Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hoiqssbl Structured version   Visualization version   GIF version

Theorem hoiqssbl 40839
Description: A n-dimensional ball contains a non-empty half-open interval with vertices with rational components. (Contributed by Glauco Siliprandi, 24-Dec-2020.)
Hypotheses
Ref Expression
hoiqssbl.x (𝜑𝑋 ∈ Fin)
hoiqssbl.y (𝜑𝑌 ∈ (ℝ ↑𝑚 𝑋))
hoiqssbl.e (𝜑𝐸 ∈ ℝ+)
Assertion
Ref Expression
hoiqssbl (𝜑 → ∃𝑐 ∈ (ℚ ↑𝑚 𝑋)∃𝑑 ∈ (ℚ ↑𝑚 𝑋)(𝑌X𝑖𝑋 ((𝑐𝑖)[,)(𝑑𝑖)) ∧ X𝑖𝑋 ((𝑐𝑖)[,)(𝑑𝑖)) ⊆ (𝑌(ball‘(dist‘(ℝ^‘𝑋)))𝐸)))
Distinct variable groups:   𝐸,𝑐,𝑑,𝑖   𝑋,𝑐,𝑑,𝑖   𝑌,𝑐,𝑑,𝑖   𝜑,𝑐,𝑑,𝑖

Proof of Theorem hoiqssbl
StepHypRef Expression
1 0ex 4790 . . . . . . 7 ∅ ∈ V
21snid 4208 . . . . . 6 ∅ ∈ {∅}
32a1i 11 . . . . 5 ((𝜑𝑋 = ∅) → ∅ ∈ {∅})
4 hoiqssbl.y . . . . . . . . 9 (𝜑𝑌 ∈ (ℝ ↑𝑚 𝑋))
54adantr 481 . . . . . . . 8 ((𝜑𝑋 = ∅) → 𝑌 ∈ (ℝ ↑𝑚 𝑋))
6 oveq2 6658 . . . . . . . . . 10 (𝑋 = ∅ → (ℝ ↑𝑚 𝑋) = (ℝ ↑𝑚 ∅))
7 reex 10027 . . . . . . . . . . . 12 ℝ ∈ V
8 mapdm0 7872 . . . . . . . . . . . 12 (ℝ ∈ V → (ℝ ↑𝑚 ∅) = {∅})
97, 8ax-mp 5 . . . . . . . . . . 11 (ℝ ↑𝑚 ∅) = {∅}
109a1i 11 . . . . . . . . . 10 (𝑋 = ∅ → (ℝ ↑𝑚 ∅) = {∅})
116, 10eqtrd 2656 . . . . . . . . 9 (𝑋 = ∅ → (ℝ ↑𝑚 𝑋) = {∅})
1211adantl 482 . . . . . . . 8 ((𝜑𝑋 = ∅) → (ℝ ↑𝑚 𝑋) = {∅})
135, 12eleqtrd 2703 . . . . . . 7 ((𝜑𝑋 = ∅) → 𝑌 ∈ {∅})
14 0fin 8188 . . . . . . . . . . . . 13 ∅ ∈ Fin
15 eqid 2622 . . . . . . . . . . . . . 14 (dist‘(ℝ^‘∅)) = (dist‘(ℝ^‘∅))
1615rrxmetfi 40507 . . . . . . . . . . . . 13 (∅ ∈ Fin → (dist‘(ℝ^‘∅)) ∈ (Met‘(ℝ ↑𝑚 ∅)))
1714, 16ax-mp 5 . . . . . . . . . . . 12 (dist‘(ℝ^‘∅)) ∈ (Met‘(ℝ ↑𝑚 ∅))
18 metxmet 22139 . . . . . . . . . . . 12 ((dist‘(ℝ^‘∅)) ∈ (Met‘(ℝ ↑𝑚 ∅)) → (dist‘(ℝ^‘∅)) ∈ (∞Met‘(ℝ ↑𝑚 ∅)))
