| Step | Hyp | Ref
| Expression |
| 1 | | gsumesum.0 |
. . 3
⊢
Ⅎ𝑘𝜑 |
| 2 | | nfcv 2764 |
. . 3
⊢
Ⅎ𝑘𝐴 |
| 3 | | gsumesum.1 |
. . 3
⊢ (𝜑 → 𝐴 ∈ Fin) |
| 4 | | gsumesum.2 |
. . 3
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ (0[,]+∞)) |
| 5 | | eqidd 2623 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ (𝒫 𝐴 ∩ Fin)) →
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑘 ∈ 𝑥 ↦ 𝐵)) =
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑘 ∈ 𝑥 ↦ 𝐵))) |
| 6 | 1, 2, 3, 4, 5 | esumval 30108 |
. 2
⊢ (𝜑 → Σ*𝑘 ∈ 𝐴𝐵 = sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑘 ∈ 𝑥 ↦ 𝐵))), ℝ*, <
)) |
| 7 | | xrltso 11974 |
. . . 4
⊢ < Or
ℝ* |
| 8 | 7 | a1i 11 |
. . 3
⊢ (𝜑 → < Or
ℝ*) |
| 9 | | iccssxr 12256 |
. . . 4
⊢
(0[,]+∞) ⊆ ℝ* |
| 10 | | xrge0base 29685 |
. . . . 5
⊢
(0[,]+∞) = (Base‘(ℝ*𝑠
↾s (0[,]+∞))) |
| 11 | | xrge0cmn 19788 |
. . . . . 6
⊢
(ℝ*𝑠 ↾s
(0[,]+∞)) ∈ CMnd |
| 12 | 11 | a1i 11 |
. . . . 5
⊢ (𝜑 →
(ℝ*𝑠 ↾s (0[,]+∞))
∈ CMnd) |
| 13 | 4 | ex 450 |
. . . . . 6
⊢ (𝜑 → (𝑘 ∈ 𝐴 → 𝐵 ∈ (0[,]+∞))) |
| 14 | 1, 13 | ralrimi 2957 |
. . . . 5
⊢ (𝜑 → ∀𝑘 ∈ 𝐴 𝐵 ∈ (0[,]+∞)) |
| 15 | 10, 12, 3, 14 | gsummptcl 18366 |
. . . 4
⊢ (𝜑 →
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑘 ∈ 𝐴 ↦ 𝐵)) ∈ (0[,]+∞)) |
| 16 | 9, 15 | sseldi 3601 |
. . 3
⊢ (𝜑 →
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑘 ∈ 𝐴 ↦ 𝐵)) ∈
ℝ*) |
| 17 | | pwidg 4173 |
. . . . . . 7
⊢ (𝐴 ∈ Fin → 𝐴 ∈ 𝒫 𝐴) |
| 18 | 3, 17 | syl 17 |
. . . . . 6
⊢ (𝜑 → 𝐴 ∈ 𝒫 𝐴) |
| 19 | 18, 3 | elind 3798 |
. . . . 5
⊢ (𝜑 → 𝐴 ∈ (𝒫 𝐴 ∩ Fin)) |
| 20 | | eqidd 2623 |
. . . . 5
⊢ (𝜑 →
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑘 ∈ 𝐴 ↦ 𝐵)) =
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑘 ∈ 𝐴 ↦ 𝐵))) |
| 21 | | mpteq1 4737 |
. . . . . . . 8
⊢ (𝑥 = 𝐴 → (𝑘 ∈ 𝑥 ↦ 𝐵) = (𝑘 ∈ 𝐴 ↦ 𝐵)) |
| 22 | 21 | oveq2d 6666 |
. . . . . . 7
⊢ (𝑥 = 𝐴 →
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑘 ∈ 𝑥 ↦ 𝐵)) =
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑘 ∈ 𝐴 ↦ 𝐵))) |
| 23 | 22 | eqeq2d 2632 |
. . . . . 6
⊢ (𝑥 = 𝐴 →
(((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑘 ∈ 𝐴 ↦ 𝐵)) =
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑘 ∈ 𝑥 ↦ 𝐵)) ↔
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑘 ∈ 𝐴 ↦ 𝐵)) =
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑘 ∈ 𝐴 ↦ 𝐵)))) |
| 24 | 23 | rspcev 3309 |
. . . . 5
⊢ ((𝐴 ∈ (𝒫 𝐴 ∩ Fin) ∧
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑘 ∈ 𝐴 ↦ 𝐵)) =
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑘 ∈ 𝐴 ↦ 𝐵))) → ∃𝑥 ∈ (𝒫 𝐴 ∩
Fin)((ℝ*𝑠 ↾s
(0[,]+∞)) Σg (𝑘 ∈ 𝐴 ↦ 𝐵)) =
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑘 ∈ 𝑥 ↦ 𝐵))) |
| 25 | 19, 20, 24 | syl2anc 693 |
. . . 4
⊢ (𝜑 → ∃𝑥 ∈ (𝒫 𝐴 ∩
