Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  gsumesum Structured version   Visualization version   GIF version

Theorem gsumesum 30121
Description: Relate a group sum on (ℝ*𝑠s (0[,]+∞)) to a finite extended sum. (Contributed by Thierry Arnoux, 19-Oct-2017.) (Proof shortened by AV, 12-Dec-2019.)
Hypotheses
Ref Expression
gsumesum.0 𝑘𝜑
gsumesum.1 (𝜑𝐴 ∈ Fin)
gsumesum.2 ((𝜑𝑘𝐴) → 𝐵 ∈ (0[,]+∞))
Assertion
Ref Expression
gsumesum (𝜑 → ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝐴𝐵)) = Σ*𝑘𝐴𝐵)
Distinct variable group:   𝐴,𝑘
Allowed substitution hints:   𝜑(𝑘)   𝐵(𝑘)

Proof of Theorem gsumesum
Dummy variables 𝑎 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 gsumesum.0 . . 3 𝑘𝜑
2 nfcv 2764 . . 3 𝑘𝐴
3 gsumesum.1 . . 3 (𝜑𝐴 ∈ Fin)
4 gsumesum.2 . . 3 ((𝜑𝑘𝐴) → 𝐵 ∈ (0[,]+∞))
5 eqidd 2623 . . 3 ((𝜑𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑥𝐵)) = ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑥𝐵)))
61, 2, 3, 4, 5esumval 30108 . 2 (𝜑 → Σ*𝑘𝐴𝐵 = sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑥𝐵))), ℝ*, < ))
7 xrltso 11974 . . . 4 < Or ℝ*
87a1i 11 . . 3 (𝜑 → < Or ℝ*)
9 iccssxr 12256 . . . 4 (0[,]+∞) ⊆ ℝ*
10 xrge0base 29685 . . . . 5 (0[,]+∞) = (Base‘(ℝ*𝑠s (0[,]+∞)))
11 xrge0cmn 19788 . . . . . 6 (ℝ*𝑠s (0[,]+∞)) ∈ CMnd
1211a1i 11 . . . . 5 (𝜑 → (ℝ*𝑠s (0[,]+∞)) ∈ CMnd)
134ex 450 . . . . . 6 (𝜑 → (𝑘𝐴𝐵 ∈ (0[,]+∞)))
141, 13ralrimi 2957 . . . . 5 (𝜑 → ∀𝑘𝐴 𝐵 ∈ (0[,]+∞))
1510, 12, 3, 14gsummptcl 18366 . . . 4 (𝜑 → ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝐴𝐵)) ∈ (0[,]+∞))
169, 15sseldi 3601 . . 3 (𝜑 → ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝐴𝐵)) ∈ ℝ*)
17 pwidg 4173 . . . . . . 7 (𝐴 ∈ Fin → 𝐴 ∈ 𝒫 𝐴)
183, 17syl 17 . . . . . 6 (𝜑𝐴 ∈ 𝒫 𝐴)
1918, 3elind 3798 . . . . 5 (𝜑𝐴 ∈ (𝒫 𝐴 ∩ Fin))
20 eqidd 2623 . . . . 5 (𝜑 → ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝐴𝐵)) = ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝐴𝐵)))
21 mpteq1 4737 . . . . . . . 8 (𝑥 = 𝐴 → (𝑘𝑥𝐵) = (𝑘𝐴𝐵))
2221oveq2d 6666 . . . . . . 7 (𝑥 = 𝐴 → ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑥𝐵)) = ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝐴𝐵)))
2322eqeq2d 2632 . . . . . 6 (𝑥 = 𝐴 → (((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝐴𝐵)) = ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑥𝐵)) ↔ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝐴𝐵)) = ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝐴𝐵))))
2423rspcev 3309 . . . . 5 ((𝐴 ∈ (𝒫 𝐴 ∩ Fin) ∧ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝐴𝐵)) = ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝐴𝐵))) → ∃𝑥 ∈ (𝒫 𝐴 ∩ Fin)((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝐴𝐵)) = ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑥𝐵)))
