Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  gsumesum Structured version   Visualization version   Unicode version

Theorem gsumesum 30121
Description: Relate a group sum on  ( RR*ss  ( 0 [,] +oo ) ) to a finite extended sum. (Contributed by Thierry Arnoux, 19-Oct-2017.) (Proof shortened by AV, 12-Dec-2019.)
Hypotheses
Ref Expression
gsumesum.0  |-  F/ k
ph
gsumesum.1  |-  ( ph  ->  A  e.  Fin )
gsumesum.2  |-  ( (
ph  /\  k  e.  A )  ->  B  e.  ( 0 [,] +oo ) )
Assertion
Ref Expression
gsumesum  |-  ( ph  ->  ( ( RR*ss  (
0 [,] +oo )
)  gsumg  ( k  e.  A  |->  B ) )  = Σ* k  e.  A B )
Distinct variable group:    A, k
Allowed substitution hints:    ph( k)    B( k)

Proof of Theorem gsumesum
Dummy variables  a  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 gsumesum.0 . . 3  |-  F/ k
ph
2 nfcv 2764 . . 3  |-  F/_ k A
3 gsumesum.1 . . 3  |-  ( ph  ->  A  e.  Fin )
4 gsumesum.2 . . 3  |-  ( (
ph  /\  k  e.  A )  ->  B  e.  ( 0 [,] +oo ) )
5 eqidd 2623 . . 3  |-  ( (
ph  /\  x  e.  ( ~P A  i^i  Fin ) )  ->  (
( RR*ss  ( 0 [,] +oo ) )  gsumg  ( k  e.  x  |->  B ) )  =  ( ( RR*ss  (
0 [,] +oo )
)  gsumg  ( k  e.  x  |->  B ) ) )
61, 2, 3, 4, 5esumval 30108 . 2  |-  ( ph  -> Σ* k  e.  A B  =  sup ( ran  (
x  e.  ( ~P A  i^i  Fin )  |->  ( ( RR*ss  (
0 [,] +oo )
)  gsumg  ( k  e.  x  |->  B ) ) ) ,  RR* ,  <  )
)
7 xrltso 11974 . . . 4  |-  <  Or  RR*
87a1i 11 . . 3  |-  ( ph  ->  <  Or  RR* )
9 iccssxr 12256 . . . 4  |-  ( 0 [,] +oo )  C_  RR*
10 xrge0base 29685 . . . . 5  |-  ( 0 [,] +oo )  =  ( Base `  ( RR*ss  ( 0 [,] +oo ) ) )
11 xrge0cmn 19788 . . . . . 6  |-  ( RR*ss  ( 0 [,] +oo ) )  e. CMnd
1211a1i 11 . . . . 5  |-  ( ph  ->  ( RR*ss  ( 0 [,] +oo ) )  e. CMnd )
134ex 450 . . . . . 6  |-  ( ph  ->  ( k  e.  A  ->  B  e.  ( 0 [,] +oo ) ) )
141, 13ralrimi 2957 . . . . 5  |-  ( ph  ->  A. k  e.  A  B  e.  ( 0 [,] +oo ) )
1510, 12, 3, 14gsummptcl 18366 . . . 4  |-  ( ph  ->  ( ( RR*ss  (
0 [,] +oo )
)  gsumg  ( k  e.  A  |->  B ) )  e.  ( 0 [,] +oo ) )
169, 15sseldi 3601 . . 3  |-  ( ph  ->  ( ( RR*ss  (
0 [,] +oo )
)  gsumg  ( k  e.  A  |->  B ) )  e. 
RR* )
17 pwidg 4173 . . . . . . 7  |-  ( A  e.  Fin  ->  A  e.  ~P A )
183, 17syl 17 . . . . . 6  |-  ( ph  ->  A  e.  ~P A
)
1918, 3elind 3798 . . . . 5  |-  ( ph  ->  A  e.  ( ~P A  i^i  Fin )
)
20 eqidd 2623 . . . . 5  |-  ( ph  ->  ( ( RR*ss  (
0 [,] +oo )
)  gsumg  ( k  e.  A  |->  B ) )  =  ( ( RR*ss  (
0 [,] +oo )
)  gsumg  ( k  e.  A  |->  B ) ) )
21 mpteq1 4737 . . . . . . . 8  |-  ( x  =  A  ->  (
k  e.  x  |->  B )  =  ( k  e.  A  |->  B ) )
2221oveq2d 6666 . . . . . . 7  |-  ( x  =  A  ->  (
( RR*ss  ( 0 [,] +oo ) )  gsumg  ( k  e.  x  |->  B ) )  =  ( ( RR*ss  (
0 [,] +oo )
)  gsumg  ( k  e.  A  |->  B ) ) )
2322eqeq2d 2632 . . . . . 6  |-  ( x  =  A  ->  (
( ( RR*ss  (
0 [,] +oo )
)  gsumg  ( k  e.  A  |->  B ) )  =  ( ( RR*ss  (
0 [,] +oo )
)  gsumg  ( k  e.  x  |->  B ) )  <->  ( ( RR*ss  ( 0 [,] +oo ) )  gsumg  ( k  e.  A  |->  B ) )  =  ( ( RR*ss  (
0 [,] +oo )
)  gsumg  ( k  e.  A  |->  B ) ) ) )
2423rspcev 3309 . . . . 5  |-  ( ( A  e.  ( ~P A  i^i  Fin )  /\  ( ( RR*ss  (
0 [,] +oo )
)  gsumg  ( k  e.  A  |->  B ) )  =  ( ( RR*ss  (
0 [,] +oo )
)  gsumg  ( k  e.  A  |->  B ) ) )  ->  E. x  e.  ( ~P A  i^i  Fin ) ( ( RR*ss  ( 0 [,] +oo ) )  gsumg  ( k  e.  A  |->  B ) )  =  ( ( RR*ss  (
0 [,] +oo )
)  gsumg  ( k  e.  x  |->  B ) ) )
2519, 20, 24syl2anc 693 . . . 4  |-  ( ph  ->  E. x  e.  ( ~P A  i^i  Fin ) ( ( RR*ss  ( 0 [,] +oo ) )  gsumg  ( k  e.  A  |->  B ) )  =  ( ( RR*ss  (
0 [,] +oo )
)  gsumg  ( k  e.  x  |->  B ) ) )
26 eqid 2622 . . . . 5  |-  ( x  e.  ( ~P A  i^i  Fin )  |->  ( (
RR*ss  ( 0 [,] +oo ) )  gsumg  ( k  e.  x  |->  B ) ) )  =  ( x  e.  ( ~P A  i^i  Fin )  |->  ( ( RR*ss  ( 0 [,] +oo ) )  gsumg  ( k  e.  x  |->  B ) ) )
27 ovex 6678 . . . . 5  |-  ( (
RR*ss  ( 0 [,] +oo ) )  gsumg  ( k  e.  x  |->  B ) )  e. 
