Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ovnhoilem1 Structured version   Visualization version   GIF version

Theorem ovnhoilem1 40815
Description: The Lebesgue outer measure of a multidimensional half-open interval is less than or equal to the product of its length in each dimension. First part of the proof of Proposition 115D (b) of [Fremlin1] p. 30. (Contributed by Glauco Siliprandi, 21-Nov-2020.)
Hypotheses
Ref Expression
ovnhoilem1.x (𝜑𝑋 ∈ Fin)
ovnhoilem1.a (𝜑𝐴:𝑋⟶ℝ)
ovnhoilem1.b (𝜑𝐵:𝑋⟶ℝ)
ovnhoilem1.c 𝐼 = X𝑘𝑋 ((𝐴𝑘)[,)(𝐵𝑘))
ovnhoilem1.m 𝑀 = {𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ)(𝐼 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))}
ovnhoilem1.h 𝐻 = (𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ if(𝑗 = 1, ⟨(𝐴𝑘), (𝐵𝑘)⟩, ⟨0, 0⟩)))
Assertion
Ref Expression
ovnhoilem1 (𝜑 → ((voln*‘𝑋)‘𝐼) ≤ ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))))
Distinct variable groups:   𝐴,𝑖,𝑗,𝑧   𝐵,𝑖,𝑗,𝑧   𝑖,𝐻,𝑗   𝑖,𝐼,𝑧   𝑖,𝑋,𝑗,𝑘,𝑧   𝜑,𝑗,𝑘
Allowed substitution hints:   𝜑(𝑧,𝑖)   𝐴(𝑘)   𝐵(𝑘)   𝐻(𝑧,𝑘)   𝐼(𝑗,𝑘)   𝑀(𝑧,𝑖,𝑗,𝑘)

Proof of Theorem ovnhoilem1
StepHypRef Expression
1 ovnhoilem1.x . . 3 (𝜑𝑋 ∈ Fin)
2 ovnhoilem1.c . . . . 5 𝐼 = X𝑘𝑋 ((𝐴𝑘)[,)(𝐵𝑘))
32a1i 11 . . . 4 (𝜑𝐼 = X𝑘𝑋 ((𝐴𝑘)[,)(𝐵𝑘)))
4 nfv 1843 . . . . 5 𝑘𝜑
5 ovnhoilem1.a . . . . . 6 (𝜑𝐴:𝑋⟶ℝ)
65ffvelrnda 6359 . . . . 5 ((𝜑𝑘𝑋) → (𝐴𝑘) ∈ ℝ)
7 ovnhoilem1.b . . . . . . 7 (𝜑𝐵:𝑋⟶ℝ)
87ffvelrnda 6359 . . . . . 6 ((𝜑𝑘𝑋) → (𝐵𝑘) ∈ ℝ)
98rexrd 10089 . . . . 5 ((𝜑𝑘𝑋) → (𝐵𝑘) ∈ ℝ*)
104, 6, 9hoissrrn2 40792 . . . 4 (𝜑X𝑘𝑋 ((𝐴𝑘)[,)(𝐵𝑘)) ⊆ (ℝ ↑𝑚 𝑋))
113, 10eqsstrd 3639 . . 3 (𝜑𝐼 ⊆ (ℝ ↑𝑚 𝑋))
12 ovnhoilem1.m . . 3 𝑀 = {𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ)(𝐼 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))}
131, 11, 12ovnval2 40759 . 2 (𝜑 → ((voln*‘𝑋)‘𝐼) = if(𝑋 = ∅, 0, inf(𝑀, ℝ*, < )))
14 iftrue 4092 . . . . 5 (𝑋 = ∅ → if(𝑋 = ∅, 0, inf(𝑀, ℝ*, < )) = 0)
1514adantl 482 . . . 4 ((𝜑𝑋 = ∅) → if(𝑋 = ∅, 0, inf(𝑀, ℝ*, < )) = 0)
16 0xr 10086 . . . . . . 7 0 ∈ ℝ*
1716a1i 11 . . . . . 6 (𝜑 → 0 ∈ ℝ*)
18 pnfxr 10092 . . . . . . 7 +∞ ∈ ℝ*
1918a1i 11 . . . . . 6 (𝜑 → +∞ ∈ ℝ*)
204, 1, 6, 8hoiprodcl3 40794 . . . . . 6 (𝜑 → ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))) ∈ (0[,)+∞))
21 icogelb 12225 . . . . . 6 ((0 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))) ∈ (0[,)+∞)) → 0 ≤ ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))))
2217, 19, 20, 21syl3anc 1326 . . . . 5 (𝜑 → 0 ≤ ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))))
2322adantr 481 . . . 4 ((𝜑𝑋 = ∅) → 0 ≤ ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))))
2415, 23eqbrtrd 4675 . . 3 ((𝜑𝑋 = ∅) → if(𝑋 = ∅, 0, inf(𝑀, ℝ*, < )) ≤ ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))))
25 iffalse 4095 . . . . 5 𝑋 = ∅ → if(𝑋 = ∅, 0, inf(𝑀, ℝ*, < )) = inf(𝑀, ℝ*, < ))
2625adantl 482 . . . 4 ((𝜑 ∧ ¬ 𝑋 = ∅) → if(𝑋 = ∅, 0, inf(𝑀, ℝ*, < )) = inf(𝑀, ℝ*, < ))
27 ssrab2 3687 . . . . . . 7 {𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ)(𝐼 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))} ⊆ ℝ*
2812, 27eqsstri 3635 . . . . . 6 𝑀 ⊆ ℝ*
2928a1i 11 . . . . 5 ((𝜑 ∧ ¬ 𝑋 = ∅) → 𝑀 ⊆ ℝ*)
30 icossxr 12258 . . . . . . . . . 10 (0[,)+∞) ⊆ ℝ*
3130, 20sseldi 3601 . . . . . . . . 9 (𝜑 → ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))) ∈ ℝ*)
3231adantr 481 . . . . . . . 8 ((𝜑 ∧ ¬ 𝑋 = ∅) → ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))) ∈ ℝ*)