2519, 20, 24syl2anc 693 . . . 4 (𝜑 → ∃𝑥 ∈ (𝒫 𝐴 ∩ Fin)((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝐴𝐵)) = ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑥𝐵)))
26 eqid 2622 . . . . 5 (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑥𝐵))) = (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑥𝐵)))
27 ovex 6678 . . . . 5 ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑥𝐵)) ∈ V
2826, 27elrnmpti 5376 . . . 4 (((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝐴𝐵)) ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑥𝐵))) ↔ ∃𝑥 ∈ (𝒫 𝐴 ∩ Fin)((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝐴𝐵)) = ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑥𝐵)))
2925, 28sylibr 224 . . 3 (𝜑 → ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝐴𝐵)) ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑥𝐵))))
30 simpr 477 . . . . . 6 ((𝜑𝑦 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑥𝐵)))) → 𝑦 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑥𝐵))))
31 mpteq1 4737 . . . . . . . . 9 (𝑥 = 𝑎 → (𝑘𝑥𝐵) = (𝑘𝑎𝐵))
3231oveq2d 6666 . . . . . . . 8 (𝑥 = 𝑎 → ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑥𝐵)) = ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑎𝐵)))
3332cbvmptv 4750 . . . . . . 7 (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑥𝐵))) = (𝑎 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑎𝐵)))
34 ovex 6678 . . . . . . 7 ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑎𝐵)) ∈ V
3533, 34elrnmpti 5376 . . . . . 6 (𝑦 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑥𝐵))) ↔ ∃𝑎 ∈ (𝒫 𝐴 ∩ Fin)𝑦 = ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑎𝐵)))
3630, 35sylib 208 . . . . 5 ((𝜑𝑦 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑥𝐵)))) → ∃𝑎 ∈ (𝒫 𝐴 ∩ Fin)𝑦 = ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑎𝐵)))
3711a1i 11 . . . . . . . . . . 11 ((𝜑𝑎 ∈ (𝒫 𝐴 ∩ Fin)) → (ℝ*𝑠s (0[,]+∞)) ∈ CMnd)
38 inss2 3834 . . . . . . . . . . . 12 (𝒫 𝐴 ∩ Fin) ⊆ Fin
39 simpr 477 . . . . . . . . . . . 12 ((𝜑𝑎 ∈ (𝒫 𝐴 ∩ Fin)) → 𝑎 ∈ (𝒫 𝐴 ∩ Fin))
4038, 39sseldi 3601 . . . . . . . . . . 11 ((𝜑𝑎 ∈ (𝒫 𝐴 ∩ Fin)) → 𝑎 ∈ Fin)
41 nfv 1843 . . . . . . . . . . . . 13 𝑘 𝑎 ∈ (𝒫 𝐴 ∩ Fin)
421, 41nfan 1828 . . . . . . . . . . . 12 𝑘(𝜑𝑎 ∈ (𝒫 𝐴 ∩ Fin))
43 simpll 790 . . . . . . . . . . . . . 14 (((𝜑𝑎 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑘𝑎) → 𝜑)
44 inss1 3833 . . . . . . . . . . . . . . . . . 18 (𝒫 𝐴 ∩ Fin) ⊆ 𝒫 𝐴
4544sseli 3599 . . . . . . . . . . . . . . . . 17 (𝑎 ∈ (𝒫 𝐴 ∩ Fin) → 𝑎 ∈ 𝒫 𝐴)
4645elpwid 4170 . . . . . . . . . . . . . . . 16 (𝑎 ∈ (𝒫 𝐴 ∩ Fin) → 𝑎𝐴)
4746ad2antlr 763 . . . . . . . . . . . . . . 15 (((𝜑𝑎 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑘𝑎) → 𝑎𝐴)
48 simpr 477 . . . . . . . . . . . . . . 15 (((𝜑𝑎 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑘𝑎) → 𝑘𝑎)
