 25 | | fzdisj 12368 |
. . . . . . . . 9
⊢ (𝑀 < (𝑀 + 1) → ((if(𝑀 ≤ 2, 𝑀, 2)...𝑀) ∩ ((𝑀 + 1)...𝑁)) = ∅) |
| 26 | 24, 25 | syl 17 |
. . . . . . . 8
⊢ (𝑁 ∈
(ℤ≥‘𝑀) → ((if(𝑀 ≤ 2, 𝑀, 2)...𝑀) ∩ ((𝑀 + 1)...𝑁)) = ∅) |
| 27 | 26 | ineq1d 3813 |
. . . . . . 7
⊢ (𝑁 ∈
(ℤ≥‘𝑀) → (((if(𝑀 ≤ 2, 𝑀, 2)...𝑀) ∩ ((𝑀 + 1)...𝑁)) ∩ ℙ) = (∅ ∩
ℙ)) |
| 28 | | inindir 3831 |
. . . . . . 7
⊢
(((if(𝑀 ≤ 2,
𝑀, 2)...𝑀) ∩ ((𝑀 + 1)...𝑁)) ∩ ℙ) = (((if(𝑀 ≤ 2, 𝑀, 2)...𝑀) ∩ ℙ) ∩ (((𝑀 + 1)...𝑁) ∩ ℙ)) |
| 29 | | 0in 3969 |
. . . . . . 7
⊢ (∅
∩ ℙ) = ∅ |
| 30 | 27, 28, 29 | 3eqtr3g 2679 |
. . . . . 6
⊢ (𝑁 ∈
(ℤ≥‘𝑀) → (((if(𝑀 ≤ 2, 𝑀, 2)...𝑀) ∩ ℙ) ∩ (((𝑀 + 1)...𝑁) ∩ ℙ)) =
∅) |
| 31 | | min1 12020 |
. . . . . . . . . . . 12
⊢ ((𝑀 ∈ ℝ ∧ 2 ∈
ℝ) → if(𝑀 ≤
2, 𝑀, 2) ≤ 𝑀) |
| 32 | 9, 10, 31 | sylancl 694 |
. . . . . . . . . . 11
⊢ (𝑁 ∈
(ℤ≥‘𝑀) → if(𝑀 ≤ 2, 𝑀, 2) ≤ 𝑀) |
| 33 | | eluz2 11693 |
. . . . . . . . . . 11
⊢ (𝑀 ∈
(ℤ≥‘if(𝑀 ≤ 2, 𝑀, 2)) ↔ (if(𝑀 ≤ 2, 𝑀, 2) ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ if(𝑀 ≤ 2, 𝑀, 2) ≤ 𝑀)) |
| 34 | 7, 4, 32, 33 | syl3anbrc 1246 |
. . . . . . . . . 10
⊢ (𝑁 ∈
(ℤ≥‘𝑀) → 𝑀 ∈
(ℤ≥‘if(𝑀 ≤ 2, 𝑀, 2))) |
| 35 | | id 22 |
. . . . . . . . . 10
⊢ (𝑁 ∈
(ℤ≥‘𝑀) → 𝑁 ∈ (ℤ≥‘𝑀)) |
| 36 | | elfzuzb 12336 |
. . . . . . . . . 10
⊢ (𝑀 ∈ (if(𝑀 ≤ 2, 𝑀, 2)...𝑁) ↔ (𝑀 ∈
(ℤ≥‘if(𝑀 ≤ 2, 𝑀, 2)) ∧ 𝑁 ∈ (ℤ≥‘𝑀))) |
| 37 | 34, 35, 36 | sylanbrc 698 |
. . . . . . . . 9
⊢ (𝑁 ∈
(ℤ≥‘𝑀) → 𝑀 ∈ (if(𝑀 ≤ 2, 𝑀, 2)...𝑁)) |
| 38 | | fzsplit 12367 |
. . . . . . . . 9