33 opelxpi 5148 . . . . . . . . . . . . . . . . 17 (((𝐴𝑘) ∈ ℝ ∧ (𝐵𝑘) ∈ ℝ) → ⟨(𝐴𝑘), (𝐵𝑘)⟩ ∈ (ℝ × ℝ))
346, 8, 33syl2anc 693 . . . . . . . . . . . . . . . 16 ((𝜑𝑘𝑋) → ⟨(𝐴𝑘), (𝐵𝑘)⟩ ∈ (ℝ × ℝ))
35 0re 10040 . . . . . . . . . . . . . . . . . 18 0 ∈ ℝ
36 opelxpi 5148 . . . . . . . . . . . . . . . . . 18 ((0 ∈ ℝ ∧ 0 ∈ ℝ) → ⟨0, 0⟩ ∈ (ℝ × ℝ))
3735, 35, 36mp2an 708 . . . . . . . . . . . . . . . . 17 ⟨0, 0⟩ ∈ (ℝ × ℝ)
3837a1i 11 . . . . . . . . . . . . . . . 16 ((𝜑𝑘𝑋) → ⟨0, 0⟩ ∈ (ℝ × ℝ))
3934, 38ifcld 4131 . . . . . . . . . . . . . . 15 ((𝜑𝑘𝑋) → if(𝑗 = 1, ⟨(𝐴𝑘), (𝐵𝑘)⟩, ⟨0, 0⟩) ∈ (ℝ × ℝ))
40 eqid 2622 . . . . . . . . . . . . . . 15 (𝑘𝑋 ↦ if(𝑗 = 1, ⟨(𝐴𝑘), (𝐵𝑘)⟩, ⟨0, 0⟩)) = (𝑘𝑋 ↦ if(𝑗 = 1, ⟨(𝐴𝑘), (𝐵𝑘)⟩, ⟨0, 0⟩))
4139, 40fmptd 6385 . . . . . . . . . . . . . 14 (𝜑 → (𝑘𝑋 ↦ if(𝑗 = 1, ⟨(𝐴𝑘), (𝐵𝑘)⟩, ⟨0, 0⟩)):𝑋⟶(ℝ × ℝ))
42 reex 10027 . . . . . . . . . . . . . . . . 17 ℝ ∈ V
4342, 42xpex 6962 . . . . . . . . . . . . . . . 16 (ℝ × ℝ) ∈ V
441, 43jctil 560 . . . . . . . . . . . . . . 15 (𝜑 → ((ℝ × ℝ) ∈ V ∧ 𝑋 ∈ Fin))
45 elmapg 7870 . . . . . . . . . . . . . . 15 (((ℝ × ℝ) ∈ V ∧ 𝑋 ∈ Fin) → ((𝑘𝑋 ↦ if(𝑗 = 1, ⟨(𝐴𝑘), (𝐵𝑘)⟩, ⟨0, 0⟩)) ∈ ((ℝ × ℝ) ↑𝑚 𝑋) ↔ (𝑘𝑋 ↦ if(𝑗 = 1, ⟨(𝐴𝑘), (𝐵𝑘)⟩, ⟨0, 0⟩)):𝑋⟶(ℝ × ℝ)))
4644, 45syl 17 . . . . . . . . . . . . . 14 (𝜑 → ((𝑘𝑋 ↦ if(𝑗 = 1, ⟨(𝐴𝑘), (𝐵𝑘)⟩, ⟨0, 0⟩)) ∈ ((ℝ × ℝ) ↑𝑚 𝑋) ↔ (𝑘𝑋 ↦ if(𝑗 = 1, ⟨(𝐴𝑘), (𝐵𝑘)⟩, ⟨0, 0⟩)):𝑋⟶(ℝ × ℝ)))
4741, 46mpbird 247 . . . . . . . . . . . . 13 (𝜑 → (𝑘𝑋 ↦ if(𝑗 = 1, ⟨(𝐴𝑘), (𝐵𝑘)⟩, ⟨0, 0⟩)) ∈ ((ℝ × ℝ) ↑𝑚 𝑋))
4847adantr 481 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ ℕ) → (𝑘𝑋 ↦ if(𝑗 = 1, ⟨(𝐴𝑘), (𝐵𝑘)⟩, ⟨0, 0⟩)) ∈ ((ℝ × ℝ) ↑𝑚 𝑋))
49 ovnhoilem1.h . . . . . . . . . . . 12 𝐻 = (𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ if(𝑗 = 1, ⟨(𝐴𝑘), (𝐵𝑘)⟩, ⟨0, 0⟩)))
5048, 49fmptd 6385 . . . . . . . . . . 11 (𝜑𝐻:ℕ⟶((ℝ × ℝ) ↑𝑚 𝑋))
51 ovex 6678 . . . . . . . . . . . 12 ((ℝ × ℝ) ↑𝑚 𝑋) ∈ V
52 nnex 11026 . . . . . . . . . . . 12 ℕ ∈ V
5351, 52elmap 7886 . . . . . . . . . . 11 (𝐻 ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ) ↔ 𝐻:ℕ⟶((ℝ × ℝ) ↑𝑚 𝑋))
5450, 53sylibr 224 . . . . . . . . . 10 (𝜑𝐻 ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ))
5554adantr 481 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝑋 = ∅) → 𝐻 ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ))
56 eqidd 2623 . . . . . . . . . . . . 13 (𝜑X𝑘𝑋 ((𝐴𝑘)[,)(𝐵𝑘)) = X𝑘𝑋 ((𝐴𝑘)[,)(𝐵𝑘)))
57 eqid 2622 . . . . . . . . . . . . . . . . . . 19 (𝑘𝑋 ↦ ⟨(𝐴𝑘), (𝐵𝑘)⟩) = (𝑘𝑋 ↦ ⟨(𝐴𝑘), (𝐵𝑘)⟩)
5834, 57fmptd 6385 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝑘𝑋 ↦ ⟨(𝐴𝑘), (𝐵𝑘)⟩):𝑋⟶(ℝ × ℝ))
5949a1i 11 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝐻 = (𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ if(𝑗 = 1, ⟨(𝐴𝑘), (𝐵𝑘)⟩, ⟨0, 0⟩))))
60 iftrue 4092 . . . . . . . . . . . . . . . . . . . . . 22 (𝑗 = 1 → if(𝑗 = 1, ⟨(𝐴𝑘), (𝐵𝑘)⟩, ⟨0, 0⟩) = ⟨(𝐴𝑘), (𝐵𝑘)⟩)
6160mpteq2dv 4745 . . . . . . . . . . . . . . . . . . . . 21 (𝑗 = 1 → (𝑘𝑋 ↦ if(𝑗 = 1, ⟨(𝐴𝑘), (𝐵𝑘)⟩, ⟨0, 0⟩)) = (𝑘𝑋 ↦ ⟨(𝐴𝑘), (𝐵𝑘)⟩))
6261adantl 482 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑗 = 1) → (𝑘𝑋 ↦ if(𝑗 = 1, ⟨(𝐴𝑘), (𝐵𝑘)⟩, ⟨0, 0⟩)) = (𝑘𝑋 ↦ ⟨(𝐴𝑘), (𝐵𝑘)⟩))
63 1nn 11031 . . . . . . . . . . . . . . . . . . . . 21 1 ∈ ℕ
6463a1i 11 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → 1 ∈ ℕ)
65 mptexg 6484 . . . . . . . . . . . . . . . . . . . . 21 (𝑋 ∈ Fin → (𝑘𝑋 ↦ ⟨(𝐴𝑘), (𝐵𝑘)⟩) ∈ V)
661, 65syl 17 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝑘𝑋 ↦ ⟨(𝐴𝑘), (𝐵𝑘)⟩) ∈ V)