1917, 18ax-mp 5 . . . . . . . . . . 11 (dist‘(ℝ^‘∅)) ∈ (∞Met‘(ℝ ↑𝑚 ∅))
2019a1i 11 . . . . . . . . . 10 ((𝜑𝑋 = ∅) → (dist‘(ℝ^‘∅)) ∈ (∞Met‘(ℝ ↑𝑚 ∅)))
213, 9syl6eleqr 2712 . . . . . . . . . 10 ((𝜑𝑋 = ∅) → ∅ ∈ (ℝ ↑𝑚 ∅))
22 hoiqssbl.e . . . . . . . . . . 11 (𝜑𝐸 ∈ ℝ+)
2322adantr 481 . . . . . . . . . 10 ((𝜑𝑋 = ∅) → 𝐸 ∈ ℝ+)
24 blcntr 22218 . . . . . . . . . 10 (((dist‘(ℝ^‘∅)) ∈ (∞Met‘(ℝ ↑𝑚 ∅)) ∧ ∅ ∈ (ℝ ↑𝑚 ∅) ∧ 𝐸 ∈ ℝ+) → ∅ ∈ (∅(ball‘(dist‘(ℝ^‘∅)))𝐸))
2520, 21, 23, 24syl3anc 1326 . . . . . . . . 9 ((𝜑𝑋 = ∅) → ∅ ∈ (∅(ball‘(dist‘(ℝ^‘∅)))𝐸))
26 elsni 4194 . . . . . . . . . . . 12 (𝑌 ∈ {∅} → 𝑌 = ∅)
2713, 26syl 17 . . . . . . . . . . 11 ((𝜑𝑋 = ∅) → 𝑌 = ∅)
2827eqcomd 2628 . . . . . . . . . 10 ((𝜑𝑋 = ∅) → ∅ = 𝑌)
2928oveq1d 6665 . . . . . . . . 9 ((𝜑𝑋 = ∅) → (∅(ball‘(dist‘(ℝ^‘∅)))𝐸) = (𝑌(ball‘(dist‘(ℝ^‘∅)))𝐸))
3025, 29eleqtrd 2703 . . . . . . . 8 ((𝜑𝑋 = ∅) → ∅ ∈ (𝑌(ball‘(dist‘(ℝ^‘∅)))𝐸))
3130snssd 4340 . . . . . . 7 ((𝜑𝑋 = ∅) → {∅} ⊆ (𝑌(ball‘(dist‘(ℝ^‘∅)))𝐸))
3213, 31jca 554 . . . . . 6 ((𝜑𝑋 = ∅) → (𝑌 ∈ {∅} ∧ {∅} ⊆ (𝑌(ball‘(dist‘(ℝ^‘∅)))𝐸)))
33 biidd 252 . . . . . . 7 (𝑑 = ∅ → ((𝑌 ∈ {∅} ∧ {∅} ⊆ (𝑌(ball‘(dist‘(ℝ^‘∅)))𝐸)) ↔ (𝑌 ∈ {∅} ∧ {∅} ⊆ (𝑌(ball‘(dist‘(ℝ^‘∅)))𝐸))))
3433rspcev 3309 . . . . . 6 ((∅ ∈ {∅} ∧ (𝑌 ∈ {∅} ∧ {∅} ⊆ (𝑌(ball‘(dist‘(ℝ^‘∅)))𝐸))) → ∃𝑑 ∈ {∅} (𝑌 ∈ {∅} ∧ {∅} ⊆ (𝑌(ball‘(dist‘(ℝ^‘∅)))𝐸)))
353, 32, 34syl2anc 693 . . . . 5 ((𝜑𝑋 = ∅) → ∃𝑑 ∈ {∅} (𝑌 ∈ {∅} ∧ {∅} ⊆ (𝑌(ball‘(dist‘(ℝ^‘∅)))𝐸)))
36 biidd 252 . . . . . 6 (𝑐 = ∅ → (∃𝑑 ∈ {∅} (𝑌 ∈ {∅} ∧ {∅} ⊆ (𝑌(ball‘(dist‘(ℝ^‘∅)))𝐸)) ↔ ∃𝑑 ∈ {∅} (𝑌 ∈ {∅} ∧ {∅} ⊆ (𝑌(ball‘(dist‘(ℝ^‘∅)))𝐸))))
3736rspcev 3309 . . . . 5 ((∅ ∈ {∅} ∧ ∃𝑑 ∈ {∅} (𝑌 ∈ {∅} ∧ {∅} ⊆ (𝑌(ball‘(dist‘(ℝ^‘∅)))𝐸))) → ∃𝑐 ∈ {∅}∃𝑑 ∈ {∅} (𝑌 ∈ {∅} ∧ {∅} ⊆ (𝑌(ball‘(dist‘(ℝ^‘∅)))𝐸)))
383, 35, 37syl2anc 693 . . . 4 ((𝜑𝑋 = ∅) → ∃𝑐 ∈ {∅}∃𝑑 ∈ {∅} (𝑌 ∈ {∅} ∧ {∅} ⊆ (𝑌(ball‘(dist‘(ℝ^‘∅)))𝐸)))