⊢ (𝑀 ∈ (if(𝑀 ≤ 2, 𝑀, 2)...𝑁) → (if(𝑀 ≤ 2, 𝑀, 2)...𝑁) = ((if(𝑀 ≤ 2, 𝑀, 2)...𝑀) ∪ ((𝑀 + 1)...𝑁))) |
| 39 | 37, 38 | syl 17 |
. . . . . . . 8
⊢ (𝑁 ∈
(ℤ≥‘𝑀) → (if(𝑀 ≤ 2, 𝑀, 2)...𝑁) = ((if(𝑀 ≤ 2, 𝑀, 2)...𝑀) ∪ ((𝑀 + 1)...𝑁))) |
| 40 | 39 | ineq1d 3813 |
. . . . . . 7
⊢ (𝑁 ∈
(ℤ≥‘𝑀) → ((if(𝑀 ≤ 2, 𝑀, 2)...𝑁) ∩ ℙ) = (((if(𝑀 ≤ 2, 𝑀, 2)...𝑀) ∪ ((𝑀 + 1)...𝑁)) ∩ ℙ)) |
| 41 | | indir 3875 |
. . . . . . 7
⊢
(((if(𝑀 ≤ 2,
𝑀, 2)...𝑀) ∪ ((𝑀 + 1)...𝑁)) ∩ ℙ) = (((if(𝑀 ≤ 2, 𝑀, 2)...𝑀) ∩ ℙ) ∪ (((𝑀 + 1)...𝑁) ∩ ℙ)) |
| 42 | 40, 41 | syl6eq 2672 |
. . . . . 6
⊢ (𝑁 ∈
(ℤ≥‘𝑀) → ((if(𝑀 ≤ 2, 𝑀, 2)...𝑁) ∩ ℙ) = (((if(𝑀 ≤ 2, 𝑀, 2)...𝑀) ∩ ℙ) ∪ (((𝑀 + 1)...𝑁) ∩ ℙ))) |
| 43 | | fzfid 12772 |
. . . . . . 7
⊢ (𝑁 ∈
(ℤ≥‘𝑀) → (if(𝑀 ≤ 2, 𝑀, 2)...𝑁) ∈ Fin) |
| 44 | | inss1 3833 |
. . . . . . 7
⊢
((if(𝑀 ≤ 2, 𝑀, 2)...𝑁) ∩ ℙ) ⊆ (if(𝑀 ≤ 2, 𝑀, 2)...𝑁) |
| 45 | | ssfi 8180 |
. . . . . . 7
⊢
(((if(𝑀 ≤ 2,
𝑀, 2)...𝑁) ∈ Fin ∧ ((if(𝑀 ≤ 2, 𝑀, 2)...𝑁) ∩ ℙ) ⊆ (if(𝑀 ≤ 2, 𝑀, 2)...𝑁)) → ((if(𝑀 ≤ 2, 𝑀, 2)...𝑁) ∩ ℙ) ∈
Fin) |
| 46 | 43, 44, 45 | sylancl 694 |
. . . . . 6
⊢ (𝑁 ∈
(ℤ≥‘𝑀) → ((if(𝑀 ≤ 2, 𝑀, 2)...𝑁) ∩ ℙ) ∈
Fin) |
| 47 | | inss2 3834 |
. . . . . . . . . . 11
⊢
((if(𝑀 ≤ 2, 𝑀, 2)...𝑁) ∩ ℙ) ⊆
ℙ |
| 48 | | simpr 477 |
. . . . . . . . . . 11
⊢ ((𝑁 ∈
(ℤ≥‘𝑀) ∧ 𝑝 ∈ ((if(𝑀 ≤ 2, 𝑀, 2)...𝑁) ∩ ℙ)) → 𝑝 ∈ ((if(𝑀 ≤ 2, 𝑀, 2)...𝑁) ∩ ℙ)) |
| 49 | 47, 48 | sseldi 3601 |
. . . . . . . . . 10
⊢ ((𝑁 ∈
(ℤ≥‘𝑀) ∧ 𝑝 ∈ ((if(𝑀 ≤ 2, 𝑀, 2)...𝑁) ∩ ℙ)) → 𝑝 ∈ ℙ) |
| 50 | | prmnn 15388 |
. . . . . . . . . 10
⊢ (𝑝 ∈ ℙ → 𝑝 ∈
ℕ) |
| 51 | 49, 50 | syl 17 |
. . . . . . . . 9
⊢ ((𝑁 ∈
