MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ibladd Structured version   Visualization version   Unicode version

Theorem ibladd 23587
Description: Add two integrals over the same domain. (Contributed by Mario Carneiro, 17-Aug-2014.)
Hypotheses
Ref Expression
itgadd.1  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  V )
itgadd.2  |-  ( ph  ->  ( x  e.  A  |->  B )  e.  L^1 )
itgadd.3  |-  ( (
ph  /\  x  e.  A )  ->  C  e.  V )
itgadd.4  |-  ( ph  ->  ( x  e.  A  |->  C )  e.  L^1 )
Assertion
Ref Expression
ibladd  |-  ( ph  ->  ( x  e.  A  |->  ( B  +  C
) )  e.  L^1 )
Distinct variable groups:    x, A    x, V    ph, x
Allowed substitution hints:    B( x)    C( x)

Proof of Theorem ibladd
StepHypRef Expression
1 itgadd.2 . . . . . . 7  |-  ( ph  ->  ( x  e.  A  |->  B )  e.  L^1 )
2 eqid 2622 . . . . . . . 8  |-  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_ 
( Re `  B
) ) ,  ( Re `  B ) ,  0 ) ) )  =  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_ 
( Re `  B
) ) ,  ( Re `  B ) ,  0 ) ) )
3 eqid 2622 . . . . . . . 8  |-  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  -u ( Re `  B
) ) ,  -u ( Re `  B ) ,  0 ) ) )  =  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  -u ( Re `  B
) ) ,  -u ( Re `  B ) ,  0 ) ) )
4 eqid 2622 . . . . . . . 8  |-  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_ 
( Im `  B
) ) ,  ( Im `  B ) ,  0 ) ) )  =  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_ 
( Im `  B
) ) ,  ( Im `  B ) ,  0 ) ) )
5 eqid 2622 . . . . . . . 8  |-  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  -u ( Im `  B
) ) ,  -u ( Im `  B ) ,  0 ) ) )  =  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  -u ( Im `  B
) ) ,  -u ( Im `  B ) ,  0 ) ) )
6 itgadd.1 . . . . . . . 8  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  V )
72, 3, 4, 5, 6iblcnlem 23555 . . . . . . 7  |-  ( ph  ->  ( ( x  e.  A  |->  B )  e.  L^1  <->  ( (
x  e.  A  |->  B )  e. MblFn  /\  (
( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  ( Re
`  B ) ) ,  ( Re `  B ) ,  0 ) ) )  e.  RR  /\  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  -u ( Re `  B
) ) ,  -u ( Re `  B ) ,  0 ) ) )  e.  RR )  /\  ( ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_ 
( Im `  B
) ) ,  ( Im `  B ) ,  0 ) ) )  e.  RR  /\  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  -u (
Im `  B )
) ,  -u (
Im `  B ) ,  0 ) ) )  e.  RR ) ) ) )
81, 7mpbid 222 . . . . . 6  |-  ( ph  ->  ( ( x  e.  A  |->  B )  e. MblFn  /\  ( ( S.2 `  (
x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_ 
( Re `  B
) ) ,  ( Re `  B ) ,  0 ) ) )  e.  RR  /\  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  -u (
Re `  B )
) ,  -u (
Re `  B ) ,  0 ) ) )  e.  RR )  /\  ( ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_ 
( Im `  B
) ) ,  ( Im `  B ) ,  0 ) ) )  e.  RR  /\  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  -u (
Im `  B )
) ,  -u (
Im `  B ) ,  0 ) ) )  e.  RR ) ) )
98simp1d 1073 . . . . 5  |-  ( ph  ->  ( x  e.  A  |->  B )  e. MblFn )
109, 6mbfdm2 23405 . . . 4  |-  ( ph  ->  A  e.  dom  vol )
11 itgadd.3 . . . 4  |-  ( (
ph  /\  x  e.  A )  ->  C  e.  V )
12 eqidd 2623 . . . 4  |-  ( ph  ->  ( x  e.  A  |->  B )  =  ( x  e.  A  |->  B ) )
13 eqidd 2623 . . . 4  |-  ( ph  ->  ( x  e.  A  |->  C )  =  ( x  e.  A  |->  C ) )