39 oveq2 6658 . . . . . . . . . 10 (𝑋 = ∅ → (ℚ ↑𝑚 𝑋) = (ℚ ↑𝑚 ∅))
40 qex 11800 . . . . . . . . . . . 12 ℚ ∈ V
41 mapdm0 7872 . . . . . . . . . . . 12 (ℚ ∈ V → (ℚ ↑𝑚 ∅) = {∅})
4240, 41ax-mp 5 . . . . . . . . . . 11 (ℚ ↑𝑚 ∅) = {∅}
4342a1i 11 . . . . . . . . . 10 (𝑋 = ∅ → (ℚ ↑𝑚 ∅) = {∅})
4439, 43eqtr2d 2657 . . . . . . . . 9 (𝑋 = ∅ → {∅} = (ℚ ↑𝑚 𝑋))
4544eqcomd 2628 . . . . . . . 8 (𝑋 = ∅ → (ℚ ↑𝑚 𝑋) = {∅})
4645eleq2d 2687 . . . . . . 7 (𝑋 = ∅ → (𝑐 ∈ (ℚ ↑𝑚 𝑋) ↔ 𝑐 ∈ {∅}))
4745eleq2d 2687 . . . . . . . . 9 (𝑋 = ∅ → (𝑑 ∈ (ℚ ↑𝑚 𝑋) ↔ 𝑑 ∈ {∅}))
4847anbi1d 741 . . . . . . . 8 (𝑋 = ∅ → ((𝑑 ∈ (ℚ ↑𝑚 𝑋) ∧ (𝑌 ∈ {∅} ∧ {∅} ⊆ (𝑌(ball‘(dist‘(ℝ^‘∅)))𝐸))) ↔ (𝑑 ∈ {∅} ∧ (𝑌 ∈ {∅} ∧ {∅} ⊆ (𝑌(ball‘(dist‘(ℝ^‘∅)))𝐸)))))
4948rexbidv2 3048 . . . . . . 7 (𝑋 = ∅ → (∃𝑑 ∈ (ℚ ↑𝑚 𝑋)(𝑌 ∈ {∅} ∧ {∅} ⊆ (𝑌(ball‘(dist‘(ℝ^‘∅)))𝐸)) ↔ ∃𝑑 ∈ {∅} (𝑌 ∈ {∅} ∧ {∅} ⊆ (𝑌(ball‘(dist‘(ℝ^‘∅)))𝐸))))
5046, 49anbi12d 747 . . . . . 6 (𝑋 = ∅ → ((𝑐 ∈ (ℚ ↑𝑚 𝑋) ∧ ∃𝑑 ∈ (ℚ ↑𝑚 𝑋)(𝑌 ∈ {∅} ∧ {∅} ⊆ (𝑌(ball‘(dist‘(ℝ^‘∅)))𝐸))) ↔ (𝑐 ∈ {∅} ∧ ∃𝑑 ∈ {∅} (𝑌 ∈ {∅} ∧ {∅} ⊆ (𝑌(ball‘(dist‘(ℝ^‘∅)))𝐸)))))
5150rexbidv2 3048 . . . . 5 (𝑋 = ∅ → (∃𝑐 ∈ (ℚ ↑𝑚 𝑋)∃𝑑 ∈ (ℚ ↑𝑚 𝑋)(𝑌 ∈ {∅} ∧ {∅} ⊆ (𝑌(ball‘(dist‘(ℝ^‘∅)))𝐸)) ↔ ∃𝑐 ∈ {∅}∃𝑑 ∈ {∅} (𝑌 ∈ {∅} ∧ {∅} ⊆ (𝑌(ball‘(dist‘(ℝ^‘∅)))𝐸))))
5251adantl 482 . . . 4 ((𝜑𝑋 = ∅) → (∃𝑐 ∈ (ℚ ↑𝑚 𝑋)∃𝑑 ∈ (ℚ ↑𝑚 𝑋)(𝑌 ∈ {∅} ∧ {∅} ⊆ (𝑌(ball‘(dist‘(ℝ^‘∅)))𝐸)) ↔ ∃𝑐 ∈ {∅}∃𝑑 ∈ {∅} (𝑌 ∈ {∅} ∧ {∅} ⊆ (𝑌(ball‘(dist‘(ℝ^‘∅)))𝐸))))
5338, 52mpbird 247 . . 3 ((𝜑𝑋 = ∅) → ∃𝑐 ∈ (ℚ ↑𝑚 𝑋)∃𝑑 ∈ (ℚ ↑𝑚 𝑋)(𝑌 ∈ {∅} ∧ {∅} ⊆ (𝑌(ball‘(dist‘(ℝ^‘∅)))𝐸)))
54 ixpeq1 7919 . . . . . . . . 9 (𝑋 = ∅ → X𝑖𝑋 ((𝑐𝑖)[,)(𝑑𝑖)) = X𝑖 ∈ ∅ ((𝑐𝑖)[,)(𝑑𝑖)))
55 ixp0x 7936 . . . . . . . . . 10 X𝑖 ∈ ∅ ((𝑐𝑖)[,)(𝑑𝑖)) = {∅}
5655a1i 11 . . . . . . . . 9 (𝑋 = ∅ → X𝑖 ∈ ∅ ((𝑐𝑖)[,)(𝑑𝑖)) = {∅})