4947, 48sseldd 3604 . . . . . . . . . . . . . 14 (((𝜑𝑎 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑘𝑎) → 𝑘𝐴)
5043, 49, 4syl2anc 693 . . . . . . . . . . . . 13 (((𝜑𝑎 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑘𝑎) → 𝐵 ∈ (0[,]+∞))
5150ex 450 . . . . . . . . . . . 12 ((𝜑𝑎 ∈ (𝒫 𝐴 ∩ Fin)) → (𝑘𝑎𝐵 ∈ (0[,]+∞)))
5242, 51ralrimi 2957 . . . . . . . . . . 11 ((𝜑𝑎 ∈ (𝒫 𝐴 ∩ Fin)) → ∀𝑘𝑎 𝐵 ∈ (0[,]+∞))
5310, 37, 40, 52gsummptcl 18366 . . . . . . . . . 10 ((𝜑𝑎 ∈ (𝒫 𝐴 ∩ Fin)) → ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑎𝐵)) ∈ (0[,]+∞))
549, 53sseldi 3601 . . . . . . . . 9 ((𝜑𝑎 ∈ (𝒫 𝐴 ∩ Fin)) → ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑎𝐵)) ∈ ℝ*)
55 diffi 8192 . . . . . . . . . . . . 13 (𝐴 ∈ Fin → (𝐴𝑎) ∈ Fin)
563, 55syl 17 . . . . . . . . . . . 12 (𝜑 → (𝐴𝑎) ∈ Fin)
5756adantr 481 . . . . . . . . . . 11 ((𝜑𝑎 ∈ (𝒫 𝐴 ∩ Fin)) → (𝐴𝑎) ∈ Fin)
58 simpll 790 . . . . . . . . . . . . . 14 (((𝜑𝑎 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑘 ∈ (𝐴𝑎)) → 𝜑)
59 simpr 477 . . . . . . . . . . . . . . 15 (((𝜑𝑎 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑘 ∈ (𝐴𝑎)) → 𝑘 ∈ (𝐴𝑎))
6059eldifad 3586 . . . . . . . . . . . . . 14 (((𝜑𝑎 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑘 ∈ (𝐴𝑎)) → 𝑘𝐴)
6158, 60, 4syl2anc 693 . . . . . . . . . . . . 13 (((𝜑𝑎 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑘 ∈ (𝐴𝑎)) → 𝐵 ∈ (0[,]+∞))
6261ex 450 . . . . . . . . . . . 12 ((𝜑𝑎 ∈ (𝒫 𝐴 ∩ Fin)) → (𝑘 ∈ (𝐴𝑎) → 𝐵 ∈ (0[,]+∞)))
6342, 62ralrimi 2957 . . . . . . . . . . 11 ((𝜑𝑎 ∈ (𝒫 𝐴 ∩ Fin)) → ∀𝑘 ∈ (𝐴𝑎)𝐵 ∈ (0[,]+∞))
6410, 37, 57, 63gsummptcl 18366 . . . . . . . . . 10 ((𝜑𝑎 ∈ (𝒫 𝐴 ∩ Fin)) → ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘 ∈ (𝐴𝑎) ↦ 𝐵)) ∈ (0[,]+∞))
659, 64sseldi 3601 . . . . . . . . 9 ((𝜑𝑎 ∈ (𝒫 𝐴 ∩ Fin)) → ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘 ∈ (𝐴𝑎) ↦ 𝐵)) ∈ ℝ*)
66 elxrge0 12281 . . . . . . . . . . 11 (((ℝ*𝑠s (0[,]+∞)) Σg (𝑘 ∈ (𝐴𝑎) ↦ 𝐵)) ∈ (0[,]+∞) ↔ (((ℝ*𝑠s (0[,]+∞)) Σg (𝑘 ∈ (𝐴𝑎) ↦ 𝐵)) ∈ ℝ* ∧ 0 ≤ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘 ∈ (𝐴𝑎) ↦ 𝐵))))
6766simprbi 480 . . . . . . . . . 10 (((ℝ*𝑠s (0[,]+∞)) Σg (𝑘 ∈ (𝐴𝑎) ↦ 𝐵)) ∈ (0[,]+∞) → 0 ≤ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘 ∈ (𝐴𝑎) ↦ 𝐵)))
6864, 67syl 17 . . . . . . . . 9 ((𝜑𝑎 ∈ (𝒫 𝐴 ∩ Fin)) → 0 ≤ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘 ∈ (𝐴𝑎) ↦ 𝐵)))
69 xraddge02 29521 . . . . . . . . . 10 ((((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑎𝐵)) ∈ ℝ* ∧ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘 ∈ (𝐴𝑎) ↦ 𝐵)) ∈ ℝ*) → (0 ≤ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘 ∈ (𝐴𝑎) ↦ 𝐵)) → ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑎𝐵)) ≤ (((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑎𝐵)) +𝑒 ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘 ∈ (𝐴𝑎) ↦ 𝐵)))))