Fin)((ℝ*𝑠 ↾s
(0[,]+∞)) Σg (𝑘 ∈ 𝐴 ↦ 𝐵)) =
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑘 ∈ 𝑥 ↦ 𝐵))) |
| 26 | | eqid 2622 |
. . . . 5
⊢ (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑘 ∈ 𝑥 ↦ 𝐵))) = (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑘 ∈ 𝑥 ↦ 𝐵))) |
| 27 | | ovex 6678 |
. . . . 5
⊢
((ℝ*𝑠 ↾s
(0[,]+∞)) Σg (𝑘 ∈ 𝑥 ↦ 𝐵)) ∈ V |
| 28 | 26, 27 | elrnmpti 5376 |
. . . 4
⊢
(((ℝ*𝑠 ↾s
(0[,]+∞)) Σg (𝑘 ∈ 𝐴 ↦ 𝐵)) ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑘 ∈ 𝑥 ↦ 𝐵))) ↔ ∃𝑥 ∈ (𝒫 𝐴 ∩
Fin)((ℝ*𝑠 ↾s
(0[,]+∞)) Σg (𝑘 ∈ 𝐴 ↦ 𝐵)) =
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑘 ∈ 𝑥 ↦ 𝐵))) |
| 29 | 25, 28 | sylibr 224 |
. . 3
⊢ (𝜑 →
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑘 ∈ 𝐴 ↦ 𝐵)) ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑘 ∈ 𝑥 ↦ 𝐵)))) |
| 30 | | simpr 477 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑘 ∈ 𝑥 ↦ 𝐵)))) → 𝑦 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑘 ∈ 𝑥 ↦ 𝐵)))) |
| 31 | | mpteq1 4737 |
. . . . . . . . 9
⊢ (𝑥 = 𝑎 → (𝑘 ∈ 𝑥 ↦ 𝐵) = (𝑘 ∈ 𝑎 ↦ 𝐵)) |
| 32 | 31 | oveq2d 6666 |
. . . . . . . 8
⊢ (𝑥 = 𝑎 →
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑘 ∈ 𝑥 ↦ 𝐵)) =
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑘 ∈ 𝑎 ↦ 𝐵))) |
| 33 | 32 | cbvmptv 4750 |
. . . . . . 7
⊢ (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑘 ∈ 𝑥 ↦ 𝐵))) = (𝑎 ∈ (𝒫 𝐴 ∩ Fin) ↦
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑘 ∈ 𝑎 ↦ 𝐵))) |
| 34 | | ovex 6678 |
. . . . . . 7
⊢
((ℝ*𝑠 ↾s
(0[,]+∞)) Σg (𝑘 ∈ 𝑎 ↦ 𝐵)) ∈ V |
| 35 | 33, 34 | elrnmpti 5376 |
. . . . . 6
⊢ (𝑦 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑘 ∈ 𝑥 ↦ 𝐵))) ↔ ∃𝑎 ∈ (𝒫 𝐴 ∩ Fin)𝑦 = ((ℝ*𝑠
↾s (0[,]+∞)) Σg (𝑘 ∈ 𝑎 ↦ 𝐵))) |
| 36 | 30, 35 | sylib 208 |
. . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑘 ∈ 𝑥 ↦ 𝐵)))) → ∃𝑎 ∈ (𝒫 𝐴 ∩ Fin)𝑦 = ((ℝ*𝑠
↾s (0[,]+∞)) Σg (𝑘 ∈ 𝑎 ↦ 𝐵))) |
| 37 | 11 | a1i 11 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑎 ∈ (𝒫 𝐴 ∩ Fin)) →
(ℝ*𝑠 ↾s (0[,]+∞))
∈ CMnd) |
| 38 | | inss2 3834 |
. . . . . . . . . . . 12
⊢
(𝒫 𝐴 ∩
Fin) ⊆ Fin |
| 39 | | simpr 477 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑎 ∈ (𝒫 𝐴 ∩ Fin)) → 𝑎 ∈ (𝒫 𝐴 ∩ Fin)) |
| 40 | 38, 39 | sseldi 3601 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑎 ∈ (𝒫 𝐴 ∩ Fin)) → 𝑎 ∈ Fin) |
| 41 | | nfv 1843 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑘 𝑎 ∈ (𝒫 𝐴 ∩ Fin) |
| 42 | 1, 41 | nfan 1828 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑘(𝜑 ∧ 𝑎 ∈ (𝒫 𝐴 ∩ Fin)) |
| 43 | | simpll 790 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑎 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑘 ∈ 𝑎) → 𝜑) |
| 44 | | inss1 3833 |
. . . . . . . . . . . . . . . . . 18
