Proof of Theorem hoiqssbl
| Step | Hyp | Ref
| Expression |
| 1 | | 0ex 4790 |
. . . . . . 7
⊢ ∅
∈ V |
| 2 | 1 | snid 4208 |
. . . . . 6
⊢ ∅
∈ {∅} |
| 3 | 2 | a1i 11 |
. . . . 5
⊢ ((𝜑 ∧ 𝑋 = ∅) → ∅ ∈
{∅}) |
| 4 | | hoiqssbl.y |
. . . . . . . . 9
⊢ (𝜑 → 𝑌 ∈ (ℝ ↑𝑚
𝑋)) |
| 5 | 4 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑋 = ∅) → 𝑌 ∈ (ℝ ↑𝑚
𝑋)) |
| 6 | | oveq2 6658 |
. . . . . . . . . 10
⊢ (𝑋 = ∅ → (ℝ
↑𝑚 𝑋) = (ℝ ↑𝑚
∅)) |
| 7 | | reex 10027 |
. . . . . . . . . . . 12
⊢ ℝ
∈ V |
| 8 | | mapdm0 7872 |
. . . . . . . . . . . 12
⊢ (ℝ
∈ V → (ℝ ↑𝑚 ∅) =
{∅}) |
| 9 | 7, 8 | ax-mp 5 |
. . . . . . . . . . 11
⊢ (ℝ
↑𝑚 ∅) = {∅} |
| 10 | 9 | a1i 11 |
. . . . . . . . . 10
⊢ (𝑋 = ∅ → (ℝ
↑𝑚 ∅) = {∅}) |
| 11 | 6, 10 | eqtrd 2656 |
. . . . . . . . 9
⊢ (𝑋 = ∅ → (ℝ
↑𝑚 𝑋) = {∅}) |
| 12 | 11 | adantl 482 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑋 = ∅) → (ℝ
↑𝑚 𝑋) = {∅}) |
| 13 | 5, 12 | eleqtrd 2703 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑋 = ∅) → 𝑌 ∈ {∅}) |
| 14 | | 0fin 8188 |
. . . . . . . . . . . . 13
⊢ ∅
∈ Fin |
| 15 | | eqid 2622 |
. . . . . . . . . . . . . 14
⊢
(dist‘(ℝ^‘∅)) =
(dist‘(ℝ^‘∅)) |
| 16 | 15 | rrxmetfi 40507 |
. . . . . . . . . . . . 13
⊢ (∅
∈ Fin → (dist‘(ℝ^‘∅)) ∈
(Met‘(ℝ ↑𝑚 ∅))) |
| 17 | 14, 16 | ax-mp 5 |
. . . . . . . . . . . 12
⊢
(dist‘(ℝ^‘∅)) ∈ (Met‘(ℝ
↑𝑚 ∅)) |
| 18 | | metxmet 22139 |
. . . . . . . . . . . 12
⊢
((dist‘(ℝ^‘∅)) ∈ (Met‘(ℝ
↑𝑚 ∅)) →
(dist‘(ℝ^‘∅)) ∈ (∞Met‘(ℝ
↑𝑚 ∅))) |
| 19 | 17, 18 | ax-mp 5 |
. . . . . . . . . . 11
⊢
(dist‘(ℝ^‘∅)) ∈ (∞Met‘(ℝ
↑𝑚 ∅)) |
| 20 | 19 | a1i 11 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑋 = ∅) →
(dist‘(ℝ^‘∅)) ∈ (∞Met‘(ℝ