(ℤ≥‘𝑀) ∧ 𝑝 ∈ ((if(𝑀 ≤ 2, 𝑀, 2)...𝑁) ∩ ℙ)) → 𝑝 ∈ ℕ) |
| 52 | 51 | nnrpd 11870 |
. . . . . . . 8
⊢ ((𝑁 ∈
(ℤ≥‘𝑀) ∧ 𝑝 ∈ ((if(𝑀 ≤ 2, 𝑀, 2)...𝑁) ∩ ℙ)) → 𝑝 ∈ ℝ+) |
| 53 | 52 | relogcld 24369 |
. . . . . . 7
⊢ ((𝑁 ∈
(ℤ≥‘𝑀) ∧ 𝑝 ∈ ((if(𝑀 ≤ 2, 𝑀, 2)...𝑁) ∩ ℙ)) → (log‘𝑝) ∈
ℝ) |
| 54 | 53 | recnd 10068 |
. . . . . 6
⊢ ((𝑁 ∈
(ℤ≥‘𝑀) ∧ 𝑝 ∈ ((if(𝑀 ≤ 2, 𝑀, 2)...𝑁) ∩ ℙ)) → (log‘𝑝) ∈
ℂ) |
| 55 | 30, 42, 46, 54 | fsumsplit 14471 |
. . . . 5
⊢ (𝑁 ∈
(ℤ≥‘𝑀) → Σ𝑝 ∈ ((if(𝑀 ≤ 2, 𝑀, 2)...𝑁) ∩ ℙ)(log‘𝑝) = (Σ𝑝 ∈ ((if(𝑀 ≤ 2, 𝑀, 2)...𝑀) ∩ ℙ)(log‘𝑝) + Σ𝑝 ∈ (((𝑀 + 1)...𝑁) ∩ ℙ)(log‘𝑝))) |
| 56 | 23, 55 | eqtrd 2656 |
. . . 4
⊢ (𝑁 ∈
(ℤ≥‘𝑀) → Σ𝑝 ∈ ((0[,]𝑁) ∩ ℙ)(log‘𝑝) = (Σ𝑝 ∈ ((if(𝑀 ≤ 2, 𝑀, 2)...𝑀) ∩ ℙ)(log‘𝑝) + Σ𝑝 ∈ (((𝑀 + 1)...𝑁) ∩ ℙ)(log‘𝑝))) |
| 57 | 3, 56 | eqtrd 2656 |
. . 3
⊢ (𝑁 ∈
(ℤ≥‘𝑀) → (θ‘𝑁) = (Σ𝑝 ∈ ((if(𝑀 ≤ 2, 𝑀, 2)...𝑀) ∩ ℙ)(log‘𝑝) + Σ𝑝 ∈ (((𝑀 + 1)...𝑁) ∩ ℙ)(log‘𝑝))) |
| 58 | | chtval 24836 |
. . . . 5
⊢ (𝑀 ∈ ℝ →
(θ‘𝑀) =
Σ𝑝 ∈ ((0[,]𝑀) ∩ ℙ)(log‘𝑝)) |
| 59 | 9, 58 | syl 17 |
. . . 4
⊢ (𝑁 ∈
(ℤ≥‘𝑀) → (θ‘𝑀) = Σ𝑝 ∈ ((0[,]𝑀) ∩ ℙ)(log‘𝑝)) |
| 60 | | ppisval2 24831 |
. . . . . . 7
⊢ ((𝑀 ∈ ℝ ∧ 2 ∈
(ℤ≥‘if(𝑀 ≤ 2, 𝑀, 2))) → ((0[,]𝑀) ∩ ℙ) = ((if(𝑀 ≤ 2, 𝑀, 2)...(⌊‘𝑀)) ∩ ℙ)) |
| 61 | 9, 14, 60 | syl2anc 693 |
. . . . . 6
⊢ (𝑁 ∈
(ℤ≥‘𝑀) → ((0[,]𝑀) ∩ ℙ) = ((if(𝑀 ≤ 2, 𝑀, 2)...(⌊‘𝑀)) ∩ ℙ)) |
| 62 | | flid 12609 |
. . . . . . . . 9
⊢ (𝑀 ∈ ℤ →
(⌊‘𝑀) = 𝑀) |
| 63 | 4, 62 | syl 17 |
. . . . . . . 8
⊢ (𝑁 ∈
(ℤ≥‘𝑀) → (⌊‘𝑀) = 𝑀) |
| 64 | 63 | oveq2d 6666 |
. . . . . . 7
⊢ (𝑁 ∈
(ℤ≥‘𝑀) → (if(𝑀 ≤ 2, 𝑀, 2)...(⌊‘𝑀)) = (if(𝑀 ≤ 2, 𝑀, 2)...𝑀)) |