⊢
(𝒫 𝐴 ∩
Fin) ⊆ 𝒫 𝐴 |
| 45 | 44 | sseli 3599 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑎 ∈ (𝒫 𝐴 ∩ Fin) → 𝑎 ∈ 𝒫 𝐴) |
| 46 | 45 | elpwid 4170 |
. . . . . . . . . . . . . . . 16
⊢ (𝑎 ∈ (𝒫 𝐴 ∩ Fin) → 𝑎 ⊆ 𝐴) |
| 47 | 46 | ad2antlr 763 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑎 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑘 ∈ 𝑎) → 𝑎 ⊆ 𝐴) |
| 48 | | simpr 477 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑎 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑘 ∈ 𝑎) → 𝑘 ∈ 𝑎) |
| 49 | 47, 48 | sseldd 3604 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑎 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑘 ∈ 𝑎) → 𝑘 ∈ 𝐴) |
| 50 | 43, 49, 4 | syl2anc 693 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑎 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑘 ∈ 𝑎) → 𝐵 ∈ (0[,]+∞)) |
| 51 | 50 | ex 450 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑎 ∈ (𝒫 𝐴 ∩ Fin)) → (𝑘 ∈ 𝑎 → 𝐵 ∈ (0[,]+∞))) |
| 52 | 42, 51 | ralrimi 2957 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑎 ∈ (𝒫 𝐴 ∩ Fin)) → ∀𝑘 ∈ 𝑎 𝐵 ∈ (0[,]+∞)) |
| 53 | 10, 37, 40, 52 | gsummptcl 18366 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑎 ∈ (𝒫 𝐴 ∩ Fin)) →
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑘 ∈ 𝑎 ↦ 𝐵)) ∈ (0[,]+∞)) |
| 54 | 9, 53 | sseldi 3601 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑎 ∈ (𝒫 𝐴 ∩ Fin)) →
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑘 ∈ 𝑎 ↦ 𝐵)) ∈
ℝ*) |
| 55 | | diffi 8192 |
. . . . . . . . . . . . 13
⊢ (𝐴 ∈ Fin → (𝐴 ∖ 𝑎) ∈ Fin) |
| 56 | 3, 55 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝐴 ∖ 𝑎) ∈ Fin) |
| 57 | 56 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑎 ∈ (𝒫 𝐴 ∩ Fin)) → (𝐴 ∖ 𝑎) ∈ Fin) |
| 58 | | simpll 790 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑎 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑘 ∈ (𝐴 ∖ 𝑎)) → 𝜑) |
| 59 | | simpr 477 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑎 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑘 ∈ (𝐴 ∖ 𝑎)) → 𝑘 ∈ (𝐴 ∖ 𝑎)) |
| 60 | 59 | eldifad 3586 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑎 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑘 ∈ (𝐴 ∖ 𝑎)) → 𝑘 ∈ 𝐴) |
| 61 | 58, 60, 4 | syl2anc 693 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑎 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑘 ∈ (𝐴 ∖ 𝑎)) → 𝐵 ∈ (0[,]+∞)) |
| 62 | 61 | ex 450 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑎 ∈ (𝒫 𝐴 ∩ Fin)) → (𝑘 ∈ (𝐴 ∖ 𝑎) → 𝐵 ∈ (0[,]+∞))) |
| 63 | 42, 62 | ralrimi 2957 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑎 ∈ (𝒫 𝐴 ∩ Fin)) → ∀𝑘 ∈ (𝐴 ∖ 𝑎)𝐵 ∈ (0[,]+∞)) |