1410, 6, 11, 12, 13offval2 6914 . . 3  |-  ( ph  ->  ( ( x  e.  A  |->  B )  oF  +  ( x  e.  A  |->  C ) )  =  ( x  e.  A  |->  ( B  +  C ) ) )
15 itgadd.4 . . . . . 6  |-  ( ph  ->  ( x  e.  A  |->  C )  e.  L^1 )
16 eqid 2622 . . . . . . 7  |-  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_ 
( Re `  C
) ) ,  ( Re `  C ) ,  0 ) ) )  =  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_ 
( Re `  C
) ) ,  ( Re `  C ) ,  0 ) ) )
17 eqid 2622 . . . . . . 7  |-  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  -u ( Re `  C
) ) ,  -u ( Re `  C ) ,  0 ) ) )  =  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  -u ( Re `  C
) ) ,  -u ( Re `  C ) ,  0 ) ) )
18 eqid 2622 . . . . . . 7  |-  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_ 
( Im `  C
) ) ,  ( Im `  C ) ,  0 ) ) )  =  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_ 
( Im `  C
) ) ,  ( Im `  C ) ,  0 ) ) )
19 eqid 2622 . . . . . . 7  |-  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  -u ( Im `  C
) ) ,  -u ( Im `  C ) ,  0 ) ) )  =  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  -u ( Im `  C
) ) ,  -u ( Im `  C ) ,  0 ) ) )
2016, 17, 18, 19, 11iblcnlem 23555 . . . . . 6  |-  ( ph  ->  ( ( x  e.  A  |->  C )  e.  L^1  <->  ( (
x  e.  A  |->  C )  e. MblFn  /\  (
( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  ( Re
`  C ) ) ,  ( Re `  C ) ,  0 ) ) )  e.  RR  /\  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  -u ( Re `  C
) ) ,  -u ( Re `  C ) ,  0 ) ) )  e.  RR )  /\  ( ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_ 
( Im `  C
) ) ,  ( Im `  C ) ,  0 ) ) )  e.  RR  /\  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  -u (
Im `  C )
) ,  -u (
Im `  C ) ,  0 ) ) )  e.  RR ) ) ) )
2115, 20mpbid 222 . . . . 5  |-  ( ph  ->  ( ( x  e.  A  |->  C )  e. MblFn  /\  ( ( S.2 `  (
x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_ 
( Re `  C
) ) ,  ( Re `  C ) ,  0 ) ) )  e.  RR  /\  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  -u (
Re `  C )
) ,  -u (
Re `  C ) ,  0 ) ) )  e.  RR )  /\  ( ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_ 
( Im `  C
) ) ,  ( Im `  C ) ,  0 ) ) )  e.  RR  /\  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  -u (
Im `  C )
) ,  -u (
Im `  C ) ,  0 ) ) )  e.  RR ) ) )
2221simp1d 1073 . . . 4  |-  ( ph  ->  ( x  e.  A  |->  C )  e. MblFn )
239, 22mbfadd 23428 . . 3  |-  ( ph  ->  ( ( x  e.  A  |->  B )  oF  +  ( x  e.  A  |->  C ) )  e. MblFn )
2414, 23eqeltrrd 2702 . 2  |-  ( ph  ->  ( x  e.  A  |->  ( B  +  C
) )  e. MblFn )
259, 6mbfmptcl 23404 . . . . 5  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  CC )
2625recld 13934 . . . 4  |-  ( (
ph  /\  x  e.  A )  ->  (
Re `  B )  e.  RR )
2722, 11mbfmptcl 23404 . . . . 5  |-  ( (
ph  /\  x  e.  A )  ->  C  e.  CC )
2827recld 13934 . . . 4  |-  ( (
ph  /\  x  e.  A )  ->  (
Re `  C )  e.  RR )
2925, 27readdd 13954 . . . 4  |-  ( (
ph  /\  x  e.  A )  ->  (
Re `  ( B  +  C ) )  =  ( ( Re `  B )  +  ( Re `  C ) ) )
3025ismbfcn2 23406 . . . . . 6  |-  ( ph  ->  ( ( x  e.  A  |->  B )  e. MblFn  <->  ( ( x  e.  A  |->  ( Re `  B
) )  e. MblFn  /\  (
x  e.  A  |->  ( Im `  B ) )  e. MblFn ) ) )
319, 30mpbid 222 . . . . 5  |-  ( ph  ->  ( ( x  e.  A  |->  ( Re `  B ) )  e. MblFn  /\  ( x  e.  A  |->  ( Im `  B