_V
2826, 27elrnmpti 5376 . . . 4  |-  ( ( ( RR*ss  ( 0 [,] +oo ) ) 
gsumg  ( k  e.  A  |->  B ) )  e. 
ran  ( x  e.  ( ~P A  i^i  Fin )  |->  ( ( RR*ss  ( 0 [,] +oo ) )  gsumg  ( k  e.  x  |->  B ) ) )  <->  E. x  e.  ( ~P A  i^i  Fin )
( ( RR*ss  (
0 [,] +oo )
)  gsumg  ( k  e.  A  |->  B ) )  =  ( ( RR*ss  (
0 [,] +oo )
)  gsumg  ( k  e.  x  |->  B ) ) )
2925, 28sylibr 224 . . 3  |-  ( ph  ->  ( ( RR*ss  (
0 [,] +oo )
)  gsumg  ( k  e.  A  |->  B ) )  e. 
ran  ( x  e.  ( ~P A  i^i  Fin )  |->  ( ( RR*ss  ( 0 [,] +oo ) )  gsumg  ( k  e.  x  |->  B ) ) ) )
30 simpr 477 . . . . . 6  |-  ( (
ph  /\  y  e.  ran  ( x  e.  ( ~P A  i^i  Fin )  |->  ( ( RR*ss  ( 0 [,] +oo ) )  gsumg  ( k  e.  x  |->  B ) ) ) )  ->  y  e.  ran  ( x  e.  ( ~P A  i^i  Fin )  |->  ( ( RR*ss  ( 0 [,] +oo ) )  gsumg  ( k  e.  x  |->  B ) ) ) )
31 mpteq1 4737 . . . . . . . . 9  |-  ( x  =  a  ->  (
k  e.  x  |->  B )  =  ( k  e.  a  |->  B ) )
3231oveq2d 6666 . . . . . . . 8  |-  ( x  =  a  ->  (
( RR*ss  ( 0 [,] +oo ) )  gsumg  ( k  e.  x  |->  B ) )  =  ( ( RR*ss  (
0 [,] +oo )
)  gsumg  ( k  e.  a 
|->  B ) ) )
3332cbvmptv 4750 . . . . . . 7  |-  ( x  e.  ( ~P A  i^i  Fin )  |->  ( (
RR*ss  ( 0 [,] +oo ) )  gsumg  ( k  e.  x  |->  B ) ) )  =  ( a  e.  ( ~P A  i^i  Fin )  |->  ( ( RR*ss  ( 0 [,] +oo ) )  gsumg  ( k  e.  a 
|->  B ) ) )
34 ovex 6678 . . . . . . 7  |-  ( (
RR*ss  ( 0 [,] +oo ) )  gsumg  ( k  e.  a 
|->  B ) )  e. 