| 64 | 10, 37, 57, 63 | gsummptcl 18366 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑎 ∈ (𝒫 𝐴 ∩ Fin)) →
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑘 ∈ (𝐴 ∖ 𝑎) ↦ 𝐵)) ∈ (0[,]+∞)) |
| 65 | 9, 64 | sseldi 3601 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑎 ∈ (𝒫 𝐴 ∩ Fin)) →
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑘 ∈ (𝐴 ∖ 𝑎) ↦ 𝐵)) ∈
ℝ*) |
| 66 | | elxrge0 12281 |
. . . . . . . . . . 11
⊢
(((ℝ*𝑠 ↾s
(0[,]+∞)) Σg (𝑘 ∈ (𝐴 ∖ 𝑎) ↦ 𝐵)) ∈ (0[,]+∞) ↔
(((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑘 ∈ (𝐴 ∖ 𝑎) ↦ 𝐵)) ∈ ℝ* ∧ 0 ≤
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑘 ∈ (𝐴 ∖ 𝑎) ↦ 𝐵)))) |
| 67 | 66 | simprbi 480 |
. . . . . . . . . 10
⊢
(((ℝ*𝑠 ↾s
(0[,]+∞)) Σg (𝑘 ∈ (𝐴 ∖ 𝑎) ↦ 𝐵)) ∈ (0[,]+∞) → 0 ≤
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑘 ∈ (𝐴 ∖ 𝑎) ↦ 𝐵))) |
| 68 | 64, 67 | syl 17 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑎 ∈ (𝒫 𝐴 ∩ Fin)) → 0 ≤
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑘 ∈ (𝐴 ∖ 𝑎) ↦ 𝐵))) |
| 69 | | xraddge02 29521 |
. . . . . . . . . 10
⊢
((((ℝ*𝑠 ↾s
(0[,]+∞)) Σg (𝑘 ∈ 𝑎 ↦ 𝐵)) ∈ ℝ* ∧
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑘 ∈ (𝐴 ∖ 𝑎) ↦ 𝐵)) ∈ ℝ*) → (0
≤ ((ℝ*𝑠 ↾s
(0[,]+∞)) Σg (𝑘 ∈ (𝐴 ∖ 𝑎) ↦ 𝐵)) →
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑘 ∈ 𝑎 ↦ 𝐵)) ≤
(((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑘 ∈ 𝑎 ↦ 𝐵)) +𝑒
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑘 ∈ (𝐴 ∖ 𝑎) ↦ 𝐵))))) |
| 70 | 69 | imp 445 |
. . . . . . . . 9
⊢
(((((ℝ*𝑠 ↾s
(0[,]+∞)) Σg (𝑘 ∈ 𝑎 ↦ 𝐵)) ∈ ℝ* ∧
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑘 ∈ (𝐴 ∖ 𝑎) ↦ 𝐵)) ∈ ℝ*) ∧ 0 ≤
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑘 ∈ (𝐴 ∖ 𝑎) ↦ 𝐵))) →
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑘 ∈ 𝑎 ↦ 𝐵)) ≤
(((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑘 ∈ 𝑎 ↦ 𝐵)) +𝑒
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑘 ∈ (𝐴 ∖ 𝑎) ↦ 𝐵)))) |
| 71 | 54, 65, 68, 70 | syl21anc 1325 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑎 ∈ (𝒫 𝐴 ∩ Fin)) →
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑘 ∈ 𝑎 ↦ 𝐵)) ≤
(((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑘 ∈ 𝑎 ↦ 𝐵)) +𝑒
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑘 ∈ (𝐴 ∖ 𝑎) ↦ 𝐵)))) |
| 72 | 71 | adantlr 751 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑦 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑘 ∈ 𝑥 ↦ 𝐵)))) ∧ 𝑎 ∈ (𝒫 𝐴 ∩ Fin)) →
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑘 ∈ 𝑎 ↦ 𝐵)) ≤
(((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑘 ∈ 𝑎 ↦ 𝐵)) +𝑒
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑘 ∈ (𝐴 ∖ 𝑎) ↦ 𝐵)))) |
| 73 | | simpll 790 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑦 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑘 ∈ 𝑥 ↦ 𝐵)))) ∧ 𝑎 ∈ (𝒫 𝐴 ∩ Fin)) → 𝜑) |