↑𝑚 ∅))) |
| 21 | 3, 9 | syl6eleqr 2712 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑋 = ∅) → ∅ ∈ (ℝ
↑𝑚 ∅)) |
| 22 | | hoiqssbl.e |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐸 ∈
ℝ+) |
| 23 | 22 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑋 = ∅) → 𝐸 ∈
ℝ+) |
| 24 | | blcntr 22218 |
. . . . . . . . . 10
⊢
(((dist‘(ℝ^‘∅)) ∈
(∞Met‘(ℝ ↑𝑚 ∅)) ∧ ∅
∈ (ℝ ↑𝑚 ∅) ∧ 𝐸 ∈ ℝ+) → ∅
∈ (∅(ball‘(dist‘(ℝ^‘∅)))𝐸)) |
| 25 | 20, 21, 23, 24 | syl3anc 1326 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑋 = ∅) → ∅ ∈
(∅(ball‘(dist‘(ℝ^‘∅)))𝐸)) |
| 26 | | elsni 4194 |
. . . . . . . . . . . 12
⊢ (𝑌 ∈ {∅} → 𝑌 = ∅) |
| 27 | 13, 26 | syl 17 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑋 = ∅) → 𝑌 = ∅) |
| 28 | 27 | eqcomd 2628 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑋 = ∅) → ∅ = 𝑌) |
| 29 | 28 | oveq1d 6665 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑋 = ∅) →
(∅(ball‘(dist‘(ℝ^‘∅)))𝐸) = (𝑌(ball‘(dist‘(ℝ^‘∅)))𝐸)) |
| 30 | 25, 29 | eleqtrd 2703 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑋 = ∅) → ∅ ∈ (𝑌(ball‘(dist‘(ℝ^‘∅)))𝐸)) |
| 31 | 30 | snssd 4340 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑋 = ∅) → {∅} ⊆ (𝑌(ball‘(dist‘(ℝ^‘∅)))𝐸)) |
| 32 | 13, 31 | jca 554 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑋 = ∅) → (𝑌 ∈ {∅} ∧ {∅} ⊆
(𝑌(ball‘(dist‘(ℝ^‘∅)))𝐸))) |
| 33 | | biidd 252 |
. . . . . . 7
⊢ (𝑑 = ∅ → ((𝑌 ∈ {∅} ∧
{∅} ⊆ (𝑌(ball‘(dist‘(ℝ^‘∅)))𝐸)) ↔ (𝑌 ∈ {∅} ∧ {∅} ⊆ (𝑌(ball‘(dist‘(ℝ^‘∅)))𝐸)))) |
| 34 | 33 | rspcev 3309 |
. . . . . 6
⊢ ((∅
∈ {∅} ∧ (𝑌
∈ {∅} ∧ {∅} ⊆ (𝑌(ball‘(dist‘(ℝ^‘∅)))𝐸))) → ∃𝑑 ∈ {∅} (𝑌 ∈ {∅} ∧ {∅} ⊆ (𝑌(ball‘(dist‘(ℝ^‘∅)))𝐸))) |