_V
3533, 34elrnmpti 5376 . . . . . 6  |-  ( y  e.  ran  ( x  e.  ( ~P A  i^i  Fin )  |->  ( (
RR*ss  ( 0 [,] +oo ) )  gsumg  ( k  e.  x  |->  B ) ) )  <->  E. a  e.  ( ~P A  i^i  Fin )
y  =  ( (
RR*ss  ( 0 [,] +oo ) )  gsumg  ( k  e.  a 
|->  B ) ) )
3630, 35sylib 208 . . . . 5  |-  ( (
ph  /\  y  e.  ran  ( x  e.  ( ~P A  i^i  Fin )  |->  ( ( RR*ss  ( 0 [,] +oo ) )  gsumg  ( k  e.  x  |->  B ) ) ) )  ->  E. a  e.  ( ~P A  i^i  Fin ) y  =  ( ( RR*ss  ( 0 [,] +oo ) ) 
gsumg  ( k  e.  a 
|->  B ) ) )
3711a1i 11 . . . . . . . . . . 11  |-  ( (
ph  /\  a  e.  ( ~P A  i^i  Fin ) )  ->  ( RR*ss  ( 0 [,] +oo ) )  e. CMnd )
38 inss2 3834 . . . . . . . . . . . 12  |-  ( ~P A  i^i  Fin )  C_ 
Fin
39 simpr 477 . . . . . . . . . . . 12  |-  ( (
ph  /\  a  e.  ( ~P A  i^i  Fin ) )  ->  a  e.  ( ~P A  i^i  Fin ) )
4038, 39sseldi 3601 . . . . . . . . . . 11  |-  ( (
ph  /\  a  e.  ( ~P A  i^i  Fin ) )  ->  a  e.  Fin )
41 nfv 1843 . . . . . . . . . . . . 13  |-  F/ k  a  e.  ( ~P A  i^i  Fin )
421, 41nfan 1828 . . . . . . . . . . . 12  |-  F/ k ( ph  /\  a  e.  ( ~P A  i^i  Fin ) )
43 simpll 790 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  a  e.  ( ~P A  i^i  Fin ) )  /\  k  e.  a )  ->  ph )
44 inss1 3833 . . . . . . . . . . . . . . . . . 18  |-  ( ~P A  i^i  Fin )  C_ 
~P A
4544sseli 3599 . . . . . . . . . . . . . . . . 17  |-  ( a  e.  ( ~P A  i^i  Fin )  ->  a  e.  ~P A )
4645elpwid 4170 . . . . . . . . . . . . . . . 16  |-  ( a  e.  ( ~P A  i^i  Fin )  ->  a  C_  A )
4746ad2antlr 763 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  a  e.  ( ~P A  i^i  Fin ) )  /\  k  e.  a )  ->  a  C_  A )
48 simpr 477 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  a  e.  ( ~P A  i^i  Fin ) )  /\  k  e.  a )  ->  k  e.  a )
4947, 48sseldd 3604 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  a  e.  ( ~P A  i^i  Fin ) )  /\  k  e.  a )  ->  k  e.  A )
5043, 49, 4syl2anc 693 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  a  e.  ( ~P A  i^i  Fin ) )  /\  k  e.  a )  ->  B  e.  ( 0 [,] +oo ) )
5150ex 450 . . . . . . . . . . . 12  |-  ( (
ph  /\  a  e.  ( ~P A  i^i  Fin ) )  ->  (
k  e.  a  ->  B  e.  ( 0 [,] +oo ) ) )
5242, 51ralrimi 2957 . . . . . . . . . . 11  |-  ( (
ph  /\  a  e.  ( ~P A  i^i  Fin ) )  ->  A. k  e.  a  B  e.  ( 0 [,] +oo ) )
5310, 37, 40, 52gsummptcl 18366 . . . . . . . . . 10  |-  ( (
ph  /\  a  e.  ( ~P A  i^i  Fin ) )  ->  (
( RR*ss  ( 0 [,] +oo ) )  gsumg  ( k  e.  a 
|->  B ) )  e.  ( 0 [,] +oo ) )
549, 53sseldi 3601 . . . . . . . . 9  |-  ( (
ph  /\  a  e.  ( ~P A  i^i  Fin ) )  ->  (
( RR*ss  ( 0 [,] +oo ) )  gsumg  ( k  e.  a 
|->  B ) )  e. 
RR* )
55 diffi 8192 . . . . . . . . . . . . 13  |-  ( A  e.  Fin  ->  ( A  \  a )  e. 
Fin )
563, 55syl 17 . . . . . . . . . . . 12  |-  ( ph  ->  ( A  \  a
)  e.  Fin )
5756adantr 481 . . . . . . . . . . 11  |-  ( (
ph  /\  a  e.  ( ~P A  i^i  Fin ) )  ->  ( A  \  a )  e. 
Fin )
58 simpll 790 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  a  e.  ( ~P A  i^i  Fin ) )  /\  k  e.  ( A  \  a
) )  ->  ph )
59 simpr 477 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  a  e.  ( ~P A  i^i  Fin ) )  /\  k  e.  ( A  \  a
) )  ->  k  e.  ( A  \  a
) )
6059eldifad 3586 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  a  e.  ( ~P A  i^i  Fin ) )  /\  k  e.  ( A  \  a
) )  ->  k  e.  A )
6158, 60, 4syl2anc 693 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  a  e.  ( ~P A  i^i  Fin ) )  /\  k  e.  ( A  \  a
) )  ->  B  e.  ( 0 [,] +oo ) )
6261ex 450 . . . . . . . . . . . 12  |-  ( (
ph  /\  a  e.  ( ~P A  i^i  Fin ) )  ->  (
k  e.  ( A 
\  a )  ->  B  e.  ( 0 [,] +oo ) ) )
6342, 62ralrimi 2957 . . . . . . . . . . 11  |-  ( (
ph  /\  a  e.  ( ~P A  i^i  Fin ) )  ->  A. k  e.  ( A  \  a
) B  e.  ( 0 [,] +oo )
)
6410, 37, 57, 63gsummptcl 18366 . . . . . . . . . 10  |-  ( (
ph  /\  a  e.  ( ~P A  i^i  Fin ) )  ->  (
( RR*ss  ( 0 [,] +oo ) )  gsumg  ( k  e.  ( A  \  a ) 
|->  B ) )  e.  ( 0 [,] +oo ) )
659, 64sseldi 3601 . . . . . . . . 9  |-  ( (
ph  /\  a  e.  ( ~P A  i^i  Fin ) )  ->  (
( RR*ss  ( 0 [,] +oo ) )  gsumg  ( k  e.  ( A  \  a ) 
|->  B ) )  e. 