6759, 62, 64, 66fvmptd 6288 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝐻‘1) = (𝑘𝑋 ↦ ⟨(𝐴𝑘), (𝐵𝑘)⟩))
6867feq1d 6030 . . . . . . . . . . . . . . . . . 18 (𝜑 → ((𝐻‘1):𝑋⟶(ℝ × ℝ) ↔ (𝑘𝑋 ↦ ⟨(𝐴𝑘), (𝐵𝑘)⟩):𝑋⟶(ℝ × ℝ)))
6958, 68mpbird 247 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐻‘1):𝑋⟶(ℝ × ℝ))
7069adantr 481 . . . . . . . . . . . . . . . 16 ((𝜑𝑘𝑋) → (𝐻‘1):𝑋⟶(ℝ × ℝ))
71 simpr 477 . . . . . . . . . . . . . . . 16 ((𝜑𝑘𝑋) → 𝑘𝑋)
7270, 71fvovco 39381 . . . . . . . . . . . . . . 15 ((𝜑𝑘𝑋) → (([,) ∘ (𝐻‘1))‘𝑘) = ((1st ‘((𝐻‘1)‘𝑘))[,)(2nd ‘((𝐻‘1)‘𝑘))))
7334elexd 3214 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑘𝑋) → ⟨(𝐴𝑘), (𝐵𝑘)⟩ ∈ V)
7467, 73fvmpt2d 6293 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑘𝑋) → ((𝐻‘1)‘𝑘) = ⟨(𝐴𝑘), (𝐵𝑘)⟩)
7574fveq2d 6195 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘𝑋) → (1st ‘((𝐻‘1)‘𝑘)) = (1st ‘⟨(𝐴𝑘), (𝐵𝑘)⟩))
76 fvex 6201 . . . . . . . . . . . . . . . . . . 19 (𝐴𝑘) ∈ V
77 fvex 6201 . . . . . . . . . . . . . . . . . . 19 (𝐵𝑘) ∈ V
7876, 77op1st 7176 . . . . . . . . . . . . . . . . . 18 (1st ‘⟨(𝐴𝑘), (𝐵𝑘)⟩) = (𝐴𝑘)
7978a1i 11 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘𝑋) → (1st ‘⟨(𝐴𝑘), (𝐵𝑘)⟩) = (𝐴𝑘))
8075, 79eqtrd 2656 . . . . . . . . . . . . . . . 16 ((𝜑𝑘𝑋) → (1st ‘((𝐻‘1)‘𝑘)) = (𝐴𝑘))
8174fveq2d 6195 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘𝑋) → (2nd ‘((𝐻‘1)‘𝑘)) = (2nd ‘⟨(𝐴𝑘), (𝐵𝑘)⟩))
8276, 77op2nd 7177 . . . . . . . . . . . . . . . . . 18 (2nd ‘⟨(𝐴𝑘), (𝐵𝑘)⟩) = (𝐵𝑘)
8382a1i 11 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘𝑋) → (2nd ‘⟨(𝐴𝑘), (𝐵𝑘)⟩) = (𝐵𝑘))
8481, 83eqtrd 2656 . . . . . . . . . . . . . . . 16 ((𝜑𝑘𝑋) → (2nd ‘((𝐻‘1)‘𝑘)) = (𝐵𝑘))
8580, 84oveq12d 6668 . . . . . . . . . . . . . . 15 ((𝜑𝑘𝑋) → ((1st ‘((𝐻‘1)‘𝑘))[,)(2nd ‘((𝐻‘1)‘𝑘))) = ((𝐴𝑘)[,)(𝐵𝑘)))
8672, 85eqtrd 2656 . . . . . . . . . . . . . 14 ((𝜑𝑘𝑋) → (([,) ∘ (𝐻‘1))‘𝑘) = ((𝐴𝑘)[,)(𝐵𝑘)))
8786ixpeq2dva 7923 . . . . . . . . . . . . 13 (𝜑X𝑘𝑋 (([,) ∘ (𝐻‘1))‘𝑘) = X𝑘𝑋 ((𝐴𝑘)[,)(𝐵𝑘)))
8856, 3, 873eqtr4d 2666 . . . . . . . . . . . 12 (𝜑𝐼 = X𝑘𝑋 (([,) ∘ (𝐻‘1))‘𝑘))
89 fveq2 6191 . . . . . . . . . . . . . . . . 17 (𝑗 = 1 → (𝐻𝑗) = (𝐻‘1))
9089coeq2d 5284 . . . . . . . . . . . . . . . 16 (𝑗 = 1 → ([,) ∘ (𝐻𝑗)) = ([,) ∘ (𝐻‘1)))
9190fveq1d 6193 . . . . . . . . . . . . . . 15 (𝑗 = 1 → (([,) ∘ (𝐻𝑗))‘𝑘) = (([,) ∘ (𝐻‘1))‘𝑘))
9291ixpeq2dv 7924 . . . . . . . . . . . . . 14 (𝑗 = 1 → X𝑘𝑋 (([,) ∘ (𝐻𝑗))‘𝑘) = X𝑘𝑋 (([,) ∘ (𝐻‘1))‘𝑘))
9392ssiun2s 4564 . . . . . . . . . . . . 13 (1 ∈ ℕ → X𝑘𝑋 (([,) ∘ (𝐻‘1))‘𝑘) ⊆ 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝐻𝑗))‘𝑘))
9463, 93ax-mp 5 . . . . . . . . . . . 12 X𝑘𝑋 (([,) ∘ (𝐻‘1))‘𝑘) ⊆ 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝐻𝑗))‘𝑘)
9588, 94syl6eqss 3655 . . . . . . . . . . 11 (𝜑𝐼 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝐻𝑗))‘𝑘))
9695adantr 481 . . . . . . . . . 10 ((𝜑 ∧ ¬ 𝑋 = ∅) → 𝐼 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝐻𝑗))‘𝑘))
9786fveq2d 6195 . . . . . . . . . . . . . 14 ((𝜑𝑘𝑋) → (vol‘(([,) ∘ (𝐻‘1))‘𝑘)) = (vol‘((𝐴𝑘)[,)(𝐵𝑘))))
9897eqcomd 2628 . . . . . . . . . . . . 13 ((𝜑𝑘𝑋) → (vol‘((𝐴𝑘)[,)(𝐵𝑘))) = (vol‘(([,) ∘ (𝐻‘1))‘𝑘)))
9998prodeq2dv 14653 . . . . . . . . . . . 12 (𝜑 → ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))) = ∏𝑘𝑋 (vol‘(([,) ∘ (𝐻‘1))‘𝑘)))
10099adantr 481 . . . . . . . . . . 11 ((𝜑 ∧ ¬ 𝑋 = ∅) → ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))) = ∏𝑘𝑋 (vol‘(([,) ∘ (𝐻‘1))‘𝑘)))