| 35 | 3, 32, 34 | syl2anc 693 |
. . . . 5
⊢ ((𝜑 ∧ 𝑋 = ∅) → ∃𝑑 ∈ {∅} (𝑌 ∈ {∅} ∧ {∅} ⊆
(𝑌(ball‘(dist‘(ℝ^‘∅)))𝐸))) |
| 36 | | biidd 252 |
. . . . . 6
⊢ (𝑐 = ∅ → (∃𝑑 ∈ {∅} (𝑌 ∈ {∅} ∧
{∅} ⊆ (𝑌(ball‘(dist‘(ℝ^‘∅)))𝐸)) ↔ ∃𝑑 ∈ {∅} (𝑌 ∈ {∅} ∧ {∅} ⊆ (𝑌(ball‘(dist‘(ℝ^‘∅)))𝐸)))) |
| 37 | 36 | rspcev 3309 |
. . . . 5
⊢ ((∅
∈ {∅} ∧ ∃𝑑 ∈ {∅} (𝑌 ∈ {∅} ∧ {∅} ⊆
(𝑌(ball‘(dist‘(ℝ^‘∅)))𝐸))) → ∃𝑐 ∈ {∅}∃𝑑 ∈ {∅} (𝑌 ∈ {∅} ∧ {∅} ⊆ (𝑌(ball‘(dist‘(ℝ^‘∅)))𝐸))) |
| 38 | 3, 35, 37 | syl2anc 693 |
. . . 4
⊢ ((𝜑 ∧ 𝑋 = ∅) → ∃𝑐 ∈ {∅}∃𝑑 ∈ {∅} (𝑌 ∈ {∅} ∧ {∅} ⊆
(𝑌(ball‘(dist‘(ℝ^‘∅)))𝐸))) |
| 39 | | oveq2 6658 |
. . . . . . . . . 10
⊢ (𝑋 = ∅ → (ℚ
↑𝑚 𝑋) = (ℚ ↑𝑚
∅)) |
| 40 | | qex 11800 |
. . . . . . . . . . . 12
⊢ ℚ
∈ V |
| 41 | | mapdm0 7872 |
. . . . . . . . . . . 12
⊢ (ℚ
∈ V → (ℚ ↑𝑚 ∅) =
{∅}) |
| 42 | 40, 41 | ax-mp 5 |
. . . . . . . . . . 11
⊢ (ℚ
↑𝑚 ∅) = {∅} |
| 43 | 42 | a1i 11 |
. . . . . . . . . 10
⊢ (𝑋 = ∅ → (ℚ
↑𝑚 ∅) = {∅}) |
| 44 | 39, 43 | eqtr2d 2657 |
. . . . . . . . 9
⊢ (𝑋 = ∅ → {∅} =
(ℚ ↑𝑚 𝑋)) |
| 45 | 44 | eqcomd 2628 |
. . . . . . . 8
⊢ (𝑋 = ∅ → (ℚ
↑𝑚 𝑋) = {∅}) |
| 46 | 45 | eleq2d 2687 |
. . . . . . 7
⊢ (𝑋 = ∅ → (𝑐 ∈ (ℚ
↑𝑚 𝑋) ↔ 𝑐 ∈ {∅})) |
| 47 | 45 | eleq2d 2687 |
. . . . . . . . 9
⊢ (𝑋 = ∅ → (𝑑 ∈ (ℚ
↑𝑚 𝑋) ↔ 𝑑 ∈ {∅})) |
| 48 | 47 | anbi1d 741 |
. . . . . . . 8
⊢ (𝑋 = ∅ → ((𝑑 ∈ (ℚ
↑𝑚 𝑋) ∧ (𝑌 ∈ {∅} ∧ {∅} ⊆
(𝑌(ball‘(dist‘(ℝ^‘∅)))𝐸))) ↔ (𝑑 ∈ {∅} ∧ (𝑌 ∈ {∅} ∧ {∅} ⊆ (𝑌(ball‘(dist‘(ℝ^‘∅)))𝐸))))) |
| 49 | 48 | rexbidv2 3048 |
. . . . . . 7
⊢ (𝑋 = ∅ → (∃𝑑 ∈ (ℚ
↑𝑚 𝑋)(𝑌 ∈ {∅} ∧ {∅} ⊆
(𝑌(ball‘(dist‘(ℝ^‘∅)))𝐸)) ↔ ∃𝑑 ∈ {∅} (𝑌 ∈ {∅} ∧ {∅} ⊆ (𝑌(ball‘(dist‘(ℝ^‘∅)))𝐸)))) |
| 50 | 46, 49 | anbi12d 747 |
. . . . . 6
⊢ (𝑋 = ∅ → ((𝑐 ∈ (ℚ
↑𝑚 𝑋) ∧ ∃𝑑 ∈ (ℚ ↑𝑚