RR* )
66 elxrge0 12281 . . . . . . . . . . 11  |-  ( ( ( RR*ss  ( 0 [,] +oo ) ) 
gsumg  ( k  e.  ( A  \  a ) 
|->  B ) )  e.  ( 0 [,] +oo ) 
<->  ( ( ( RR*ss  ( 0 [,] +oo ) )  gsumg  ( k  e.  ( A  \  a ) 
|->  B ) )  e. 
RR*  /\  0  <_  ( ( RR*ss  ( 0 [,] +oo ) ) 
gsumg  ( k  e.  ( A  \  a ) 
|->  B ) ) ) )
6766simprbi 480 . . . . . . . . . 10  |-  ( ( ( RR*ss  ( 0 [,] +oo ) ) 
gsumg  ( k  e.  ( A  \  a ) 
|->  B ) )  e.  ( 0 [,] +oo )  ->  0  <_  (
( RR*ss  ( 0 [,] +oo ) )  gsumg  ( k  e.  ( A  \  a ) 
|->  B ) ) )
6864, 67syl 17 . . . . . . . . 9  |-  ( (
ph  /\  a  e.  ( ~P A  i^i  Fin ) )  ->  0  <_  ( ( RR*ss  (
0 [,] +oo )
)  gsumg  ( k  e.  ( A  \  a ) 
|->  B ) ) )
69 xraddge02 29521 . . . . . . . . . 10  |-  ( ( ( ( RR*ss  (
0 [,] +oo )
)  gsumg  ( k  e.  a 
|->  B ) )  e. 
RR*  /\  ( ( RR*ss  ( 0 [,] +oo ) )  gsumg  ( k  e.  ( A  \  a ) 
|->  B ) )  e. 
RR* )  ->  (
0  <_  ( ( RR*ss  ( 0 [,] +oo ) )  gsumg  ( k  e.  ( A  \  a ) 
|->  B ) )  -> 
( ( RR*ss  (
0 [,] +oo )
)  gsumg  ( k  e.  a 
|->  B ) )  <_ 
( ( ( RR*ss  ( 0 [,] +oo ) )  gsumg  ( k  e.  a 
|->  B ) ) +e ( ( RR*ss  ( 0 [,] +oo ) )  gsumg  ( k  e.  ( A  \  a ) 
|->  B ) ) ) ) )
7069imp 445 . . . . . . . . 9  |-  ( ( ( ( ( RR*ss  ( 0 [,] +oo ) )  gsumg  ( k  e.  a 
|->  B ) )  e. 
RR*  /\  ( ( RR*ss  ( 0 [,] +oo ) )  gsumg  ( k  e.  ( A  \  a ) 
|->  B ) )  e. 
RR* )  /\  0  <_  ( ( RR*ss  (
0 [,] +oo )
)  gsumg  ( k  e.  ( A  \  a ) 
|->  B ) ) )  ->  ( ( RR*ss  ( 0 [,] +oo ) )  gsumg  ( k  e.  a 
|->  B ) )  <_ 
( ( ( RR*ss  ( 0 [,] +oo ) )  gsumg  ( k  e.  a 
|->  B ) ) +e ( ( RR*ss  ( 0 [,] +oo ) )  gsumg  ( k  e.  ( A  \  a ) 
|->  B ) ) ) )
7154, 65, 68, 70syl21anc 1325 . . . . . . . 8  |-  ( (
ph  /\  a  e.  ( ~P A  i^i  Fin ) )  ->  (
( RR*ss  ( 0 [,] +oo ) )  gsumg  ( k  e.  a 
|->  B ) )  <_ 
( ( ( RR*ss  ( 0 [,] +oo ) )  gsumg  ( k  e.  a 
|->  B ) ) +e ( ( RR*ss  ( 0 [,] +oo ) )  gsumg  ( k  e.  ( A  \  a ) 
|->  B ) ) ) )
7271adantlr 751 . . . . . . 7  |-  ( ( ( ph  /\  y  e.  ran  ( x  e.  ( ~P A  i^i  Fin )  |->  ( ( RR*ss  ( 0 [,] +oo ) )  gsumg  ( k  e.  x  |->  B ) ) ) )  /\  a  e.  ( ~P A  i^i  Fin ) )  ->  (
( RR*ss  ( 0 [,] +oo ) )  gsumg  ( k  e.  a 
|->  B ) )  <_ 
( ( ( RR*ss  ( 0 [,] +oo ) )  gsumg  ( k  e.  a 
|->  B ) ) +e ( ( RR*ss  ( 0 [,] +oo ) )  gsumg  ( k  e.  ( A  \  a ) 
|->  B ) ) ) )
73 simpll 790 . . . . . . . 8  |-  ( ( ( ph  /\  y  e.  ran  ( x  e.  ( ~P A  i^i  Fin )  |->  ( ( RR*ss  ( 0 [,] +oo ) )  gsumg  ( k  e.  x  |->  B ) ) ) )  /\  a  e.  ( ~P A  i^i  Fin ) )  ->  ph )
7446adantl 482 . . . . . . . 8  |-  ( ( ( ph  /\  y  e.  ran  ( x  e.  ( ~P A  i^i  Fin )  |->  ( ( RR*ss  ( 0 [,] +oo ) )  gsumg  ( k  e.  x  |->  B ) ) ) )  /\  a  e.  ( ~P A  i^i  Fin ) )  ->  a  C_  A )
75 xrge00 29686 . . . . . . . . . 10  |-  0  =  ( 0g `  ( RR*ss  ( 0 [,] +oo ) ) )
76 xrge0plusg 29687 . . . . . . . . . 10  |-  +e 
=  ( +g  `  ( RR*ss  ( 0 [,] +oo ) ) )
7711a1i 11 . . . . . . . . . 10  |-  ( (
ph  /\  a  C_  A )  ->  ( RR*ss  ( 0 [,] +oo ) )  e. CMnd )
783adantr 481 . . . . . . . . . 10  |-  ( (