5754, 56eqtrd 2656 . . . . . . . 8 (𝑋 = ∅ → X𝑖𝑋 ((𝑐𝑖)[,)(𝑑𝑖)) = {∅})
5857eleq2d 2687 . . . . . . 7 (𝑋 = ∅ → (𝑌X𝑖𝑋 ((𝑐𝑖)[,)(𝑑𝑖)) ↔ 𝑌 ∈ {∅}))
59 fveq2 6191 . . . . . . . . . . 11 (𝑋 = ∅ → (ℝ^‘𝑋) = (ℝ^‘∅))
6059fveq2d 6195 . . . . . . . . . 10 (𝑋 = ∅ → (dist‘(ℝ^‘𝑋)) = (dist‘(ℝ^‘∅)))
6160fveq2d 6195 . . . . . . . . 9 (𝑋 = ∅ → (ball‘(dist‘(ℝ^‘𝑋))) = (ball‘(dist‘(ℝ^‘∅))))
6261oveqd 6667 . . . . . . . 8 (𝑋 = ∅ → (𝑌(ball‘(dist‘(ℝ^‘𝑋)))𝐸) = (𝑌(ball‘(dist‘(ℝ^‘∅)))𝐸))
6357, 62sseq12d 3634 . . . . . . 7 (𝑋 = ∅ → (X𝑖𝑋 ((𝑐𝑖)[,)(𝑑𝑖)) ⊆ (𝑌(ball‘(dist‘(ℝ^‘𝑋)))𝐸) ↔ {∅} ⊆ (𝑌(ball‘(dist‘(ℝ^‘∅)))𝐸)))
6458, 63anbi12d 747 . . . . . 6 (𝑋 = ∅ → ((𝑌X𝑖𝑋 ((𝑐𝑖)[,)(𝑑𝑖)) ∧ X𝑖𝑋 ((𝑐𝑖)[,)(𝑑𝑖)) ⊆ (𝑌(ball‘(dist‘(ℝ^‘𝑋)))𝐸)) ↔ (𝑌 ∈ {∅} ∧ {∅} ⊆ (𝑌(ball‘(dist‘(ℝ^‘∅)))𝐸))))
6564rexbidv 3052 . . . . 5 (𝑋 = ∅ → (∃𝑑 ∈ (ℚ ↑𝑚 𝑋)(𝑌X𝑖𝑋 ((𝑐𝑖)[,)(𝑑𝑖)) ∧ X𝑖𝑋 ((𝑐𝑖)[,)(𝑑𝑖)) ⊆ (𝑌(ball‘(dist‘(ℝ^‘𝑋)))𝐸)) ↔ ∃𝑑 ∈ (ℚ ↑𝑚 𝑋)(𝑌 ∈ {∅} ∧ {∅} ⊆ (𝑌(ball‘(dist‘(ℝ^‘∅)))𝐸))))
6665rexbidv 3052 . . . 4 (𝑋 = ∅ → (∃𝑐 ∈ (ℚ ↑𝑚 𝑋)∃𝑑 ∈ (ℚ ↑𝑚 𝑋)(𝑌X𝑖𝑋 ((𝑐𝑖)[,)(𝑑𝑖)) ∧ X𝑖𝑋 ((𝑐𝑖)[,)(𝑑𝑖)) ⊆ (𝑌(ball‘(dist‘(ℝ^‘𝑋)))𝐸)) ↔ ∃𝑐 ∈ (ℚ ↑𝑚 𝑋)∃𝑑 ∈ (ℚ ↑𝑚 𝑋)(𝑌 ∈ {∅} ∧ {∅} ⊆ (𝑌(ball‘(dist‘(ℝ^‘∅)))𝐸))))
6766adantl 482 . . 3 ((𝜑𝑋 = ∅) → (∃𝑐 ∈ (ℚ ↑𝑚 𝑋)∃𝑑 ∈ (ℚ ↑𝑚 𝑋)(𝑌X𝑖𝑋 ((𝑐𝑖)[,)(𝑑𝑖)) ∧ X𝑖𝑋 ((𝑐𝑖)[,)(𝑑𝑖)) ⊆ (𝑌(ball‘(dist‘(ℝ^‘𝑋)))𝐸)) ↔ ∃𝑐 ∈ (ℚ ↑𝑚 𝑋)∃𝑑 ∈ (ℚ ↑𝑚 𝑋)(𝑌 ∈ {∅} ∧ {∅} ⊆ (𝑌(ball‘(dist‘(ℝ^‘∅)))𝐸))))
6853, 67mpbird 247 . 2 ((𝜑𝑋 = ∅) → ∃𝑐 ∈ (ℚ ↑𝑚 𝑋)∃𝑑 ∈ (ℚ ↑𝑚 𝑋)(𝑌X𝑖𝑋 ((𝑐𝑖)[,)(𝑑𝑖)) ∧ X𝑖𝑋 ((𝑐𝑖)[,)(𝑑𝑖)) ⊆ (𝑌(ball‘(dist‘(ℝ^‘𝑋)))𝐸)))
69 hoiqssbl.x . . . 4 (𝜑𝑋 ∈ Fin)
7069adantr 481 . . 3 ((𝜑 ∧ ¬ 𝑋 = ∅) → 𝑋 ∈ Fin)
71 neqne 2802 . . . 4 𝑋 = ∅ → 𝑋 ≠ ∅)
7271adantl 482 . . 3 ((𝜑 ∧ ¬ 𝑋 = ∅) → 𝑋 ≠ ∅)
734adantr 481 . . 3 ((𝜑 ∧ ¬ 𝑋 = ∅) → 𝑌 ∈ (ℝ ↑𝑚 𝑋))
7422adantr 481 . . 3 ((𝜑 ∧ ¬ 𝑋 = ∅) → 𝐸 ∈ ℝ+)