𝑋)(𝑌 ∈ {∅} ∧ {∅} ⊆
(𝑌(ball‘(dist‘(ℝ^‘∅)))𝐸))) ↔ (𝑐 ∈ {∅} ∧ ∃𝑑 ∈ {∅} (𝑌 ∈ {∅} ∧ {∅} ⊆ (𝑌(ball‘(dist‘(ℝ^‘∅)))𝐸))))) |
| 51 | 50 | rexbidv2 3048 |
. . . . 5
⊢ (𝑋 = ∅ → (∃𝑐 ∈ (ℚ
↑𝑚 𝑋)∃𝑑 ∈ (ℚ ↑𝑚
𝑋)(𝑌 ∈ {∅} ∧ {∅} ⊆
(𝑌(ball‘(dist‘(ℝ^‘∅)))𝐸)) ↔ ∃𝑐 ∈ {∅}∃𝑑 ∈ {∅} (𝑌 ∈ {∅} ∧ {∅} ⊆ (𝑌(ball‘(dist‘(ℝ^‘∅)))𝐸)))) |
| 52 | 51 | adantl 482 |
. . . 4
⊢ ((𝜑 ∧ 𝑋 = ∅) → (∃𝑐 ∈ (ℚ
↑𝑚 𝑋)∃𝑑 ∈ (ℚ ↑𝑚
𝑋)(𝑌 ∈ {∅} ∧ {∅} ⊆
(𝑌(ball‘(dist‘(ℝ^‘∅)))𝐸)) ↔ ∃𝑐 ∈ {∅}∃𝑑 ∈ {∅} (𝑌 ∈ {∅} ∧ {∅} ⊆ (𝑌(ball‘(dist‘(ℝ^‘∅)))𝐸)))) |
| 53 | 38, 52 | mpbird 247 |
. . 3
⊢ ((𝜑 ∧ 𝑋 = ∅) → ∃𝑐 ∈ (ℚ ↑𝑚
𝑋)∃𝑑 ∈ (ℚ ↑𝑚
𝑋)(𝑌 ∈ {∅} ∧ {∅} ⊆
(𝑌(ball‘(dist‘(ℝ^‘∅)))𝐸))) |
| 54 | | ixpeq1 7919 |
. . . . . . . . 9
⊢ (𝑋 = ∅ → X𝑖 ∈
𝑋 ((𝑐‘𝑖)[,)(𝑑‘𝑖)) = X𝑖 ∈ ∅ ((𝑐‘𝑖)[,)(𝑑‘𝑖))) |
| 55 | | ixp0x 7936 |
. . . . . . . . . 10
⊢ X𝑖 ∈
∅ ((𝑐‘𝑖)[,)(𝑑‘𝑖)) = {∅} |
| 56 | 55 | a1i 11 |
. . . . . . . . 9
⊢ (𝑋 = ∅ → X𝑖 ∈
∅ ((𝑐‘𝑖)[,)(𝑑‘𝑖)) = {∅}) |
| 57 | 54, 56 | eqtrd 2656 |
. . . . . . . 8
⊢ (𝑋 = ∅ → X𝑖 ∈
𝑋 ((𝑐‘𝑖)[,)(𝑑‘𝑖)) = {∅}) |
| 58 | 57 | eleq2d 2687 |
. . . . . . 7
⊢ (𝑋 = ∅ → (𝑌 ∈ X𝑖 ∈
𝑋 ((𝑐‘𝑖)[,)(𝑑‘𝑖)) ↔ 𝑌 ∈ {∅})) |
| 59 | | fveq2 6191 |
. . . . . . . . . . 11
⊢ (𝑋 = ∅ →
(ℝ^‘𝑋) =
(ℝ^‘∅)) |
| 60 | 59 | fveq2d 6195 |
. . . . . . . . . 10
⊢ (𝑋 = ∅ →
(dist‘(ℝ^‘𝑋)) =
(dist‘(ℝ^‘∅))) |
| 61 | 60 | fveq2d 6195 |
. . . . . . . . 9
⊢ (𝑋 = ∅ →
(ball‘(dist‘(ℝ^‘𝑋))) =
(ball‘(dist‘(ℝ^‘∅)))) |
| 62 | 61 | oveqd 6667 |
. . . . . . . 8
⊢ (𝑋 = ∅ → (𝑌(ball‘(dist‘(ℝ^‘𝑋)))𝐸) = (𝑌(ball‘(dist‘(ℝ^‘∅)))𝐸)) |
| 63 | 57, 62 | sseq12d 3634 |
. . . . . . 7
⊢ (𝑋 = ∅ → (X𝑖 ∈
𝑋 ((𝑐‘𝑖)[,)(𝑑‘𝑖)) ⊆ (𝑌(ball‘(dist‘(ℝ^‘𝑋)))𝐸) ↔ {∅} ⊆ (𝑌(ball‘(dist‘(ℝ^‘∅)))𝐸))) |
| 64 | 58, 63 | anbi12d 747 |
. . . . . 6