ph  /\  a  C_  A )  ->  A  e.  Fin )
79 eqid 2622 . . . . . . . . . . . 12  |-  ( k  e.  A  |->  B )  =  ( k  e.  A  |->  B )
801, 4, 79fmptdf 6387 . . . . . . . . . . 11  |-  ( ph  ->  ( k  e.  A  |->  B ) : A --> ( 0 [,] +oo ) )
8180adantr 481 . . . . . . . . . 10  |-  ( (
ph  /\  a  C_  A )  ->  (
k  e.  A  |->  B ) : A --> ( 0 [,] +oo ) )
8279fnmpt 6020 . . . . . . . . . . . . 13  |-  ( A. k  e.  A  B  e.  ( 0 [,] +oo )  ->  ( k  e.  A  |->  B )  Fn  A )
8314, 82syl 17 . . . . . . . . . . . 12  |-  ( ph  ->  ( k  e.  A  |->  B )  Fn  A
)
84 c0ex 10034 . . . . . . . . . . . . 13  |-  0  e.  _V
8584a1i 11 . . . . . . . . . . . 12  |-  ( ph  ->  0  e.  _V )
8683, 3, 85fndmfifsupp 8288 . . . . . . . . . . 11  |-  ( ph  ->  ( k  e.  A  |->  B ) finSupp  0 )
8786adantr 481 . . . . . . . . . 10  |-  ( (
ph  /\  a  C_  A )  ->  (
k  e.  A  |->  B ) finSupp  0 )
88 disjdif 4040 . . . . . . . . . . 11  |-  ( a  i^i  ( A  \ 
a ) )  =  (/)
8988a1i 11 . . . . . . . . . 10  |-  ( (
ph  /\  a  C_  A )  ->  (
a  i^i  ( A  \  a ) )  =  (/) )
90 undif 4049 . . . . . . . . . . . . 13  |-  ( a 
C_  A  <->  ( a  u.  ( A  \  a
) )  =  A )
9190biimpi 206 . . . . . . . . . . . 12  |-  ( a 
C_  A  ->  (
a  u.  ( A 
\  a ) )  =  A )
9291eqcomd 2628 . . . . . . . . . . 11  |-  ( a 
C_  A  ->  A  =  ( a  u.  ( A  \  a
) ) )
9392adantl 482 . . . . . . . . . 10  |-  ( (
ph  /\  a  C_  A )  ->  A  =  ( a  u.  ( A  \  a
) ) )
9410, 75, 76, 77, 78, 81, 87, 89, 93gsumsplit 18328 . . . . . . . . 9  |-  ( (
ph  /\  a  C_  A )  ->  (
( RR*ss  ( 0 [,] +oo ) )  gsumg  ( k  e.  A  |->  B ) )  =  ( ( ( RR*ss  ( 0 [,] +oo ) )  gsumg  ( ( k  e.  A  |->  B )  |`  a ) ) +e ( ( RR*ss  ( 0 [,] +oo ) )  gsumg  ( ( k  e.  A  |->  B )  |`  ( A  \  a
) ) ) ) )
95 resmpt 5449 . . . . . . . . . . . 12  |-  ( a 
C_  A  ->  (
( k  e.  A  |->  B )  |`  a
)  =  ( k  e.  a  |->  B ) )
9695oveq2d 6666 . . . . . . . . . . 11  |-  ( a 
C_  A  ->  (
( RR*ss  ( 0 [,] +oo ) )  gsumg  ( ( k  e.  A  |->  B )  |`  a ) )  =  ( ( RR*ss  (
0 [,] +oo )
)  gsumg  ( k  e.  a 
|->  B ) ) )
9796adantl 482 . . . . . . . . . 10  |-  ( (
ph  /\  a  C_  A )  ->  (
( RR*ss  ( 0 [,] +oo ) )  gsumg  ( ( k  e.  A  |->  B )  |`  a ) )  =  ( ( RR*ss  (
0 [,] +oo )
)  gsumg  ( k  e.  a 
|->  B ) ) )
98 difss 3737 . . . . . . . . . . . . 13  |-  ( A 
\  a )  C_  A
99 resmpt 5449 . . . . . . . . . . . . 13  |-  ( ( A  \  a ) 
C_  A  ->  (
( k  e.  A  |->  B )  |`  ( A  \  a ) )  =  ( k  e.  ( A  \  a
)  |->  B ) )
10098, 99ax-mp 5 . . . . . . . . . . . 12  |-  ( ( k  e.  A  |->  B )  |`  ( A  \  a ) )  =  ( k  e.  ( A  \  a ) 
|->  B )
101100oveq2i 6661 . . . . . . . . . . 11  |-  ( (
RR*ss  ( 0 [,] +oo ) )  gsumg  ( ( k  e.  A  |->  B )  |`  ( A  \  a
) ) )  =  ( ( RR*ss  (
0 [,] +oo )
)  gsumg  ( k  e.  ( A  \  a ) 
|->  B ) )
102101a1i 11 . . . . . . . . . 10  |-  ( (
ph  /\  a  C_  A )  ->  (
( RR*ss  ( 0 [,] +oo ) )  gsumg  ( ( k  e.  A  |->  B )  |`  ( A  \  a
) ) )  =  ( ( RR*ss  (
0 [,] +oo )
)  gsumg  ( k  e.  ( A  \  a ) 
|->  B ) ) )
10397, 102oveq12d 6668 . . . . . . . . 9  |-  ( (