7570, 72, 73, 74hoiqssbllem3 40838 . 2 ((𝜑 ∧ ¬ 𝑋 = ∅) → ∃𝑐 ∈ (ℚ ↑𝑚 𝑋)∃𝑑 ∈ (ℚ ↑𝑚 𝑋)(𝑌X𝑖𝑋 ((𝑐𝑖)[,)(𝑑𝑖)) ∧ X𝑖𝑋 ((𝑐𝑖)[,)(𝑑𝑖)) ⊆ (𝑌(ball‘(dist‘(ℝ^‘𝑋)))𝐸)))
7668, 75pm2.61dan 832 1 (𝜑 → ∃𝑐 ∈ (ℚ ↑𝑚 𝑋)∃𝑑 ∈ (ℚ ↑𝑚 𝑋)(𝑌X𝑖𝑋 ((𝑐𝑖)[,)(𝑑𝑖)) ∧ X𝑖𝑋 ((𝑐𝑖)[,)(𝑑𝑖)) ⊆ (𝑌(ball‘(dist‘(ℝ^‘𝑋)))𝐸)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384   = wceq 1483  wcel 1990  wne 2794  wrex 2913  Vcvv 3200  wss 3574  c0 3915  {csn 4177  cfv 5888  (class class class)co 6650  𝑚 cmap 7857  Xcixp 7908  Fincfn 7955  cr 9935  cq 11788  +crp 11832  [,)cico 12177  distcds 15950  ∞Metcxmt 19731  Metcme 19732  ballcbl 19733  ℝ^crrx 23171
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-tpos 7352  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xadd 11947  df-ioo 12179  df-ico 12181  df-fz 12327  df-fzo 12466  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-sum 14417  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-hom 15966  df-cco 15967  df-0g 16102  df-gsum 16103  df-prds 16108  df-pws 16110  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-mhm 17335  df-grp 17425  df-minusg 17426  df-sbg 17427  df-subg 17591  df-ghm 17658  df-cntz 17750  df-cmn 18195  df-abl 18196  df-mgp 18490  df-ur 18502  df-ring 18549  df-cring 18550  df-oppr 18623  df-dvdsr 18641  df-unit 18642  df-invr 18672  df-dvr 18683  df-rnghom 18715  df-drng 18749  df-field 18750  df-subrg 18778  df-staf 18845  df-srng 18846  df-lmod 18865  df-lss 18933  df-sra 19172  df-rgmod 19173  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-cnfld 19747  df-refld 19951  df-dsmm 20076  df-frlm 20091  df-nm 22387  df-tng 22389  df-tch 22969  df-rrx 23173
This theorem is referenced by:  opnvonmbllem2  40847
  Copyright terms: Public domain W3C validator