) )  e. MblFn )
)
3231simpld 475 . . . 4  |-  ( ph  ->  ( x  e.  A  |->  ( Re `  B
) )  e. MblFn )
3327ismbfcn2 23406 . . . . . 6  |-  ( ph  ->  ( ( x  e.  A  |->  C )  e. MblFn  <->  ( ( x  e.  A  |->  ( Re `  C
) )  e. MblFn  /\  (
x  e.  A  |->  ( Im `  C ) )  e. MblFn ) ) )
3422, 33mpbid 222 . . . . 5  |-  ( ph  ->  ( ( x  e.  A  |->  ( Re `  C ) )  e. MblFn  /\  ( x  e.  A  |->  ( Im `  C
) )  e. MblFn )
)
3534simpld 475 . . . 4  |-  ( ph  ->  ( x  e.  A  |->  ( Re `  C
) )  e. MblFn )
368simp2d 1074 . . . . 5  |-  ( ph  ->  ( ( S.2 `  (
x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_ 
( Re `  B
) ) ,  ( Re `  B ) ,  0 ) ) )  e.  RR  /\  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  -u (
Re `  B )
) ,  -u (
Re `  B ) ,  0 ) ) )  e.  RR ) )
3736simpld 475 . . . 4  |-  ( ph  ->  ( S.2 `  (
x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_ 
( Re `  B
) ) ,  ( Re `  B ) ,  0 ) ) )  e.  RR )
3821simp2d 1074 . . . . 5  |-  ( ph  ->  ( ( S.2 `  (
x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_ 
( Re `  C
) ) ,  ( Re `  C ) ,  0 ) ) )  e.  RR  /\  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  -u (
Re `  C )
) ,  -u (
Re `  C ) ,  0 ) ) )  e.  RR ) )
3938simpld 475 . . . 4  |-  ( ph  ->  ( S.2 `  (
x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_ 
( Re `  C
) ) ,  ( Re `  C ) ,  0 ) ) )  e.  RR )
4026, 28, 29, 32, 35, 37, 39ibladdlem 23586 . . 3  |-  ( ph  ->  ( S.2 `  (
x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_ 
( Re `  ( B  +  C )
) ) ,  ( Re `  ( B  +  C ) ) ,  0 ) ) )  e.  RR )
4126renegcld 10457 . . . 4  |-  ( (
ph  /\  x  e.  A )  ->  -u (
Re `  B )  e.  RR )
4228renegcld 10457 . . . 4  |-  ( (
ph  /\  x  e.  A )  ->  -u (
Re `  C )  e.  RR )
4329negeqd 10275 . . . . 5  |-  ( (
ph  /\  x  e.  A )  ->  -u (
Re `  ( B  +  C ) )  = 
-u ( ( Re
`  B )  +  ( Re `  C
) ) )
4426recnd 10068 . . . . . 6  |-  ( (
ph  /\  x  e.  A )  ->  (
Re `  B )  e.  CC )
4528recnd 10068 . . . . . 6  |-  ( (
ph  /\  x  e.  A )  ->  (
Re `  C )  e.  CC )
4644, 45negdid 10405 . . . . 5  |-  ( (
ph  /\  x  e.  A )  ->  -u (
( Re `  B
)  +  ( Re
`  C ) )  =  ( -u (
Re `  B )  +  -u ( Re `  C ) ) )
4743, 46eqtrd 2656 . . . 4  |-  ( (
ph  /\  x  e.  A )  ->  -u (
Re `  ( B  +  C ) )  =  ( -u ( Re
`  B )  + 
-u ( Re `  C ) ) )
4826, 32mbfneg 23417 . . . 4  |-  ( ph  ->  ( x  e.  A  |-> 
-u ( Re `  B ) )  e. MblFn
)
4928, 35mbfneg 23417 . . . 4  |-  ( ph  ->  ( x  e.  A  |-> 
-u ( Re `  C ) )  e. MblFn
)
5036simprd 479 . . . 4  |-  ( ph  ->  ( S.2 `  (
x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  -u ( Re `  B
) ) ,  -u ( Re `  B ) ,  0 ) ) )  e.  RR )
5138simprd 479 . . . 4  |-  ( ph  ->  ( S.2 `  (
x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  -u ( Re `  C
) ) ,  -u ( Re `  C ) ,  0 ) ) )  e.  RR )
5241, 42, 47, 48, 49, 50, 51ibladdlem 23586 . . 3  |-  ( ph  ->  ( S.2 `  (
x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  -u ( Re `  ( B  +  C )
) ) ,  -u ( Re `  ( B  +  C ) ) ,  0 ) ) )  e.  RR )
5340, 52jca 554 . 2  |-  ( ph  ->  ( ( S.2 `  (
x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_ 
( Re `  ( B  +  C )
) ) ,  ( Re `  ( B  +  C ) ) ,  0 ) ) )  e.  RR  /\  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  -u (