7069imp 445 . . . . . . . . 9 (((((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑎𝐵)) ∈ ℝ* ∧ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘 ∈ (𝐴𝑎) ↦ 𝐵)) ∈ ℝ*) ∧ 0 ≤ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘 ∈ (𝐴𝑎) ↦ 𝐵))) → ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑎𝐵)) ≤ (((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑎𝐵)) +𝑒 ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘 ∈ (𝐴𝑎) ↦ 𝐵))))
7154, 65, 68, 70syl21anc 1325 . . . . . . . 8 ((𝜑𝑎 ∈ (𝒫 𝐴 ∩ Fin)) → ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑎𝐵)) ≤ (((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑎𝐵)) +𝑒 ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘 ∈ (𝐴𝑎) ↦ 𝐵))))
7271adantlr 751 . . . . . . 7 (((𝜑𝑦 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑥𝐵)))) ∧ 𝑎 ∈ (𝒫 𝐴 ∩ Fin)) → ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑎𝐵)) ≤ (((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑎𝐵)) +𝑒 ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘 ∈ (𝐴𝑎) ↦ 𝐵))))
73 simpll 790 . . . . . . . 8 (((𝜑𝑦 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑥𝐵)))) ∧ 𝑎 ∈ (𝒫 𝐴 ∩ Fin)) → 𝜑)
7446adantl 482 . . . . . . . 8 (((𝜑𝑦 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑥𝐵)))) ∧ 𝑎 ∈ (𝒫 𝐴 ∩ Fin)) → 𝑎𝐴)
75 xrge00 29686 . . . . . . . . . 10 0 = (0g‘(ℝ*𝑠s (0[,]+∞)))
76 xrge0plusg 29687 . . . . . . . . . 10 +𝑒 = (+g‘(ℝ*𝑠s (0[,]+∞)))
7711a1i 11 . . . . . . . . . 10 ((𝜑𝑎𝐴) → (ℝ*𝑠s (0[,]+∞)) ∈ CMnd)
783adantr 481 . . . . . . . . . 10 ((𝜑𝑎𝐴) → 𝐴 ∈ Fin)
79 eqid 2622 . . . . . . . . . . . 12 (𝑘𝐴𝐵) = (𝑘𝐴𝐵)
801, 4, 79fmptdf 6387 . . . . . . . . . . 11 (𝜑 → (𝑘𝐴𝐵):𝐴⟶(0[,]+∞))
8180adantr 481 . . . . . . . . . 10 ((𝜑𝑎𝐴) → (𝑘𝐴𝐵):𝐴⟶(0[,]+∞))
8279fnmpt 6020 . . . . . . . . . . . . 13 (∀𝑘𝐴 𝐵 ∈ (0[,]+∞) → (𝑘𝐴𝐵) Fn 𝐴)
8314, 82syl 17 . . . . . . . . . . . 12 (𝜑 → (𝑘𝐴𝐵) Fn 𝐴)
84 c0ex 10034 . . . . . . . . . . . . 13 0 ∈ V
8584a1i 11 . . . . . . . . . . . 12 (𝜑 → 0 ∈ V)
8683, 3, 85fndmfifsupp 8288 . . . . . . . . . . 11 (𝜑 → (𝑘𝐴𝐵) finSupp 0)
8786adantr 481 . . . . . . . . . 10 ((𝜑𝑎𝐴) → (𝑘𝐴𝐵) finSupp 0)
88 disjdif 4040 . . . . . . . . . . 11 (𝑎 ∩ (𝐴𝑎)) = ∅
8988a1i 11 . . . . . . . . . 10 ((𝜑𝑎𝐴) → (𝑎 ∩ (𝐴𝑎)) = ∅)
90 undif 4049 . . . . . . . . . . . . 13 (𝑎𝐴 ↔ (𝑎 ∪ (𝐴𝑎)) = 𝐴)
9190biimpi 206 . . . . . . . . . . . 12 (𝑎𝐴 → (𝑎 ∪ (𝐴𝑎)) = 𝐴)
9291eqcomd 2628 . . . . . . . . . . 11 (𝑎𝐴𝐴 = (𝑎 ∪ (𝐴𝑎)))
9392adantl 482 . . . . . . . . . 10 ((𝜑𝑎𝐴) → 𝐴 = (𝑎 ∪ (𝐴𝑎)))
9410, 75, 76, 77, 78, 81, 87, 89, 93gsumsplit 18328 . . . . . . . . 9 ((𝜑𝑎𝐴) → ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝐴𝐵)) = (((ℝ*𝑠s (0[,]+∞)) Σg ((𝑘𝐴𝐵) ↾ 𝑎)) +𝑒 ((ℝ*𝑠s (0[,]+∞)) Σg ((𝑘𝐴𝐵) ↾ (𝐴𝑎)))))
95 resmpt 5449 . . . . . . . . . . . 12 (𝑎𝐴 → ((𝑘𝐴𝐵) ↾ 𝑎) = (𝑘𝑎𝐵))
9695oveq2d 6666 . . . . . . . . . . 11 (𝑎𝐴 → ((ℝ*𝑠s (0[,]+∞)) Σg ((𝑘𝐴𝐵) ↾ 𝑎)) = ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑎𝐵)))