| 65 | 64 | ineq1d 3813 |
. . . . . 6
⊢ (𝑁 ∈
(ℤ≥‘𝑀) → ((if(𝑀 ≤ 2, 𝑀, 2)...(⌊‘𝑀)) ∩ ℙ) = ((if(𝑀 ≤ 2, 𝑀, 2)...𝑀) ∩ ℙ)) |
| 66 | 61, 65 | eqtrd 2656 |
. . . . 5
⊢ (𝑁 ∈
(ℤ≥‘𝑀) → ((0[,]𝑀) ∩ ℙ) = ((if(𝑀 ≤ 2, 𝑀, 2)...𝑀) ∩ ℙ)) |
| 67 | 66 | sumeq1d 14431 |
. . . 4
⊢ (𝑁 ∈
(ℤ≥‘𝑀) → Σ𝑝 ∈ ((0[,]𝑀) ∩ ℙ)(log‘𝑝) = Σ𝑝 ∈ ((if(𝑀 ≤ 2, 𝑀, 2)...𝑀) ∩ ℙ)(log‘𝑝)) |
| 68 | 59, 67 | eqtrd 2656 |
. . 3
⊢ (𝑁 ∈
(ℤ≥‘𝑀) → (θ‘𝑀) = Σ𝑝 ∈ ((if(𝑀 ≤ 2, 𝑀, 2)...𝑀) ∩ ℙ)(log‘𝑝)) |
| 69 | 57, 68 | oveq12d 6668 |
. 2
⊢ (𝑁 ∈
(ℤ≥‘𝑀) → ((θ‘𝑁) − (θ‘𝑀)) = ((Σ𝑝 ∈ ((if(𝑀 ≤ 2, 𝑀, 2)...𝑀) ∩ ℙ)(log‘𝑝) + Σ𝑝 ∈ (((𝑀 + 1)...𝑁) ∩ ℙ)(log‘𝑝)) − Σ𝑝 ∈ ((if(𝑀 ≤ 2, 𝑀, 2)...𝑀) ∩ ℙ)(log‘𝑝))) |
| 70 | | fzfi 12771 |
. . . . . 6
⊢ (if(𝑀 ≤ 2, 𝑀, 2)...𝑀) ∈ Fin |
| 71 | | inss1 3833 |
. . . . . 6
⊢
((if(𝑀 ≤ 2, 𝑀, 2)...𝑀) ∩ ℙ) ⊆ (if(𝑀 ≤ 2, 𝑀, 2)...𝑀) |
| 72 | | ssfi 8180 |
. . . . . 6
⊢
(((if(𝑀 ≤ 2,
𝑀, 2)...𝑀) ∈ Fin ∧ ((if(𝑀 ≤ 2, 𝑀, 2)...𝑀) ∩ ℙ) ⊆ (if(𝑀 ≤ 2, 𝑀, 2)...𝑀)) → ((if(𝑀 ≤ 2, 𝑀, 2)...𝑀) ∩ ℙ) ∈
Fin) |
| 73 | 70, 71, 72 | mp2an 708 |
. . . . 5
⊢
((if(𝑀 ≤ 2, 𝑀, 2)...𝑀) ∩ ℙ) ∈ Fin |
| 74 | 73 | a1i 11 |
. . . 4
⊢ (𝑁 ∈
(ℤ≥‘𝑀) → ((if(𝑀 ≤ 2, 𝑀, 2)...𝑀) ∩ ℙ) ∈
Fin) |
| 75 | | ssun1 3776 |
. . . . . . 7
⊢
((if(𝑀 ≤ 2, 𝑀, 2)...𝑀) ∩ ℙ) ⊆ (((if(𝑀 ≤ 2, 𝑀, 2)...𝑀) ∩ ℙ) ∪ (((𝑀 + 1)...𝑁) ∩ ℙ)) |
| 76 | 75, 42 | syl5sseqr 3654 |
. . . . . 6
⊢ (𝑁 ∈
(ℤ≥‘𝑀) → ((if(𝑀 ≤ 2, 𝑀, 2)...𝑀) ∩ ℙ) ⊆ ((if(𝑀 ≤ 2, 𝑀, 2)...𝑁) ∩ ℙ)) |
| 77 | 76 | sselda 3603 |
. . . . 5
⊢ ((𝑁 ∈
(ℤ≥‘𝑀) ∧ 𝑝 ∈ ((if(𝑀 ≤ 2, 𝑀, 2)...𝑀) ∩ ℙ)) → 𝑝 ∈ ((if(𝑀 ≤ 2, 𝑀, 2)...𝑁) ∩ ℙ)) |