Re `  ( B  +  C ) ) ) ,  -u ( Re `  ( B  +  C
) ) ,  0 ) ) )  e.  RR ) )
5425imcld 13935 . . . 4  |-  ( (
ph  /\  x  e.  A )  ->  (
Im `  B )  e.  RR )
5527imcld 13935 . . . 4  |-  ( (
ph  /\  x  e.  A )  ->  (
Im `  C )  e.  RR )
5625, 27imaddd 13955 . . . 4  |-  ( (
ph  /\  x  e.  A )  ->  (
Im `  ( B  +  C ) )  =  ( ( Im `  B )  +  ( Im `  C ) ) )
5731simprd 479 . . . 4  |-  ( ph  ->  ( x  e.  A  |->  ( Im `  B
) )  e. MblFn )
5834simprd 479 . . . 4  |-  ( ph  ->  ( x  e.  A  |->  ( Im `  C
) )  e. MblFn )
598simp3d 1075 . . . . 5  |-  ( ph  ->  ( ( S.2 `  (
x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_ 
( Im `  B
) ) ,  ( Im `  B ) ,  0 ) ) )  e.  RR  /\  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  -u (
Im `  B )
) ,  -u (
Im `  B ) ,  0 ) ) )  e.  RR ) )
6059simpld 475 . . . 4  |-  ( ph  ->  ( S.2 `  (
x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_ 
( Im `  B
) ) ,  ( Im `  B ) ,  0 ) ) )  e.  RR )
6121simp3d 1075 . . . . 5  |-  ( ph  ->  ( ( S.2 `  (
x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_ 
( Im `  C
) ) ,  ( Im `  C ) ,  0 ) ) )  e.  RR  /\  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  -u (
Im `  C )
) ,  -u (
Im `  C ) ,  0 ) ) )  e.  RR ) )
6261simpld 475 . . . 4  |-  ( ph  ->  ( S.2 `  (
x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_ 
( Im `  C
) ) ,  ( Im `  C ) ,  0 ) ) )  e.  RR )
6354, 55, 56, 57, 58, 60, 62ibladdlem 23586 . . 3  |-  ( ph  ->  ( S.2 `  (
x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_ 
( Im `  ( B  +  C )
) ) ,  ( Im `  ( B  +  C ) ) ,  0 ) ) )  e.  RR )
6454renegcld 10457 . . . 4  |-  ( (
ph  /\  x  e.  A )  ->  -u (
Im `  B )  e.  RR )
6555renegcld 10457 . . . 4  |-  ( (
ph  /\  x  e.  A )  ->  -u (
Im `  C )  e.  RR )
6656negeqd 10275 . . . . 5  |-  ( (
ph  /\  x  e.  A )  ->  -u (
Im `  ( B  +  C ) )  = 
-u ( ( Im
`  B )  +  ( Im `  C
) ) )
6754recnd 10068 . . . . . 6  |-  ( (
ph  /\  x  e.  A )  ->  (
Im `  B )  e.  CC )
6855recnd 10068 . . . . . 6  |-  ( (
ph  /\  x  e.  A )  ->  (
Im `  C )  e.  CC )
6967, 68negdid 10405 . . . . 5  |-  ( (
ph  /\  x  e.  A )  ->  -u (
( Im `  B
)  +  ( Im
`  C ) )  =  ( -u (
Im `  B )  +  -u ( Im `  C ) ) )
7066, 69eqtrd 2656 . . . 4  |-  ( (
ph  /\  x  e.  A )  ->  -u (
Im `  ( B  +  C ) )  =  ( -u ( Im
`  B )  + 
-u ( Im `  C ) ) )
7154, 57mbfneg 23417 . . . 4  |-  ( ph  ->  ( x  e.  A  |-> 
-u ( Im `  B ) )  e. MblFn
)
7255, 58mbfneg 23417 . . . 4  |-  ( ph  ->  ( x  e.  A  |-> 
-u ( Im `  C ) )  e. MblFn
)
7359simprd 479 . . . 4  |-  ( ph  ->  ( S.2 `  (
x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  -u ( Im `  B
) ) ,  -u ( Im `  B ) ,  0 ) ) )  e.  RR )
7461simprd 479 . . . 4  |-  ( ph  ->  ( S.2 `  (
x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  -u ( Im `  C
) ) ,  -u ( Im `  C ) ,  0 ) ) )  e.  RR )
7564, 65, 70, 71, 72, 73, 74ibladdlem 23586 . . 3  |-  ( ph  ->  ( S.2 `  (
x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  -u ( Im `  ( B  +  C )
) ) ,  -u ( Im `  ( B  +  C ) ) ,  0 ) ) )  e.  RR )
7663, 75jca 554 . 2  |-  ( ph  ->  ( ( S.2 `  (
x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_ 
( Im `  ( B  +  C )
) ) ,  ( Im `  ( B  +  C ) ) ,  0 ) ) )  e.  RR  /\  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  -u (
Im `  ( B  +  C ) ) ) ,  -u ( Im `  ( B  +  C