101 1red 10055 . . . . . . . . . . . . . 14 (𝜑 → 1 ∈ ℝ)
102 icossicc 12260 . . . . . . . . . . . . . . 15 (0[,)+∞) ⊆ (0[,]+∞)
1034, 1, 69hoiprodcl 40761 . . . . . . . . . . . . . . 15 (𝜑 → ∏𝑘𝑋 (vol‘(([,) ∘ (𝐻‘1))‘𝑘)) ∈ (0[,)+∞))
104102, 103sseldi 3601 . . . . . . . . . . . . . 14 (𝜑 → ∏𝑘𝑋 (vol‘(([,) ∘ (𝐻‘1))‘𝑘)) ∈ (0[,]+∞))
10591fveq2d 6195 . . . . . . . . . . . . . . 15 (𝑗 = 1 → (vol‘(([,) ∘ (𝐻𝑗))‘𝑘)) = (vol‘(([,) ∘ (𝐻‘1))‘𝑘)))
106105prodeq2ad 39824 . . . . . . . . . . . . . 14 (𝑗 = 1 → ∏𝑘𝑋 (vol‘(([,) ∘ (𝐻𝑗))‘𝑘)) = ∏𝑘𝑋 (vol‘(([,) ∘ (𝐻‘1))‘𝑘)))
107101, 104, 106sge0snmpt 40600 . . . . . . . . . . . . 13 (𝜑 → (Σ^‘(𝑗 ∈ {1} ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝐻𝑗))‘𝑘)))) = ∏𝑘𝑋 (vol‘(([,) ∘ (𝐻‘1))‘𝑘)))
108107eqcomd 2628 . . . . . . . . . . . 12 (𝜑 → ∏𝑘𝑋 (vol‘(([,) ∘ (𝐻‘1))‘𝑘)) = (Σ^‘(𝑗 ∈ {1} ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝐻𝑗))‘𝑘)))))
109108adantr 481 . . . . . . . . . . 11 ((𝜑 ∧ ¬ 𝑋 = ∅) → ∏𝑘𝑋 (vol‘(([,) ∘ (𝐻‘1))‘𝑘)) = (Σ^‘(𝑗 ∈ {1} ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝐻𝑗))‘𝑘)))))
110 nfv 1843 . . . . . . . . . . . 12 𝑗(𝜑 ∧ ¬ 𝑋 = ∅)
11152a1i 11 . . . . . . . . . . . 12 ((𝜑 ∧ ¬ 𝑋 = ∅) → ℕ ∈ V)
112 snssi 4339 . . . . . . . . . . . . . 14 (1 ∈ ℕ → {1} ⊆ ℕ)
11363, 112ax-mp 5 . . . . . . . . . . . . 13 {1} ⊆ ℕ
114113a1i 11 . . . . . . . . . . . 12 ((𝜑 ∧ ¬ 𝑋 = ∅) → {1} ⊆ ℕ)
115 nfv 1843 . . . . . . . . . . . . . 14 𝑘((𝜑 ∧ ¬ 𝑋 = ∅) ∧ 𝑗 ∈ {1})
1161ad2antrr 762 . . . . . . . . . . . . . 14 (((𝜑 ∧ ¬ 𝑋 = ∅) ∧ 𝑗 ∈ {1}) → 𝑋 ∈ Fin)
117 simpl 473 . . . . . . . . . . . . . . . 16 ((𝜑𝑗 ∈ {1}) → 𝜑)
118 elsni 4194 . . . . . . . . . . . . . . . . 17 (𝑗 ∈ {1} → 𝑗 = 1)
119118adantl 482 . . . . . . . . . . . . . . . 16 ((𝜑𝑗 ∈ {1}) → 𝑗 = 1)
12069adantr 481 . . . . . . . . . . . . . . . . 17 ((𝜑𝑗 = 1) → (𝐻‘1):𝑋⟶(ℝ × ℝ))
12189adantl 482 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑗 = 1) → (𝐻𝑗) = (𝐻‘1))
122121feq1d 6030 . . . . . . . . . . . . . . . . 17 ((𝜑𝑗 = 1) → ((𝐻𝑗):𝑋⟶(ℝ × ℝ) ↔ (𝐻‘1):𝑋⟶(ℝ × ℝ)))
123120, 122mpbird 247 . . . . . . . . . . . . . . . 16 ((𝜑𝑗 = 1) → (𝐻𝑗):𝑋⟶(ℝ × ℝ))
124117, 119, 123syl2anc 693 . . . . . . . . . . . . . . 15 ((𝜑𝑗 ∈ {1}) → (𝐻𝑗):𝑋⟶(ℝ × ℝ))
125124adantlr 751 . . . . . . . . . . . . . 14 (((𝜑 ∧ ¬ 𝑋 = ∅) ∧ 𝑗 ∈ {1}) → (𝐻𝑗):𝑋⟶(ℝ × ℝ))
126115, 116, 125hoiprodcl 40761 . . . . . . . . . . . . 13 (((𝜑 ∧ ¬ 𝑋 = ∅) ∧ 𝑗 ∈ {1}) → ∏𝑘𝑋 (vol‘(([,) ∘ (𝐻𝑗))‘𝑘)) ∈ (0[,)+∞))
127102, 126sseldi 3601 . . . . . . . . . . . 12 (((𝜑 ∧ ¬ 𝑋 = ∅) ∧ 𝑗 ∈ {1}) → ∏𝑘𝑋 (vol‘(([,) ∘ (𝐻𝑗))‘𝑘)) ∈ (0[,]+∞))
128 eqid 2622 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑘𝑋 ↦ ⟨0, 0⟩) = (𝑘𝑋 ↦ ⟨0, 0⟩)
12938, 128fmptd 6385 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (𝑘𝑋 ↦ ⟨0, 0⟩):𝑋⟶(ℝ × ℝ))
130129adantr 481 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑗 ∈ (ℕ ∖ {1})) → (𝑘𝑋 ↦ ⟨0, 0⟩):𝑋⟶(ℝ × ℝ))
131 simpl 473 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑗 ∈ (ℕ ∖ {1})) → 𝜑)
132 eldifi 3732 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑗 ∈ (ℕ ∖ {1}) → 𝑗 ∈ ℕ)
133132adantl 482 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑗 ∈ (ℕ ∖ {1})) → 𝑗 ∈ ℕ)
13448elexd 3214 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑗 ∈ ℕ) → (𝑘𝑋 ↦ if(𝑗 = 1, ⟨(𝐴𝑘), (𝐵𝑘)⟩, ⟨0, 0⟩)) ∈ V)
13559, 134fvmpt2d 6293 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑗 ∈ ℕ) → (𝐻𝑗) = (𝑘𝑋 ↦ if(𝑗 = 1, ⟨(𝐴𝑘), (𝐵𝑘)⟩, ⟨0, 0⟩)))
136131, 133, 135syl2anc 693 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑗 ∈ (ℕ ∖ {1})) → (𝐻𝑗) = (𝑘𝑋 ↦ if(𝑗 = 1, ⟨(𝐴𝑘), (𝐵𝑘)⟩, ⟨0, 0⟩)))