9796adantl 482 . . . . . . . . . 10 ((𝜑𝑎𝐴) → ((ℝ*𝑠s (0[,]+∞)) Σg ((𝑘𝐴𝐵) ↾ 𝑎)) = ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑎𝐵)))
98 difss 3737 . . . . . . . . . . . . 13 (𝐴𝑎) ⊆ 𝐴
99 resmpt 5449 . . . . . . . . . . . . 13 ((𝐴𝑎) ⊆ 𝐴 → ((𝑘𝐴𝐵) ↾ (𝐴𝑎)) = (𝑘 ∈ (𝐴𝑎) ↦ 𝐵))
10098, 99ax-mp 5 . . . . . . . . . . . 12 ((𝑘𝐴𝐵) ↾ (𝐴𝑎)) = (𝑘 ∈ (𝐴𝑎) ↦ 𝐵)
101100oveq2i 6661 . . . . . . . . . . 11 ((ℝ*𝑠s (0[,]+∞)) Σg ((𝑘𝐴𝐵) ↾ (𝐴𝑎))) = ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘 ∈ (𝐴𝑎) ↦ 𝐵))
102101a1i 11 . . . . . . . . . 10 ((𝜑𝑎𝐴) → ((ℝ*𝑠s (0[,]+∞)) Σg ((𝑘𝐴𝐵) ↾ (𝐴𝑎))) = ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘 ∈ (𝐴𝑎) ↦ 𝐵)))
10397, 102oveq12d 6668 . . . . . . . . 9 ((𝜑𝑎𝐴) → (((ℝ*𝑠s (0[,]+∞)) Σg ((𝑘𝐴𝐵) ↾ 𝑎)) +𝑒 ((ℝ*𝑠s (0[,]+∞)) Σg ((𝑘𝐴𝐵) ↾ (𝐴𝑎)))) = (((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑎𝐵)) +𝑒 ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘 ∈ (𝐴𝑎) ↦ 𝐵))))
10494, 103eqtrd 2656 . . . . . . . 8 ((𝜑𝑎𝐴) → ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝐴𝐵)) = (((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑎𝐵)) +𝑒 ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘 ∈ (𝐴𝑎) ↦ 𝐵))))
10573, 74, 104syl2anc 693 . . . . . . 7 (((𝜑𝑦 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑥𝐵)))) ∧ 𝑎 ∈ (𝒫 𝐴 ∩ Fin)) → ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝐴𝐵)) = (((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑎𝐵)) +𝑒 ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘 ∈ (𝐴𝑎) ↦ 𝐵))))
10672, 105breqtrrd 4681 . . . . . 6 (((𝜑𝑦 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑥𝐵)))) ∧ 𝑎 ∈ (𝒫 𝐴 ∩ Fin)) → ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑎𝐵)) ≤ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝐴𝐵)))
107106ralrimiva 2966 . . . . 5 ((𝜑𝑦 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑥𝐵)))) → ∀𝑎 ∈ (𝒫 𝐴 ∩ Fin)((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑎𝐵)) ≤ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝐴𝐵)))
108 r19.29r 3073 . . . . . 6 ((∃𝑎 ∈ (𝒫 𝐴 ∩ Fin)𝑦 = ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑎𝐵)) ∧ ∀𝑎 ∈ (𝒫 𝐴 ∩ Fin)((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑎𝐵)) ≤ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝐴𝐵))) → ∃𝑎 ∈ (𝒫 𝐴 ∩ Fin)(𝑦 = ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑎𝐵)) ∧ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑎𝐵)) ≤ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝐴𝐵))))
109 breq1 4656 . . . . . . . 8 (𝑦 = ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑎𝐵)) → (𝑦 ≤ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝐴𝐵)) ↔ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑎𝐵)) ≤ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝐴𝐵))))