| 74 | 46 | adantl 482 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑦 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑘 ∈ 𝑥 ↦ 𝐵)))) ∧ 𝑎 ∈ (𝒫 𝐴 ∩ Fin)) → 𝑎 ⊆ 𝐴) |
| 75 | | xrge00 29686 |
. . . . . . . . . 10
⊢ 0 =
(0g‘(ℝ*𝑠
↾s (0[,]+∞))) |
| 76 | | xrge0plusg 29687 |
. . . . . . . . . 10
⊢
+𝑒 =
(+g‘(ℝ*𝑠
↾s (0[,]+∞))) |
| 77 | 11 | a1i 11 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑎 ⊆ 𝐴) →
(ℝ*𝑠 ↾s (0[,]+∞))
∈ CMnd) |
| 78 | 3 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑎 ⊆ 𝐴) → 𝐴 ∈ Fin) |
| 79 | | eqid 2622 |
. . . . . . . . . . . 12
⊢ (𝑘 ∈ 𝐴 ↦ 𝐵) = (𝑘 ∈ 𝐴 ↦ 𝐵) |
| 80 | 1, 4, 79 | fmptdf 6387 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ 𝐵):𝐴⟶(0[,]+∞)) |
| 81 | 80 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑎 ⊆ 𝐴) → (𝑘 ∈ 𝐴 ↦ 𝐵):𝐴⟶(0[,]+∞)) |
| 82 | 79 | fnmpt 6020 |
. . . . . . . . . . . . 13
⊢
(∀𝑘 ∈
𝐴 𝐵 ∈ (0[,]+∞) → (𝑘 ∈ 𝐴 ↦ 𝐵) Fn 𝐴) |
| 83 | 14, 82 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ 𝐵) Fn 𝐴) |
| 84 | | c0ex 10034 |
. . . . . . . . . . . . 13
⊢ 0 ∈
V |
| 85 | 84 | a1i 11 |
. . . . . . . . . . . 12
⊢ (𝜑 → 0 ∈
V) |
| 86 | 83, 3, 85 | fndmfifsupp 8288 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ 𝐵) finSupp 0) |
| 87 | 86 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑎 ⊆ 𝐴) → (𝑘 ∈ 𝐴 ↦ 𝐵) finSupp 0) |
| 88 | | disjdif 4040 |
. . . . . . . . . . 11
⊢ (𝑎 ∩ (𝐴 ∖ 𝑎)) = ∅ |
| 89 | 88 | a1i 11 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑎 ⊆ 𝐴) → (𝑎 ∩ (𝐴 ∖ 𝑎)) = ∅) |
| 90 | | undif 4049 |
. . . . . . . . . . . . 13
⊢ (𝑎 ⊆ 𝐴 ↔ (𝑎 ∪ (𝐴 ∖ 𝑎)) = 𝐴) |
| 91 | 90 | biimpi 206 |
. . . . . . . . . . . 12
⊢ (𝑎 ⊆ 𝐴 → (𝑎 ∪ (𝐴 ∖ 𝑎)) = 𝐴) |
| 92 | 91 | eqcomd 2628 |
. . . . . . . . . . 11
⊢ (𝑎 ⊆ 𝐴 → 𝐴 = (𝑎 ∪ (𝐴 ∖ 𝑎))) |
| 93 | 92 | adantl 482 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑎 ⊆ 𝐴) → 𝐴 = (𝑎 ∪ (𝐴 ∖ 𝑎))) |
| 94 | 10, 75, 76, 77, 78, 81, 87, 89, 93 | gsumsplit 18328 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑎 ⊆ 𝐴) →
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑘 ∈ 𝐴 ↦ 𝐵)) =
(((ℝ*𝑠 ↾s (0[,]+∞))
Σg ((𝑘 ∈ 𝐴 ↦ 𝐵) ↾ 𝑎)) +𝑒
((ℝ*𝑠 ↾s (0[,]+∞))
Σg ((𝑘 ∈ 𝐴 ↦ 𝐵) ↾ (𝐴 ∖ 𝑎))))) |
| 95 | | resmpt 5449 |
. . . . . . . . . . . 12
⊢ (𝑎 ⊆ 𝐴 → ((𝑘 ∈ 𝐴 ↦ 𝐵) ↾ 𝑎) = (𝑘 ∈ 𝑎 ↦ 𝐵)) |
| 96 | 95 | oveq2d 6666 |
. . . . . . . . . . 11
⊢ (𝑎 ⊆ 𝐴 →
((ℝ*𝑠 ↾s (0[,]+∞))
Σg ((𝑘 ∈ 𝐴 ↦ 𝐵) ↾ 𝑎)) =
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑘 ∈ 𝑎 ↦ 𝐵))) |
| 97 | 96 | adantl 482 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑎 ⊆ 𝐴) →
((ℝ*𝑠 ↾s (0[,]+∞))
Σg ((𝑘 ∈ 𝐴 ↦ 𝐵) ↾ 𝑎)) =
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑘 ∈ 𝑎 ↦ 𝐵))) |