137 eldifsni 4320 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑗 ∈ (ℕ ∖ {1}) → 𝑗 ≠ 1)
138137neneqd 2799 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑗 ∈ (ℕ ∖ {1}) → ¬ 𝑗 = 1)
139138iffalsed 4097 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑗 ∈ (ℕ ∖ {1}) → if(𝑗 = 1, ⟨(𝐴𝑘), (𝐵𝑘)⟩, ⟨0, 0⟩) = ⟨0, 0⟩)
140139mpteq2dv 4745 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑗 ∈ (ℕ ∖ {1}) → (𝑘𝑋 ↦ if(𝑗 = 1, ⟨(𝐴𝑘), (𝐵𝑘)⟩, ⟨0, 0⟩)) = (𝑘𝑋 ↦ ⟨0, 0⟩))
141140adantl 482 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑗 ∈ (ℕ ∖ {1})) → (𝑘𝑋 ↦ if(𝑗 = 1, ⟨(𝐴𝑘), (𝐵𝑘)⟩, ⟨0, 0⟩)) = (𝑘𝑋 ↦ ⟨0, 0⟩))
142136, 141eqtrd 2656 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑗 ∈ (ℕ ∖ {1})) → (𝐻𝑗) = (𝑘𝑋 ↦ ⟨0, 0⟩))
143142feq1d 6030 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑗 ∈ (ℕ ∖ {1})) → ((𝐻𝑗):𝑋⟶(ℝ × ℝ) ↔ (𝑘𝑋 ↦ ⟨0, 0⟩):𝑋⟶(ℝ × ℝ)))
144130, 143mpbird 247 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑗 ∈ (ℕ ∖ {1})) → (𝐻𝑗):𝑋⟶(ℝ × ℝ))
145144adantr 481 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑗 ∈ (ℕ ∖ {1})) ∧ 𝑘𝑋) → (𝐻𝑗):𝑋⟶(ℝ × ℝ))
146 simpr 477 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑗 ∈ (ℕ ∖ {1})) ∧ 𝑘𝑋) → 𝑘𝑋)
147145, 146fvovco 39381 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑗 ∈ (ℕ ∖ {1})) ∧ 𝑘𝑋) → (([,) ∘ (𝐻𝑗))‘𝑘) = ((1st ‘((𝐻𝑗)‘𝑘))[,)(2nd ‘((𝐻𝑗)‘𝑘))))
14837elexi 3213 . . . . . . . . . . . . . . . . . . . . . . 23 ⟨0, 0⟩ ∈ V
149148a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑗 ∈ (ℕ ∖ {1})) ∧ 𝑘𝑋) → ⟨0, 0⟩ ∈ V)
150142, 149fvmpt2d 6293 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑗 ∈ (ℕ ∖ {1})) ∧ 𝑘𝑋) → ((𝐻𝑗)‘𝑘) = ⟨0, 0⟩)
151150fveq2d 6195 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑗 ∈ (ℕ ∖ {1})) ∧ 𝑘𝑋) → (1st ‘((𝐻𝑗)‘𝑘)) = (1st ‘⟨0, 0⟩))
15216elexi 3213 . . . . . . . . . . . . . . . . . . . . . 22 0 ∈ V
153152, 152op1st 7176 . . . . . . . . . . . . . . . . . . . . 21 (1st ‘⟨0, 0⟩) = 0
154153a1i 11 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑗 ∈ (ℕ ∖ {1})) ∧ 𝑘𝑋) → (1st ‘⟨0, 0⟩) = 0)
155151, 154eqtrd 2656 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑗 ∈ (ℕ ∖ {1})) ∧ 𝑘𝑋) → (1st ‘((𝐻𝑗)‘𝑘)) = 0)
156150fveq2d 6195 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑗 ∈ (ℕ ∖ {1})) ∧ 𝑘𝑋) → (2nd ‘((𝐻𝑗)‘𝑘)) = (2nd ‘⟨0, 0⟩))
157152, 152op2nd 7177 . . . . . . . . . . . . . . . . . . . . 21 (2nd ‘⟨0, 0⟩) = 0
158157a1i 11 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑗 ∈ (ℕ ∖ {1})) ∧ 𝑘𝑋) → (2nd ‘⟨0, 0⟩) = 0)
159156, 158eqtrd 2656 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑗 ∈ (ℕ ∖ {1})) ∧ 𝑘𝑋) → (2nd ‘((𝐻𝑗)‘𝑘)) = 0)
160155, 159oveq12d 6668 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑗 ∈ (ℕ ∖ {1})) ∧ 𝑘𝑋) → ((1st ‘((𝐻𝑗)‘𝑘))[,)(2nd ‘((𝐻𝑗)‘𝑘))) = (0[,)0))
161 0le0 11110 . . . . . . . . . . . . . . . . . . . 20 0 ≤ 0
162 ico0 12221 . . . . . . . . . . . . . . . . . . . . 21 ((0 ∈ ℝ* ∧ 0 ∈ ℝ*) → ((0[,)0) = ∅ ↔ 0 ≤ 0))
16316, 16, 162mp2an 708 . . . . . . . . . . . . . . . . . . . 20 ((0[,)0) = ∅ ↔ 0 ≤ 0)
164161, 163mpbir 221 . . . . . . . . . . . . . . . . . . 19 (0[,)0) = ∅
165164a1i 11 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑗 ∈ (ℕ ∖ {1})) ∧ 𝑘𝑋) → (0[,)0) = ∅)
166147, 160, 1653eqtrd 2660 . . . . . . . . . . . . . . . . 17 (((𝜑𝑗 ∈ (ℕ ∖ {1})) ∧ 𝑘𝑋) → (([,) ∘ (𝐻𝑗))‘𝑘) = ∅)
167166fveq2d 6195 . . . . . . . . . . . . . . . 16 (((𝜑𝑗 ∈ (ℕ ∖ {1})) ∧ 𝑘𝑋) → (vol‘(([,) ∘ (𝐻𝑗))‘𝑘)) = (vol‘∅))