110109biimpar 502 . . . . . . 7 ((𝑦 = ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑎𝐵)) ∧ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑎𝐵)) ≤ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝐴𝐵))) → 𝑦 ≤ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝐴𝐵)))
111110rexlimivw 3029 . . . . . 6 (∃𝑎 ∈ (𝒫 𝐴 ∩ Fin)(𝑦 = ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑎𝐵)) ∧ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑎𝐵)) ≤ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝐴𝐵))) → 𝑦 ≤ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝐴𝐵)))
112108, 111syl 17 . . . . 5 ((∃𝑎 ∈ (𝒫 𝐴 ∩ Fin)𝑦 = ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑎𝐵)) ∧ ∀𝑎 ∈ (𝒫 𝐴 ∩ Fin)((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑎𝐵)) ≤ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝐴𝐵))) → 𝑦 ≤ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝐴𝐵)))
11336, 107, 112syl2anc 693 . . . 4 ((𝜑𝑦 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑥𝐵)))) → 𝑦 ≤ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝐴𝐵)))
11416adantr 481 . . . . 5 ((𝜑𝑦 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑥𝐵)))) → ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝐴𝐵)) ∈ ℝ*)
11511a1i 11 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → (ℝ*𝑠s (0[,]+∞)) ∈ CMnd)
116 simpr 477 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → 𝑥 ∈ (𝒫 𝐴 ∩ Fin))
11738, 116sseldi 3601 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → 𝑥 ∈ Fin)
118 nfv 1843 . . . . . . . . . . . 12 𝑘 𝑥 ∈ (𝒫 𝐴 ∩ Fin)
1191, 118nfan 1828 . . . . . . . . . . 11 𝑘(𝜑𝑥 ∈ (𝒫 𝐴 ∩ Fin))
120 simpll 790 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑘𝑥) → 𝜑)
12144sseli 3599 . . . . . . . . . . . . . . . 16 (𝑥 ∈ (𝒫 𝐴 ∩ Fin) → 𝑥 ∈ 𝒫 𝐴)
122121ad2antlr 763 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑘𝑥) → 𝑥 ∈ 𝒫 𝐴)
123122elpwid 4170 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑘𝑥) → 𝑥𝐴)
124 simpr 477 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑘𝑥) → 𝑘𝑥)
125123, 124sseldd 3604 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑘𝑥) → 𝑘𝐴)
126120, 125, 4syl2anc 693 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑘𝑥) → 𝐵 ∈ (0[,]+∞))
127126ex 450 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → (𝑘𝑥𝐵 ∈ (0[,]+∞)))
128119, 127ralrimi 2957 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → ∀𝑘𝑥 𝐵 ∈ (0[,]+∞))
12910, 115, 117, 128gsummptcl 18366 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑥𝐵)) ∈ (0[,]+∞))
1309, 129sseldi 3601 . . . . . . . 8 ((𝜑𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑥𝐵)) ∈ ℝ*)
131130ralrimiva 2966 . . . . . . 7 (𝜑 → ∀𝑥 ∈ (𝒫 𝐴 ∩ Fin)((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑥𝐵)) ∈ ℝ*)
13226rnmptss 6392 . . . . . . 7 (∀𝑥 ∈ (𝒫 𝐴 ∩ Fin)((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑥𝐵)) ∈ ℝ* → ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑥𝐵))) ⊆ ℝ*)