⊢ (𝑋 = ∅ → ((𝑌 ∈ X𝑖 ∈
𝑋 ((𝑐‘𝑖)[,)(𝑑‘𝑖)) ∧ X𝑖 ∈ 𝑋 ((𝑐‘𝑖)[,)(𝑑‘𝑖)) ⊆ (𝑌(ball‘(dist‘(ℝ^‘𝑋)))𝐸)) ↔ (𝑌 ∈ {∅} ∧ {∅} ⊆
(𝑌(ball‘(dist‘(ℝ^‘∅)))𝐸)))) |
| 65 | 64 | rexbidv 3052 |
. . . . 5
⊢ (𝑋 = ∅ → (∃𝑑 ∈ (ℚ
↑𝑚 𝑋)(𝑌 ∈ X𝑖 ∈ 𝑋 ((𝑐‘𝑖)[,)(𝑑‘𝑖)) ∧ X𝑖 ∈ 𝑋 ((𝑐‘𝑖)[,)(𝑑‘𝑖)) ⊆ (𝑌(ball‘(dist‘(ℝ^‘𝑋)))𝐸)) ↔ ∃𝑑 ∈ (ℚ ↑𝑚
𝑋)(𝑌 ∈ {∅} ∧ {∅} ⊆
(𝑌(ball‘(dist‘(ℝ^‘∅)))𝐸)))) |
| 66 | 65 | rexbidv 3052 |
. . . 4
⊢ (𝑋 = ∅ → (∃𝑐 ∈ (ℚ
↑𝑚 𝑋)∃𝑑 ∈ (ℚ ↑𝑚
𝑋)(𝑌 ∈ X𝑖 ∈ 𝑋 ((𝑐‘𝑖)[,)(𝑑‘𝑖)) ∧ X𝑖 ∈ 𝑋 ((𝑐‘𝑖)[,)(𝑑‘𝑖)) ⊆ (𝑌(ball‘(dist‘(ℝ^‘𝑋)))𝐸)) ↔ ∃𝑐 ∈ (ℚ ↑𝑚
𝑋)∃𝑑 ∈ (ℚ ↑𝑚
𝑋)(𝑌 ∈ {∅} ∧ {∅} ⊆
(𝑌(ball‘(dist‘(ℝ^‘∅)))𝐸)))) |
| 67 | 66 | adantl 482 |
. . 3
⊢ ((𝜑 ∧ 𝑋 = ∅) → (∃𝑐 ∈ (ℚ
↑𝑚 𝑋)∃𝑑 ∈ (ℚ ↑𝑚
𝑋)(𝑌 ∈ X𝑖 ∈ 𝑋 ((𝑐‘𝑖)[,)(𝑑‘𝑖)) ∧ X𝑖 ∈ 𝑋 ((𝑐‘𝑖)[,)(𝑑‘𝑖)) ⊆ (𝑌(ball‘(dist‘(ℝ^‘𝑋)))𝐸)) ↔ ∃𝑐 ∈ (ℚ ↑𝑚
𝑋)∃𝑑 ∈ (ℚ ↑𝑚
𝑋)(𝑌 ∈ {∅} ∧ {∅} ⊆
(𝑌(ball‘(dist‘(ℝ^‘∅)))𝐸)))) |
| 68 | 53, 67 | mpbird 247 |
. 2
⊢ ((𝜑 ∧ 𝑋 = ∅) → ∃𝑐 ∈ (ℚ ↑𝑚
𝑋)∃𝑑 ∈ (ℚ ↑𝑚
𝑋)(𝑌 ∈ X𝑖 ∈ 𝑋 ((𝑐‘𝑖)[,)(𝑑‘𝑖)) ∧ X𝑖 ∈ 𝑋 ((𝑐‘𝑖)[,)(𝑑‘𝑖)) ⊆ (𝑌(ball‘(dist‘(ℝ^‘𝑋)))𝐸))) |
| 69 | | hoiqssbl.x |
. . . 4
⊢ (𝜑 → 𝑋 ∈ Fin) |
| 70 | 69 | adantr 481 |
. . 3
⊢ ((𝜑 ∧ ¬ 𝑋 = ∅) → 𝑋 ∈ Fin) |
| 71 | | neqne 2802 |
. . . 4
⊢ (¬
𝑋 = ∅ → 𝑋 ≠ ∅) |
| 72 | 71 | adantl 482 |
. . 3
⊢ ((𝜑 ∧ ¬ 𝑋 = ∅) → 𝑋 ≠ ∅) |
| 73 | 4 | adantr 481 |
. . 3
⊢ ((𝜑 ∧ ¬ 𝑋 = ∅) → 𝑌 ∈ (ℝ ↑𝑚
𝑋)) |
| 74 | 22 | adantr 481 |
. . 3
⊢ ((𝜑 ∧ ¬ 𝑋 = ∅) → 𝐸 ∈
ℝ+) |
| 75 | 70, 72, 73, 74 | hoiqssbllem3 40838 |
. 2
⊢ ((𝜑 ∧ ¬ 𝑋 = ∅) → ∃𝑐 ∈ (ℚ ↑𝑚
𝑋)∃𝑑 ∈ (ℚ ↑𝑚
𝑋)(𝑌 ∈ X𝑖 ∈ 𝑋 ((𝑐‘𝑖)[,)(𝑑‘𝑖)) ∧ X𝑖 ∈ 𝑋 ((𝑐‘𝑖)[,)(𝑑‘𝑖)) ⊆ (𝑌(ball‘(dist‘(ℝ^‘𝑋)))𝐸))) |
| 76 | 68, 75 | pm2.61dan 832 |
1
⊢ (𝜑 → ∃𝑐 ∈ (ℚ ↑𝑚
𝑋)∃𝑑 ∈ (ℚ ↑𝑚
𝑋)(𝑌 ∈ X𝑖 ∈ 𝑋 ((𝑐‘𝑖)[,)(𝑑‘𝑖)) ∧ X𝑖 ∈ 𝑋 ((𝑐‘𝑖)[,)(𝑑‘𝑖)) ⊆ (𝑌(ball‘(dist‘(ℝ^‘𝑋)))𝐸))) |