ph  /\  a  C_  A )  ->  (
( ( RR*ss  (
0 [,] +oo )
)  gsumg  ( ( k  e.  A  |->  B )  |`  a ) ) +e ( ( RR*ss  ( 0 [,] +oo ) )  gsumg  ( ( k  e.  A  |->  B )  |`  ( A  \  a
) ) ) )  =  ( ( (
RR*ss  ( 0 [,] +oo ) )  gsumg  ( k  e.  a 
|->  B ) ) +e ( ( RR*ss  ( 0 [,] +oo ) )  gsumg  ( k  e.  ( A  \  a ) 
|->  B ) ) ) )
10494, 103eqtrd 2656 . . . . . . . 8  |-  ( (
ph  /\  a  C_  A )  ->  (
( RR*ss  ( 0 [,] +oo ) )  gsumg  ( k  e.  A  |->  B ) )  =  ( ( ( RR*ss  ( 0 [,] +oo ) )  gsumg  ( k  e.  a 
|->  B ) ) +e ( ( RR*ss  ( 0 [,] +oo ) )  gsumg  ( k  e.  ( A  \  a ) 
|->  B ) ) ) )
10573, 74, 104syl2anc 693 . . . . . . 7  |-  ( ( ( ph  /\  y  e.  ran  ( x  e.  ( ~P A  i^i  Fin )  |->  ( ( RR*ss  ( 0 [,] +oo ) )  gsumg  ( k  e.  x  |->  B ) ) ) )  /\  a  e.  ( ~P A  i^i  Fin ) )  ->  (
( RR*ss  ( 0 [,] +oo ) )  gsumg  ( k  e.  A  |->  B ) )  =  ( ( ( RR*ss  ( 0 [,] +oo ) )  gsumg  ( k  e.  a 
|->  B ) ) +e ( ( RR*ss  ( 0 [,] +oo ) )  gsumg  ( k  e.  ( A  \  a ) 
|->  B ) ) ) )
10672, 105breqtrrd 4681 . . . . . 6  |-  ( ( ( ph  /\  y  e.  ran  ( x  e.  ( ~P A  i^i  Fin )  |->  ( ( RR*ss  ( 0 [,] +oo ) )  gsumg  ( k  e.  x  |->  B ) ) ) )  /\  a  e.  ( ~P A  i^i  Fin ) )  ->  (
( RR*ss  ( 0 [,] +oo ) )  gsumg  ( k  e.  a 
|->  B ) )  <_ 
( ( RR*ss  (
0 [,] +oo )
)  gsumg  ( k  e.  A  |->  B ) ) )
107106ralrimiva 2966 . . . . 5  |-  ( (
ph  /\  y  e.  ran  ( x  e.  ( ~P A  i^i  Fin )  |->  ( ( RR*ss  ( 0 [,] +oo ) )  gsumg  ( k  e.  x  |->  B ) ) ) )  ->  A. a  e.  ( ~P A  i^i  Fin ) ( ( RR*ss  ( 0 [,] +oo ) )  gsumg  ( k  e.  a 
|->  B ) )  <_ 
( ( RR*ss  (
0 [,] +oo )
)  gsumg  ( k  e.  A  |->  B ) ) )
108 r19.29r 3073 . . . . . 6  |-  ( ( E. a  e.  ( ~P A  i^i  Fin ) y  =  ( ( RR*ss  ( 0 [,] +oo ) ) 
gsumg  ( k  e.  a 
|->  B ) )  /\  A. a  e.  ( ~P A  i^i  Fin )
( ( RR*ss  (
0 [,] +oo )
)  gsumg  ( k  e.  a 
|->  B ) )  <_ 
( ( RR*ss  (
0 [,] +oo )
)  gsumg  ( k  e.  A  |->  B ) ) )  ->  E. a  e.  ( ~P A  i^i  Fin ) ( y  =  ( ( RR*ss  (
0 [,] +oo )
)  gsumg  ( k  e.  a 
|->  B ) )  /\  ( ( RR*ss  (
0 [,] +oo )
)  gsumg  ( k  e.  a 
|->  B ) )  <_ 
( ( RR*ss  (
0 [,] +oo )
)  gsumg  ( k  e.  A  |->  B ) ) ) )
109 breq1 4656 . . . . . . . 8  |-  ( y  =  ( ( RR*ss  ( 0 [,] +oo ) )  gsumg  ( k  e.  a 
|->  B ) )  -> 
( y  <_  (
( RR*ss  ( 0 [,] +oo ) )  gsumg  ( k  e.  A  |->  B ) )  <->  ( ( RR*ss  ( 0 [,] +oo ) )  gsumg  ( k  e.  a 
|->  B ) )  <_ 
( ( RR*ss  (
0 [,] +oo )
)  gsumg  ( k  e.  A  |->  B ) ) ) )
110109biimpar 502 . . . . . . 7  |-  ( ( y  =  ( (
RR*ss  ( 0 [,] +oo ) )  gsumg  ( k  e.  a 
|->  B ) )  /\  ( ( RR*ss  (
0 [,] +oo )
)  gsumg  ( k  e.  a 
|->  B ) )  <_ 
( ( RR*ss  (
0 [,] +oo )
)  gsumg  ( k  e.  A  |->  B ) ) )  ->  y  <_  (
( RR*ss  ( 0 [,] +oo ) )  gsumg  ( k  e.  A  |->  B ) ) )
111110rexlimivw 3029 . . . . . 6  |-  ( E. a  e.  ( ~P A  i^i  Fin )
( y  =  ( ( RR*ss  ( 0 [,] +oo ) ) 
gsumg  ( k  e.  a 
|->  B ) )  /\  ( ( RR*ss  (
0 [,] +oo )
)  gsumg  ( k  e.  a 
|->  B ) )  <_ 
( ( RR*ss  (
0 [,] +oo )
)  gsumg  ( k  e.  A  |->  B ) ) )  ->  y  <_  (