168 vol0 40175 . . . . . . . . . . . . . . . . 17 (vol‘∅) = 0
169168a1i 11 . . . . . . . . . . . . . . . 16 (((𝜑𝑗 ∈ (ℕ ∖ {1})) ∧ 𝑘𝑋) → (vol‘∅) = 0)
170167, 169eqtrd 2656 . . . . . . . . . . . . . . 15 (((𝜑𝑗 ∈ (ℕ ∖ {1})) ∧ 𝑘𝑋) → (vol‘(([,) ∘ (𝐻𝑗))‘𝑘)) = 0)
171170prodeq2dv 14653 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ (ℕ ∖ {1})) → ∏𝑘𝑋 (vol‘(([,) ∘ (𝐻𝑗))‘𝑘)) = ∏𝑘𝑋 0)
172171adantlr 751 . . . . . . . . . . . . 13 (((𝜑 ∧ ¬ 𝑋 = ∅) ∧ 𝑗 ∈ (ℕ ∖ {1})) → ∏𝑘𝑋 (vol‘(([,) ∘ (𝐻𝑗))‘𝑘)) = ∏𝑘𝑋 0)
173 0cnd 10033 . . . . . . . . . . . . . . 15 (𝜑 → 0 ∈ ℂ)
174 fprodconst 14708 . . . . . . . . . . . . . . 15 ((𝑋 ∈ Fin ∧ 0 ∈ ℂ) → ∏𝑘𝑋 0 = (0↑(#‘𝑋)))
1751, 173, 174syl2anc 693 . . . . . . . . . . . . . 14 (𝜑 → ∏𝑘𝑋 0 = (0↑(#‘𝑋)))
176175ad2antrr 762 . . . . . . . . . . . . 13 (((𝜑 ∧ ¬ 𝑋 = ∅) ∧ 𝑗 ∈ (ℕ ∖ {1})) → ∏𝑘𝑋 0 = (0↑(#‘𝑋)))
177 neqne 2802 . . . . . . . . . . . . . . . . 17 𝑋 = ∅ → 𝑋 ≠ ∅)
178177adantl 482 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ ¬ 𝑋 = ∅) → 𝑋 ≠ ∅)
1791adantr 481 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ ¬ 𝑋 = ∅) → 𝑋 ∈ Fin)
180 hashnncl 13157 . . . . . . . . . . . . . . . . 17 (𝑋 ∈ Fin → ((#‘𝑋) ∈ ℕ ↔ 𝑋 ≠ ∅))
181179, 180syl 17 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ ¬ 𝑋 = ∅) → ((#‘𝑋) ∈ ℕ ↔ 𝑋 ≠ ∅))
182178, 181mpbird 247 . . . . . . . . . . . . . . 15 ((𝜑 ∧ ¬ 𝑋 = ∅) → (#‘𝑋) ∈ ℕ)
183 0exp 12895 . . . . . . . . . . . . . . 15 ((#‘𝑋) ∈ ℕ → (0↑(#‘𝑋)) = 0)
184182, 183syl 17 . . . . . . . . . . . . . 14 ((𝜑 ∧ ¬ 𝑋 = ∅) → (0↑(#‘𝑋)) = 0)
185184adantr 481 . . . . . . . . . . . . 13 (((𝜑 ∧ ¬ 𝑋 = ∅) ∧ 𝑗 ∈ (ℕ ∖ {1})) → (0↑(#‘𝑋)) = 0)
186172, 176, 1853eqtrd 2660 . . . . . . . . . . . 12 (((𝜑 ∧ ¬ 𝑋 = ∅) ∧ 𝑗 ∈ (ℕ ∖ {1})) → ∏𝑘𝑋 (vol‘(([,) ∘ (𝐻𝑗))‘𝑘)) = 0)
187110, 111, 114, 127, 186sge0ss 40629 . . . . . . . . . . 11 ((𝜑 ∧ ¬ 𝑋 = ∅) → (Σ^‘(𝑗 ∈ {1} ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝐻𝑗))‘𝑘)))) = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝐻𝑗))‘𝑘)))))
188100, 109, 1873eqtrd 2660 . . . . . . . . . 10 ((𝜑 ∧ ¬ 𝑋 = ∅) → ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))) = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝐻𝑗))‘𝑘)))))
18996, 188jca 554 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝑋 = ∅) → (𝐼 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝐻𝑗))‘𝑘) ∧ ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))) = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝐻𝑗))‘𝑘))))))
190 nfcv 2764 . . . . . . . . . . . . . . 15 𝑘𝑖
191 nfcv 2764 . . . . . . . . . . . . . . . . 17 𝑘
192 nfmpt1 4747 . . . . . . . . . . . . . . . . 17 𝑘(𝑘𝑋 ↦ if(𝑗 = 1, ⟨(𝐴𝑘), (𝐵𝑘)⟩, ⟨0, 0⟩))
193191, 192nfmpt 4746 . . . . . . . . . . . . . . . 16 𝑘(𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ if(𝑗 = 1, ⟨(𝐴𝑘), (𝐵𝑘)⟩, ⟨0, 0⟩)))
19449, 193nfcxfr 2762 . . . . . . . . . . . . . . 15 𝑘𝐻
195190, 194nfeq 2776 . . . . . . . . . . . . . 14 𝑘 𝑖 = 𝐻
196 fveq1 6190 . . . . . . . . . . . . . . . . 17 (𝑖 = 𝐻 → (𝑖𝑗) = (𝐻𝑗))
197196coeq2d 5284 . . . . . . . . . . . . . . . 16 (𝑖 = 𝐻 → ([,) ∘ (𝑖𝑗)) = ([,) ∘ (𝐻𝑗)))
198197fveq1d 6193 . . . . . . . . . . . . . . 15 (𝑖 = 𝐻 → (([,) ∘ (𝑖𝑗))‘𝑘) = (([,) ∘ (𝐻𝑗))‘𝑘))
199198adantr 481 . . . . . . . . . . . . . 14 ((𝑖 = 𝐻𝑘𝑋) → (([,) ∘ (𝑖𝑗))‘𝑘) = (([,) ∘ (𝐻𝑗))‘𝑘))
200195, 199ixpeq2d 39237 . . . . . . . . . . . . 13 (𝑖 = 𝐻X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) = X𝑘𝑋 (([,) ∘ (𝐻𝑗))‘𝑘))