) ) ,  0 ) ) )  e.  RR ) )
77 eqid 2622 . . 3  |-  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_ 
( Re `  ( B  +  C )
) ) ,  ( Re `  ( B  +  C ) ) ,  0 ) ) )  =  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_ 
( Re `  ( B  +  C )
) ) ,  ( Re `  ( B  +  C ) ) ,  0 ) ) )
78 eqid 2622 . . 3  |-  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  -u ( Re `  ( B  +  C )
) ) ,  -u ( Re `  ( B  +  C ) ) ,  0 ) ) )  =  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  -u ( Re `  ( B  +  C )
) ) ,  -u ( Re `  ( B  +  C ) ) ,  0 ) ) )
79 eqid 2622 . . 3  |-  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_ 
( Im `  ( B  +  C )
) ) ,  ( Im `  ( B  +  C ) ) ,  0 ) ) )  =  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_ 
( Im `  ( B  +  C )
) ) ,  ( Im `  ( B  +  C ) ) ,  0 ) ) )
80 eqid 2622 . . 3  |-  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  -u ( Im `  ( B  +  C )
) ) ,  -u ( Im `  ( B  +  C ) ) ,  0 ) ) )  =  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  -u ( Im `  ( B  +  C )
) ) ,  -u ( Im `  ( B  +  C ) ) ,  0 ) ) )
81 ovexd 6680 . . 3  |-  ( (
ph  /\  x  e.  A )  ->  ( B  +  C )  e.  _V )
8277, 78, 79, 80, 81iblcnlem 23555 . 2  |-  ( ph  ->  ( ( x  e.  A  |->  ( B  +  C ) )  e.  L^1  <->  ( (
x  e.  A  |->  ( B  +  C ) )  e. MblFn  /\  (
( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  ( Re
`  ( B  +  C ) ) ) ,  ( Re `  ( B  +  C
) ) ,  0 ) ) )  e.  RR  /\  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  -u ( Re `  ( B  +  C )
) ) ,  -u ( Re `  ( B  +  C ) ) ,  0 ) ) )  e.  RR )  /\  ( ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_ 
( Im `  ( B  +  C )
) ) ,  ( Im `  ( B  +  C ) ) ,  0 ) ) )  e.  RR  /\  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  -u (
Im `  ( B  +  C ) ) ) ,  -u ( Im `  ( B  +  C
) ) ,  0 ) ) )  e.  RR ) ) ) )
8324, 53, 76, 82mpbir3and 1245 1  |-  ( ph  ->  ( x  e.  A  |->  ( B  +  C
) )  e.  L^1 )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    /\ w3a 1037    e. wcel 1990   _Vcvv 3200   ifcif 4086   class class class wbr 4653    |-> cmpt 4729   dom cdm 5114   ` cfv 5888  (class class class)co 6650    oFcof 6895   RRcr 9935   0cc0 9936    + caddc 9939    <_ cle 10075   -ucneg 10267   Recre 13837   Imcim 13838   volcvol 23232  MblFncmbf 23383   S.2citg2 23385   L^1cibl 23386
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cc 9257  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-disj 4621  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-ofr 6898  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-omul 7565  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-acn 8768  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ioo 12179  df-ioc 12180  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-fl 12593  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-rlim 14220  df-sum 14417  df-rest 16083  df-topgen 16104  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-top 20699  df-topon 20716  df-bases 20750  df-cmp 21190  df-ovol 23233  df-vol 23234  df-mbf 23388  df-itg1 23389  df-itg2 23390  df-ibl 23391  df-0p 23437
This theorem is referenced by:  iblsub  23588  itgaddlem1  23589  itgaddlem2  23590  itgadd  23591  itgfsum  23593  itgparts  23810
  Copyright terms: Public domain W3C validator