133131, 132syl 17 . . . . . 6 (𝜑 → ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑥𝐵))) ⊆ ℝ*)
134133sselda 3603 . . . . 5 ((𝜑𝑦 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑥𝐵)))) → 𝑦 ∈ ℝ*)
135 xrltnle 10105 . . . . . 6 ((((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝐴𝐵)) ∈ ℝ*𝑦 ∈ ℝ*) → (((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝐴𝐵)) < 𝑦 ↔ ¬ 𝑦 ≤ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝐴𝐵))))
136135con2bid 344 . . . . 5 ((((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝐴𝐵)) ∈ ℝ*𝑦 ∈ ℝ*) → (𝑦 ≤ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝐴𝐵)) ↔ ¬ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝐴𝐵)) < 𝑦))
137114, 134, 136syl2anc 693 . . . 4 ((𝜑𝑦 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑥𝐵)))) → (𝑦 ≤ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝐴𝐵)) ↔ ¬ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝐴𝐵)) < 𝑦))
138113, 137mpbid 222 . . 3 ((𝜑𝑦 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑥𝐵)))) → ¬ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝐴𝐵)) < 𝑦)
1398, 16, 29, 138supmax 8373 . 2 (𝜑 → sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑥𝐵))), ℝ*, < ) = ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝐴𝐵)))
1406, 139eqtr2d 2657 1 (𝜑 → ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝐴𝐵)) = Σ*𝑘𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384   = wceq 1483  wnf 1708  wcel 1990  wral 2912  wrex 2913  Vcvv 3200  cdif 3571  cun 3572  cin 3573  wss 3574  c0 3915  𝒫 cpw 4158   class class class wbr 4653  cmpt 4729   Or wor 5034  ran crn 5115  cres 5116   Fn wfn 5883  wf 5884  (class class class)co 6650  Fincfn 7955   finSupp cfsupp 8275  supcsup 8346  0cc0 9936  +∞cpnf 10071  *cxr 10073   < clt 10074  cle 10075   +𝑒 cxad 11944  [,]cicc 12178  s cress 15858   Σg cgsu 16101  *𝑠cxrs 16160  CMndccmn 18193  Σ*cesum 30089
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-xadd 11947  df-ioo 12179  df-ioc 12180  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-seq 12802  df-hash 13118  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-tset 15960  df-ple 15961  df-ds 15964  df-rest 16083  df-topn 16084  df-0g 16102  df-gsum 16103  df-topgen 16104  df-ordt 16161  df-xrs 16162  df-mre 16246  df-mrc 16247  df-acs 16249  df-ps 17200  df-tsr 17201  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-cntz 17750  df-cmn 18195  df-fbas 19743  df-fg 19744  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-ntr 20824  df-nei 20902  df-cn 21031  df-haus 21119  df-fil 21650  df-fm 21742  df-flim 21743  df-flf 21744  df-tsms 21930  df-esum 30090
This theorem is referenced by:  esumlub  30122
  Copyright terms: Public domain W3C validator