( RR*ss  ( 0 [,] +oo ) )  gsumg  ( k  e.  A  |->  B ) ) )
112108, 111syl 17 . . . . 5  |-  ( ( E. a  e.  ( ~P A  i^i  Fin ) y  =  ( ( RR*ss  ( 0 [,] +oo ) ) 
gsumg  ( k  e.  a 
|->  B ) )  /\  A. a  e.  ( ~P A  i^i  Fin )
( ( RR*ss  (
0 [,] +oo )
)  gsumg  ( k  e.  a 
|->  B ) )  <_ 
( ( RR*ss  (
0 [,] +oo )
)  gsumg  ( k  e.  A  |->  B ) ) )  ->  y  <_  (
( RR*ss  ( 0 [,] +oo ) )  gsumg  ( k  e.  A  |->  B ) ) )
11336, 107, 112syl2anc 693 . . . 4  |-  ( (
ph  /\  y  e.  ran  ( x  e.  ( ~P A  i^i  Fin )  |->  ( ( RR*ss  ( 0 [,] +oo ) )  gsumg  ( k  e.  x  |->  B ) ) ) )  ->  y  <_  ( ( RR*ss  ( 0 [,] +oo ) ) 
gsumg  ( k  e.  A  |->  B ) ) )
11416adantr 481 . . . . 5  |-  ( (
ph  /\  y  e.  ran  ( x  e.  ( ~P A  i^i  Fin )  |->  ( ( RR*ss  ( 0 [,] +oo ) )  gsumg  ( k  e.  x  |->  B ) ) ) )  ->  ( ( RR*ss  ( 0 [,] +oo ) )  gsumg  ( k  e.  A  |->  B ) )  e. 
RR* )
11511a1i 11 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( ~P A  i^i  Fin ) )  ->  ( RR*ss  ( 0 [,] +oo ) )  e. CMnd )
116 simpr 477 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  ( ~P A  i^i  Fin ) )  ->  x  e.  ( ~P A  i^i  Fin ) )
11738, 116sseldi 3601 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( ~P A  i^i  Fin ) )  ->  x  e.  Fin )
118 nfv 1843 . . . . . . . . . . . 12  |-  F/ k  x  e.  ( ~P A  i^i  Fin )
1191, 118nfan 1828 . . . . . . . . . . 11  |-  F/ k ( ph  /\  x  e.  ( ~P A  i^i  Fin ) )
120 simpll 790 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  e.  ( ~P A  i^i  Fin ) )  /\  k  e.  x )  ->  ph )
12144sseli 3599 . . . . . . . . . . . . . . . 16  |-  ( x  e.  ( ~P A  i^i  Fin )  ->  x  e.  ~P A )
122121ad2antlr 763 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  x  e.  ( ~P A  i^i  Fin ) )  /\  k  e.  x )  ->  x  e.  ~P A )
123122elpwid 4170 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  e.  ( ~P A  i^i  Fin ) )  /\  k  e.  x )  ->  x  C_  A )
124 simpr 477 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  e.  ( ~P A  i^i  Fin ) )  /\  k  e.  x )  ->  k  e.  x )
125123, 124sseldd 3604 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  e.  ( ~P A  i^i  Fin ) )  /\  k  e.  x )  ->  k  e.  A )
126120, 125, 4syl2anc 693 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  ( ~P A  i^i  Fin ) )  /\  k  e.  x )  ->  B  e.  ( 0 [,] +oo ) )
127126ex 450 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  ( ~P A  i^i  Fin ) )  ->  (
k  e.  x  ->  B  e.  ( 0 [,] +oo ) ) )
128119, 127ralrimi 2957 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( ~P A  i^i  Fin ) )  ->  A. k  e.  x  B  e.  ( 0 [,] +oo ) )
12910, 115, 117, 128gsummptcl 18366 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( ~P A  i^i  Fin ) )  ->  (
( RR*ss  ( 0 [,] +oo ) )  gsumg  ( k  e.  x  |->  B ) )  e.  ( 0 [,] +oo ) )
1309, 129sseldi 3601 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( ~P A  i^i  Fin ) )  ->  (
( RR*ss  ( 0 [,] +oo ) )  gsumg  ( k  e.  x  |->  B ) )  e. 
RR* )
131130ralrimiva 2966 . . . . . . 7  |-  ( ph  ->  A. x  e.  ( ~P A  i^i  Fin ) ( ( RR*ss  ( 0 [,] +oo ) )  gsumg  ( k  e.  x  |->  B ) )  e. 