| 98 | | difss 3737 |
. . . . . . . . . . . . 13
⊢ (𝐴 ∖ 𝑎) ⊆ 𝐴 |
| 99 | | resmpt 5449 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∖ 𝑎) ⊆ 𝐴 → ((𝑘 ∈ 𝐴 ↦ 𝐵) ↾ (𝐴 ∖ 𝑎)) = (𝑘 ∈ (𝐴 ∖ 𝑎) ↦ 𝐵)) |
| 100 | 98, 99 | ax-mp 5 |
. . . . . . . . . . . 12
⊢ ((𝑘 ∈ 𝐴 ↦ 𝐵) ↾ (𝐴 ∖ 𝑎)) = (𝑘 ∈ (𝐴 ∖ 𝑎) ↦ 𝐵) |
| 101 | 100 | oveq2i 6661 |
. . . . . . . . . . 11
⊢
((ℝ*𝑠 ↾s
(0[,]+∞)) Σg ((𝑘 ∈ 𝐴 ↦ 𝐵) ↾ (𝐴 ∖ 𝑎))) =
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑘 ∈ (𝐴 ∖ 𝑎) ↦ 𝐵)) |
| 102 | 101 | a1i 11 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑎 ⊆ 𝐴) →
((ℝ*𝑠 ↾s (0[,]+∞))
Σg ((𝑘 ∈ 𝐴 ↦ 𝐵) ↾ (𝐴 ∖ 𝑎))) =
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑘 ∈ (𝐴 ∖ 𝑎) ↦ 𝐵))) |
| 103 | 97, 102 | oveq12d 6668 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑎 ⊆ 𝐴) →
(((ℝ*𝑠 ↾s (0[,]+∞))
Σg ((𝑘 ∈ 𝐴 ↦ 𝐵) ↾ 𝑎)) +𝑒
((ℝ*𝑠 ↾s (0[,]+∞))
Σg ((𝑘 ∈ 𝐴 ↦ 𝐵) ↾ (𝐴 ∖ 𝑎)))) =
(((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑘 ∈ 𝑎 ↦ 𝐵)) +𝑒
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑘 ∈ (𝐴 ∖ 𝑎) ↦ 𝐵)))) |
| 104 | 94, 103 | eqtrd 2656 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑎 ⊆ 𝐴) →
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑘 ∈ 𝐴 ↦ 𝐵)) =
(((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑘 ∈ 𝑎 ↦ 𝐵)) +𝑒
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑘 ∈ (𝐴 ∖ 𝑎) ↦ 𝐵)))) |
| 105 | 73, 74, 104 | syl2anc 693 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑦 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑘 ∈ 𝑥 ↦ 𝐵)))) ∧ 𝑎 ∈ (𝒫 𝐴 ∩ Fin)) →
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑘 ∈ 𝐴 ↦ 𝐵)) =
(((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑘 ∈ 𝑎 ↦ 𝐵)) +𝑒
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑘 ∈ (𝐴 ∖ 𝑎) ↦ 𝐵)))) |
| 106 | 72, 105 | breqtrrd 4681 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑦 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑘 ∈ 𝑥 ↦ 𝐵)))) ∧ 𝑎 ∈ (𝒫 𝐴 ∩ Fin)) →
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑘 ∈ 𝑎 ↦ 𝐵)) ≤
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑘 ∈ 𝐴 ↦ 𝐵))) |
| 107 | 106 | ralrimiva 2966 |
. . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑘 ∈ 𝑥 ↦ 𝐵)))) → ∀𝑎 ∈ (𝒫 𝐴 ∩
Fin)((ℝ*𝑠 ↾s
(0[,]+∞)) Σg (𝑘 ∈ 𝑎 ↦ 𝐵)) ≤
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑘 ∈ 𝐴 ↦ 𝐵))) |
| 108 | | r19.29r 3073 |
. . . . . 6
⊢
((∃𝑎 ∈
(𝒫 𝐴 ∩
Fin)𝑦 =
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑘 ∈ 𝑎 ↦ 𝐵)) ∧ ∀𝑎 ∈ (𝒫 𝐴 ∩
Fin)((ℝ*𝑠 ↾s
(0[,]+∞)) Σg (𝑘 ∈ 𝑎 ↦ 𝐵)) ≤
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑘 ∈ 𝐴 ↦ 𝐵))) → ∃𝑎 ∈ (𝒫 𝐴 ∩ Fin)(𝑦 = ((ℝ*𝑠
↾s (0[,]+∞)) Σg (𝑘 ∈ 𝑎 ↦ 𝐵)) ∧
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑘 ∈ 𝑎 ↦ 𝐵)) ≤