201200iuneq2d 4547 . . . . . . . . . . . 12 (𝑖 = 𝐻 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) = 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝐻𝑗))‘𝑘))
202201sseq2d 3633 . . . . . . . . . . 11 (𝑖 = 𝐻 → (𝐼 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ↔ 𝐼 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝐻𝑗))‘𝑘)))
203198fveq2d 6195 . . . . . . . . . . . . . . . . 17 (𝑖 = 𝐻 → (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)) = (vol‘(([,) ∘ (𝐻𝑗))‘𝑘)))
204203a1d 25 . . . . . . . . . . . . . . . 16 (𝑖 = 𝐻 → (𝑘𝑋 → (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)) = (vol‘(([,) ∘ (𝐻𝑗))‘𝑘))))
205195, 204ralrimi 2957 . . . . . . . . . . . . . . 15 (𝑖 = 𝐻 → ∀𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)) = (vol‘(([,) ∘ (𝐻𝑗))‘𝑘)))
206205prodeq2d 14652 . . . . . . . . . . . . . 14 (𝑖 = 𝐻 → ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)) = ∏𝑘𝑋 (vol‘(([,) ∘ (𝐻𝑗))‘𝑘)))
207206mpteq2dv 4745 . . . . . . . . . . . . 13 (𝑖 = 𝐻 → (𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘))) = (𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝐻𝑗))‘𝑘))))
208207fveq2d 6195 . . . . . . . . . . . 12 (𝑖 = 𝐻 → (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))) = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝐻𝑗))‘𝑘)))))
209208eqeq2d 2632 . . . . . . . . . . 11 (𝑖 = 𝐻 → (∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))) = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))) ↔ ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))) = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝐻𝑗))‘𝑘))))))
210202, 209anbi12d 747 . . . . . . . . . 10 (𝑖 = 𝐻 → ((𝐼 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))) = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘))))) ↔ (𝐼 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝐻𝑗))‘𝑘) ∧ ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))) = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝐻𝑗))‘𝑘)))))))
211210rspcev 3309 . . . . . . . . 9 ((𝐻 ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ) ∧ (𝐼 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝐻𝑗))‘𝑘) ∧ ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))) = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝐻𝑗))‘𝑘)))))) → ∃𝑖 ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ)(𝐼 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))) = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘))))))
21255, 189, 211syl2anc 693 . . . . . . . 8 ((𝜑 ∧ ¬ 𝑋 = ∅) → ∃𝑖 ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ)(𝐼 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))) = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘))))))
21332, 212jca 554 . . . . . . 7 ((𝜑 ∧ ¬ 𝑋 = ∅) → (∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))) ∈ ℝ* ∧ ∃𝑖 ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ)(𝐼 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))) = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))))
214 eqeq1 2626 . . . . . . . . . 10 (𝑧 = ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))) → (𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))) ↔ ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))) = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘))))))
215214anbi2d 740 . . . . . . . . 9 (𝑧 = ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))) → ((𝐼 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘))))) ↔ (𝐼 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))) = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))))