RR* )
13226rnmptss 6392 . . . . . . 7  |-  ( A. x  e.  ( ~P A  i^i  Fin ) ( ( RR*ss  ( 0 [,] +oo ) ) 
gsumg  ( k  e.  x  |->  B ) )  e. 
RR*  ->  ran  ( x  e.  ( ~P A  i^i  Fin )  |->  ( ( RR*ss  ( 0 [,] +oo ) )  gsumg  ( k  e.  x  |->  B ) ) ) 
C_  RR* )
133131, 132syl 17 . . . . . 6  |-  ( ph  ->  ran  ( x  e.  ( ~P A  i^i  Fin )  |->  ( ( RR*ss  ( 0 [,] +oo ) )  gsumg  ( k  e.  x  |->  B ) ) ) 
C_  RR* )
134133sselda 3603 . . . . 5  |-  ( (
ph  /\  y  e.  ran  ( x  e.  ( ~P A  i^i  Fin )  |->  ( ( RR*ss  ( 0 [,] +oo ) )  gsumg  ( k  e.  x  |->  B ) ) ) )  ->  y  e.  RR* )
135 xrltnle 10105 . . . . . 6  |-  ( ( ( ( RR*ss  (
0 [,] +oo )
)  gsumg  ( k  e.  A  |->  B ) )  e. 
RR*  /\  y  e.  RR* )  ->  ( (
( RR*ss  ( 0 [,] +oo ) )  gsumg  ( k  e.  A  |->  B ) )  < 
y  <->  -.  y  <_  ( ( RR*ss  ( 0 [,] +oo ) ) 
gsumg  ( k  e.  A  |->  B ) ) ) )
136135con2bid 344 . . . . 5  |-  ( ( ( ( RR*ss  (
0 [,] +oo )
)  gsumg  ( k  e.  A  |->  B ) )  e. 
RR*  /\  y  e.  RR* )  ->  ( y  <_  ( ( RR*ss  (
0 [,] +oo )
)  gsumg  ( k  e.  A  |->  B ) )  <->  -.  (
( RR*ss  ( 0 [,] +oo ) )  gsumg  ( k  e.  A  |->  B ) )  < 
y ) )
137114, 134, 136syl2anc 693 . . . 4  |-  ( (
ph  /\  y  e.  ran  ( x  e.  ( ~P A  i^i  Fin )  |->  ( ( RR*ss  ( 0 [,] +oo ) )  gsumg  ( k  e.  x  |->  B ) ) ) )  ->  ( y  <_  ( ( RR*ss  (
0 [,] +oo )
)  gsumg  ( k  e.  A  |->  B ) )  <->  -.  (
( RR*ss  ( 0 [,] +oo ) )  gsumg  ( k  e.  A  |->  B ) )  < 
y ) )
138113, 137mpbid 222 . . 3  |-  ( (
ph  /\  y  e.  ran  ( x  e.  ( ~P A  i^i  Fin )  |->  ( ( RR*ss  ( 0 [,] +oo ) )  gsumg  ( k  e.  x  |->  B ) ) ) )  ->  -.  (
( RR*ss  ( 0 [,] +oo ) )  gsumg  ( k  e.  A  |->  B ) )  < 
y )
1398, 16, 29, 138supmax 8373 . 2  |-  ( ph  ->  sup ( ran  (
x  e.  ( ~P A  i^i  Fin )  |->  ( ( RR*ss  (
0 [,] +oo )
)  gsumg  ( k  e.  x  |->  B ) ) ) ,  RR* ,  <  )  =  ( ( RR*ss  ( 0 [,] +oo ) )  gsumg  ( k  e.  A  |->  B ) ) )
1406, 139eqtr2d 2657 1  |-  ( ph  ->  ( ( RR*ss  (
0 [,] +oo )
)  gsumg  ( k  e.  A  |->  B ) )  = Σ* k  e.  A B )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483   F/wnf 1708    e. wcel 1990   A.wral 2912   E.wrex 2913   _Vcvv 3200    \ cdif 3571    u. cun 3572    i^i cin 3573    C_ wss 3574   (/)c0 3915   ~Pcpw 4158   class class class wbr 4653    |-> cmpt 4729    Or wor 5034   ran crn 5115    |` cres 5116    Fn wfn 5883   -->wf 5884  (class class class)co 6650   Fincfn 7955   finSupp cfsupp 8275   supcsup 8346   0cc0 9936   +oocpnf 10071   RR*cxr 10073    < clt 10074    <_ cle 10075   +ecxad 11944   [,]cicc 12178   ↾s cress 15858    gsumg cgsu 16101   RR*scxrs 16160  CMndccmn 18193  Σ*cesum 30089
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-xadd 11947  df-ioo 12179  df-ioc 12180  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-seq 12802  df-hash 13118  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-tset 15960  df-ple 15961  df-ds 15964  df-rest 16083  df-topn 16084  df-0g 16102  df-gsum 16103  df-topgen 16104  df-ordt 16161  df-xrs 16162  df-mre 16246  df-mrc 16247  df-acs 16249  df-ps 17200  df-tsr 17201  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-cntz 17750  df-cmn 18195  df-fbas 19743  df-fg 19744  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-ntr 20824  df-nei 20902  df-cn 21031  df-haus 21119  df-fil 21650  df-fm 21742  df-flim 21743  df-flf 21744  df-tsms 21930  df-esum 30090
This theorem is referenced by:  esumlub  30122
  Copyright terms: Public domain W3C validator