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑘 ∈ 𝐴 ↦ 𝐵)))) |
| 109 | | breq1 4656 |
. . . . . . . 8
⊢ (𝑦 =
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑘 ∈ 𝑎 ↦ 𝐵)) → (𝑦 ≤
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑘 ∈ 𝐴 ↦ 𝐵)) ↔
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑘 ∈ 𝑎 ↦ 𝐵)) ≤
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑘 ∈ 𝐴 ↦ 𝐵)))) |
| 110 | 109 | biimpar 502 |
. . . . . . 7
⊢ ((𝑦 =
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑘 ∈ 𝑎 ↦ 𝐵)) ∧
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑘 ∈ 𝑎 ↦ 𝐵)) ≤
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑘 ∈ 𝐴 ↦ 𝐵))) → 𝑦 ≤
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑘 ∈ 𝐴 ↦ 𝐵))) |
| 111 | 110 | rexlimivw 3029 |
. . . . . 6
⊢
(∃𝑎 ∈
(𝒫 𝐴 ∩
Fin)(𝑦 =
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑘 ∈ 𝑎 ↦ 𝐵)) ∧
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑘 ∈ 𝑎 ↦ 𝐵)) ≤
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑘 ∈ 𝐴 ↦ 𝐵))) → 𝑦 ≤
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑘 ∈ 𝐴 ↦ 𝐵))) |
| 112 | 108, 111 | syl 17 |
. . . . 5
⊢
((∃𝑎 ∈
(𝒫 𝐴 ∩
Fin)𝑦 =
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑘 ∈ 𝑎 ↦ 𝐵)) ∧ ∀𝑎 ∈ (𝒫 𝐴 ∩
Fin)((ℝ*𝑠 ↾s
(0[,]+∞)) Σg (𝑘 ∈ 𝑎 ↦ 𝐵)) ≤
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑘 ∈ 𝐴 ↦ 𝐵))) → 𝑦 ≤
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑘 ∈ 𝐴 ↦ 𝐵))) |
| 113 | 36, 107, 112 | syl2anc 693 |
. . . 4
⊢ ((𝜑 ∧ 𝑦 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑘 ∈ 𝑥 ↦ 𝐵)))) → 𝑦 ≤
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑘 ∈ 𝐴 ↦ 𝐵))) |
| 114 | 16 | adantr 481 |
. . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑘 ∈ 𝑥 ↦ 𝐵)))) →
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑘 ∈ 𝐴 ↦ 𝐵)) ∈
ℝ*) |
| 115 | 11 | a1i 11 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ (𝒫 𝐴 ∩ Fin)) →
(ℝ*𝑠 ↾s (0[,]+∞))
∈ CMnd) |
| 116 | | simpr 477 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → 𝑥 ∈ (𝒫 𝐴 ∩ Fin)) |
| 117 | 38, 116 | sseldi 3601 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → 𝑥 ∈ Fin) |
| 118 | | nfv 1843 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑘 𝑥 ∈ (𝒫 𝐴 ∩ Fin) |
| 119 | 1, 118 | nfan 1828 |
. . . . . . . . . . 11
⊢
Ⅎ𝑘(𝜑 ∧ 𝑥 ∈ (𝒫 𝐴 ∩ Fin)) |
| 120 | | simpll 790 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑘 ∈ 𝑥) → 𝜑) |
| 121 | 44 | sseli 3599 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 ∈ (𝒫 𝐴 ∩ Fin) → 𝑥 ∈ 𝒫 𝐴) |
| 122 | 121 | ad2antlr 763 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑥 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑘 ∈ 𝑥) → 𝑥 ∈ 𝒫 𝐴) |
| 123 | 122 | elpwid 4170 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑘 ∈ 𝑥) → 𝑥 ⊆ 𝐴) |