216215rexbidv 3052 . . . . . . . 8 (𝑧 = ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))) → (∃𝑖 ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ)(𝐼 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘))))) ↔ ∃𝑖 ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ)(𝐼 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))) = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))))
217216elrab 3363 . . . . . . 7 (∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))) ∈ {𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ)(𝐼 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))} ↔ (∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))) ∈ ℝ* ∧ ∃𝑖 ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ)(𝐼 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))) = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))))
218213, 217sylibr 224 . . . . . 6 ((𝜑 ∧ ¬ 𝑋 = ∅) → ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))) ∈ {𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ)(𝐼 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))})
21912eqcomi 2631 . . . . . . 7 {𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ)(𝐼 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))} = 𝑀
220219a1i 11 . . . . . 6 ((𝜑 ∧ ¬ 𝑋 = ∅) → {𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ)(𝐼 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))} = 𝑀)
221218, 220eleqtrd 2703 . . . . 5 ((𝜑 ∧ ¬ 𝑋 = ∅) → ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))) ∈ 𝑀)
222 infxrlb 12164 . . . . 5 ((𝑀 ⊆ ℝ* ∧ ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))) ∈ 𝑀) → inf(𝑀, ℝ*, < ) ≤ ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))))
22329, 221, 222syl2anc 693 . . . 4 ((𝜑 ∧ ¬ 𝑋 = ∅) → inf(𝑀, ℝ*, < ) ≤ ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))))
22426, 223eqbrtrd 4675 . . 3 ((𝜑 ∧ ¬ 𝑋 = ∅) → if(𝑋 = ∅, 0, inf(𝑀, ℝ*, < )) ≤ ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))))
22524, 224pm2.61dan 832 . 2 (𝜑 → if(𝑋 = ∅, 0, inf(𝑀, ℝ*, < )) ≤ ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))))
22613, 225eqbrtrd 4675 1 (𝜑 → ((voln*‘𝑋)‘𝐼) ≤ ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384   = wceq 1483  wcel 1990  wne 2794  wrex 2913  {crab 2916  Vcvv 3200  cdif 3571  wss 3574  c0 3915  ifcif 4086  {csn 4177  cop 4183   ciun 4520   class class class wbr 4653  cmpt 4729   × cxp 5112  ccom 5118  wf 5884  cfv 5888  (class class class)co 6650  1st c1st 7166  2nd c2nd 7167  𝑚 cmap 7857  Xcixp 7908  Fincfn 7955  infcinf 8347  cc 9934  cr 9935  0cc0 9936  1c1 9937  +∞cpnf 10071  *cxr 10073   < clt 10074  cle 10075  cn 11020  [,)cico 12177  [,]cicc 12178  cexp 12860  #chash 13117  cprod 14635  volcvol 23232  Σ^csumge0 40579  voln*covoln 40750
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ioo 12179  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-fl 12593  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-rlim 14220  df-sum 14417  df-prod 14636  df-rest 16083  df-topgen 16104  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-top 20699  df-topon 20716  df-bases 20750  df-cmp 21190  df-ovol 23233  df-vol 23234  df-sumge0 40580  df-ovoln 40751
This theorem is referenced by:  ovnhoi  40817
  Copyright terms: Public domain W3C validator