| 78 | 77, 54 | syldan 487 |
. . . 4
⊢ ((𝑁 ∈
(ℤ≥‘𝑀) ∧ 𝑝 ∈ ((if(𝑀 ≤ 2, 𝑀, 2)...𝑀) ∩ ℙ)) → (log‘𝑝) ∈
ℂ) |
| 79 | 74, 78 | fsumcl 14464 |
. . 3
⊢ (𝑁 ∈
(ℤ≥‘𝑀) → Σ𝑝 ∈ ((if(𝑀 ≤ 2, 𝑀, 2)...𝑀) ∩ ℙ)(log‘𝑝) ∈
ℂ) |
| 80 | | fzfi 12771 |
. . . . . 6
⊢ ((𝑀 + 1)...𝑁) ∈ Fin |
| 81 | | inss1 3833 |
. . . . . 6
⊢ (((𝑀 + 1)...𝑁) ∩ ℙ) ⊆ ((𝑀 + 1)...𝑁) |
| 82 | | ssfi 8180 |
. . . . . 6
⊢ ((((𝑀 + 1)...𝑁) ∈ Fin ∧ (((𝑀 + 1)...𝑁) ∩ ℙ) ⊆ ((𝑀 + 1)...𝑁)) → (((𝑀 + 1)...𝑁) ∩ ℙ) ∈
Fin) |
| 83 | 80, 81, 82 | mp2an 708 |
. . . . 5
⊢ (((𝑀 + 1)...𝑁) ∩ ℙ) ∈ Fin |
| 84 | 83 | a1i 11 |
. . . 4
⊢ (𝑁 ∈
(ℤ≥‘𝑀) → (((𝑀 + 1)...𝑁) ∩ ℙ) ∈
Fin) |
| 85 | | ssun2 3777 |
. . . . . . 7
⊢ (((𝑀 + 1)...𝑁) ∩ ℙ) ⊆ (((if(𝑀 ≤ 2, 𝑀, 2)...𝑀) ∩ ℙ) ∪ (((𝑀 + 1)...𝑁) ∩ ℙ)) |
| 86 | 85, 42 | syl5sseqr 3654 |
. . . . . 6
⊢ (𝑁 ∈
(ℤ≥‘𝑀) → (((𝑀 + 1)...𝑁) ∩ ℙ) ⊆ ((if(𝑀 ≤ 2, 𝑀, 2)...𝑁) ∩ ℙ)) |
| 87 | 86 | sselda 3603 |
. . . . 5
⊢ ((𝑁 ∈
(ℤ≥‘𝑀) ∧ 𝑝 ∈ (((𝑀 + 1)...𝑁) ∩ ℙ)) → 𝑝 ∈ ((if(𝑀 ≤ 2, 𝑀, 2)...𝑁) ∩ ℙ)) |
| 88 | 87, 54 | syldan 487 |
. . . 4
⊢ ((𝑁 ∈
(ℤ≥‘𝑀) ∧ 𝑝 ∈ (((𝑀 + 1)...𝑁) ∩ ℙ)) → (log‘𝑝) ∈
ℂ) |
| 89 | 84, 88 | fsumcl 14464 |
. . 3
⊢ (𝑁 ∈
(ℤ≥‘𝑀) → Σ𝑝 ∈ (((𝑀 + 1)...𝑁) ∩ ℙ)(log‘𝑝) ∈
ℂ) |
| 90 | 79, 89 | pncan2d 10394 |
. 2
⊢ (𝑁 ∈
(ℤ≥‘𝑀) → ((Σ𝑝 ∈ ((if(𝑀 ≤ 2, 𝑀, 2)...𝑀) ∩ ℙ)(log‘𝑝) + Σ𝑝 ∈ (((𝑀 + 1)...𝑁) ∩ ℙ)(log‘𝑝)) − Σ𝑝 ∈ ((if(𝑀 ≤ 2, 𝑀, 2)...𝑀) ∩ ℙ)(log‘𝑝)) = Σ𝑝 ∈ (((𝑀 + 1)...𝑁) ∩ ℙ)(log‘𝑝)) |
| 91 | 69, 90 | eqtrd 2656 |
1
⊢ (𝑁 ∈
(ℤ≥‘𝑀) → ((θ‘𝑁) − (θ‘𝑀)) = Σ𝑝 ∈ (((𝑀 + 1)...𝑁) ∩ ℙ)(log‘𝑝)) |