| 124 | | simpr 477 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑘 ∈ 𝑥) → 𝑘 ∈ 𝑥) |
| 125 | 123, 124 | sseldd 3604 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑘 ∈ 𝑥) → 𝑘 ∈ 𝐴) |
| 126 | 120, 125,
4 | syl2anc 693 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑘 ∈ 𝑥) → 𝐵 ∈ (0[,]+∞)) |
| 127 | 126 | ex 450 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → (𝑘 ∈ 𝑥 → 𝐵 ∈ (0[,]+∞))) |
| 128 | 119, 127 | ralrimi 2957 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → ∀𝑘 ∈ 𝑥 𝐵 ∈ (0[,]+∞)) |
| 129 | 10, 115, 117, 128 | gsummptcl 18366 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ (𝒫 𝐴 ∩ Fin)) →
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑘 ∈ 𝑥 ↦ 𝐵)) ∈ (0[,]+∞)) |
| 130 | 9, 129 | sseldi 3601 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (𝒫 𝐴 ∩ Fin)) →
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑘 ∈ 𝑥 ↦ 𝐵)) ∈
ℝ*) |
| 131 | 130 | ralrimiva 2966 |
. . . . . . 7
⊢ (𝜑 → ∀𝑥 ∈ (𝒫 𝐴 ∩
Fin)((ℝ*𝑠 ↾s
(0[,]+∞)) Σg (𝑘 ∈ 𝑥 ↦ 𝐵)) ∈
ℝ*) |
| 132 | 26 | rnmptss 6392 |
. . . . . . 7
⊢
(∀𝑥 ∈
(𝒫 𝐴 ∩
Fin)((ℝ*𝑠 ↾s
(0[,]+∞)) Σg (𝑘 ∈ 𝑥 ↦ 𝐵)) ∈ ℝ* → ran
(𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑘 ∈ 𝑥 ↦ 𝐵))) ⊆
ℝ*) |
| 133 | 131, 132 | syl 17 |
. . . . . 6
⊢ (𝜑 → ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑘 ∈ 𝑥 ↦ 𝐵))) ⊆
ℝ*) |
| 134 | 133 | sselda 3603 |
. . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑘 ∈ 𝑥 ↦ 𝐵)))) → 𝑦 ∈ ℝ*) |
| 135 | | xrltnle 10105 |
. . . . . 6
⊢
((((ℝ*𝑠 ↾s
(0[,]+∞)) Σg (𝑘 ∈ 𝐴 ↦ 𝐵)) ∈ ℝ* ∧ 𝑦 ∈ ℝ*)
→ (((ℝ*𝑠 ↾s
(0[,]+∞)) Σg (𝑘 ∈ 𝐴 ↦ 𝐵)) < 𝑦 ↔ ¬ 𝑦 ≤
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑘 ∈ 𝐴 ↦ 𝐵)))) |
| 136 | 135 | con2bid 344 |
. . . . 5
⊢
((((ℝ*𝑠 ↾s
(0[,]+∞)) Σg (𝑘 ∈ 𝐴 ↦ 𝐵)) ∈ ℝ* ∧ 𝑦 ∈ ℝ*)
→ (𝑦 ≤
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑘 ∈ 𝐴 ↦ 𝐵)) ↔ ¬
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑘 ∈ 𝐴 ↦ 𝐵)) < 𝑦)) |
| 137 | 114, 134,
136 | syl2anc 693 |
. . . 4
⊢ ((𝜑 ∧ 𝑦 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑘 ∈ 𝑥 ↦ 𝐵)))) → (𝑦 ≤
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑘 ∈ 𝐴 ↦ 𝐵)) ↔ ¬
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑘 ∈ 𝐴 ↦ 𝐵)) < 𝑦)) |
| 138 | 113, 137 | mpbid 222 |
. . 3
⊢ ((𝜑 ∧ 𝑦 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑘 ∈ 𝑥 ↦ 𝐵)))) → ¬
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑘 ∈ 𝐴 ↦ 𝐵)) < 𝑦) |
| 139 | 8, 16, 29, 138 | supmax 8373 |
. 2
⊢ (𝜑 → sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑘 ∈ 𝑥 ↦ 𝐵))), ℝ*, < ) =
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑘 ∈ 𝐴 ↦ 𝐵))) |
| 140 | 6, 139 | eqtr2d 2657 |
1
⊢ (𝜑 →
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑘 ∈ 𝐴 ↦ 𝐵)) = Σ*𝑘 ∈ 𝐴𝐵) |