Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ioorrnopnxr Structured version   Visualization version   GIF version

Theorem ioorrnopnxr 40527
Description: The indexed product of open intervals is an open set in (ℝ^‘𝑋). Similar to ioorrnopn 40525 but here unbounded intervals are allowed. (Contributed by Glauco Siliprandi, 8-Apr-2021.)
Hypotheses
Ref Expression
ioorrnopnxr.x (𝜑𝑋 ∈ Fin)
ioorrnopnxr.a (𝜑𝐴:𝑋⟶ℝ*)
ioorrnopnxr.b (𝜑𝐵:𝑋⟶ℝ*)
Assertion
Ref Expression
ioorrnopnxr (𝜑X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖)) ∈ (TopOpen‘(ℝ^‘𝑋)))
Distinct variable groups:   𝐴,𝑖   𝐵,𝑖   𝑖,𝑋   𝜑,𝑖

Proof of Theorem ioorrnopnxr
Dummy variables 𝑓 𝑗 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 p0ex 4853 . . . . . 6 {∅} ∈ V
21prid2 4298 . . . . 5 {∅} ∈ {∅, {∅}}
32a1i 11 . . . 4 (𝑋 = ∅ → {∅} ∈ {∅, {∅}})
4 ixpeq1 7919 . . . . . 6 (𝑋 = ∅ → X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖)) = X𝑖 ∈ ∅ ((𝐴𝑖)(,)(𝐵𝑖)))
5 ixp0x 7936 . . . . . . 7 X𝑖 ∈ ∅ ((𝐴𝑖)(,)(𝐵𝑖)) = {∅}
65a1i 11 . . . . . 6 (𝑋 = ∅ → X𝑖 ∈ ∅ ((𝐴𝑖)(,)(𝐵𝑖)) = {∅})
74, 6eqtrd 2656 . . . . 5 (𝑋 = ∅ → X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖)) = {∅})
8 fveq2 6191 . . . . . . 7 (𝑋 = ∅ → (ℝ^‘𝑋) = (ℝ^‘∅))
98fveq2d 6195 . . . . . 6 (𝑋 = ∅ → (TopOpen‘(ℝ^‘𝑋)) = (TopOpen‘(ℝ^‘∅)))
10 rrxtopn0b 40516 . . . . . . 7 (TopOpen‘(ℝ^‘∅)) = {∅, {∅}}
1110a1i 11 . . . . . 6 (𝑋 = ∅ → (TopOpen‘(ℝ^‘∅)) = {∅, {∅}})
129, 11eqtrd 2656 . . . . 5 (𝑋 = ∅ → (TopOpen‘(ℝ^‘𝑋)) = {∅, {∅}})
137, 12eleq12d 2695 . . . 4 (𝑋 = ∅ → (X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖)) ∈ (TopOpen‘(ℝ^‘𝑋)) ↔ {∅} ∈ {∅, {∅}}))
143, 13mpbird 247 . . 3 (𝑋 = ∅ → X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖)) ∈ (TopOpen‘(ℝ^‘𝑋)))
1514adantl 482 . 2 ((𝜑𝑋 = ∅) → X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖)) ∈ (TopOpen‘(ℝ^‘𝑋)))
16 neqne 2802 . . . 4 𝑋 = ∅ → 𝑋 ≠ ∅)
1716adantl 482 . . 3 ((𝜑 ∧ ¬ 𝑋 = ∅) → 𝑋 ≠ ∅)
18 fveq2 6191 . . . . . . . . . . 11 (𝑖 = 𝑗 → (𝐴𝑖) = (𝐴𝑗))
19 fveq2 6191 . . . . . . . . . . 11 (𝑖 = 𝑗 → (𝐵𝑖) = (𝐵𝑗))
2018, 19oveq12d 6668 . . . . . . . . . 10 (𝑖 = 𝑗 → ((𝐴𝑖)(,)(𝐵𝑖)) = ((𝐴𝑗)(,)(𝐵𝑗)))
2120cbvixpv 7926 . . . . . . . . 9 X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖)) = X𝑗𝑋 ((𝐴𝑗)(,)(𝐵𝑗))
2221eleq2i 2693 . . . . . . . 8 (𝑓X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖)) ↔ 𝑓X𝑗𝑋 ((𝐴𝑗)(,)(𝐵𝑗)))
2322biimpi 206 . . . . . . 7 (𝑓X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖)) → 𝑓X𝑗𝑋 ((𝐴𝑗)(,)(𝐵𝑗)))
2423adantl 482 . . . . . 6 (((𝜑𝑋 ≠ ∅) ∧ 𝑓X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖))) → 𝑓X𝑗𝑋 ((𝐴𝑗)(,)(𝐵𝑗)))
25 ioorrnopnxr.x . . . . . . . 8 (𝜑𝑋 ∈ Fin)
2625ad2antrr 762 . . . . . . 7 (((𝜑𝑋 ≠ ∅) ∧ 𝑓X𝑗𝑋 ((𝐴𝑗)(,)(𝐵𝑗))) → 𝑋 ∈ Fin)
27 ioorrnopnxr.a . . . . . . . 8 (𝜑𝐴:𝑋⟶ℝ*)
2827ad2antrr 762 . . . . . . 7 (((𝜑𝑋 ≠ ∅) ∧ 𝑓X𝑗𝑋 ((𝐴𝑗)(,)(𝐵𝑗))) → 𝐴:𝑋⟶ℝ*)
29 ioorrnopnxr.b . . . . . . . 8 (𝜑𝐵:𝑋⟶ℝ*)
3029ad2antrr 762 . . . . . . 7 (((𝜑𝑋 ≠ ∅) ∧ 𝑓X𝑗𝑋 ((𝐴𝑗)(,)(𝐵𝑗))) → 𝐵:𝑋⟶ℝ*)
3122biimpri 218 . . . . . . . 8 (𝑓X𝑗𝑋 ((𝐴𝑗)(,)(𝐵𝑗)) → 𝑓X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖)))
3231adantl 482 . . . . . . 7 (((𝜑𝑋 ≠ ∅) ∧ 𝑓X𝑗𝑋 ((𝐴𝑗)(,)(𝐵𝑗))) → 𝑓X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖)))
33 fveq2 6191 . . . . . . . . . 10 (𝑗 = 𝑖 → (𝐴𝑗) = (𝐴𝑖))
3433eqeq1d 2624 . . . . . . . . 9 (𝑗 = 𝑖 → ((𝐴𝑗) = -∞ ↔ (𝐴𝑖) = -∞))
35 fveq2 6191 . . . . . . . . . 10 (𝑗 = 𝑖 → (𝑓𝑗) = (𝑓𝑖))
3635oveq1d 6665 . . . . . . . . 9 (𝑗 = 𝑖 → ((𝑓𝑗) − 1) = ((𝑓𝑖) − 1))
3734, 36, 33ifbieq12d 4113 . . . . . . . 8 (𝑗 = 𝑖 → if((𝐴𝑗) = -∞, ((𝑓𝑗) − 1), (𝐴𝑗)) = if((𝐴𝑖) = -∞, ((𝑓𝑖) − 1), (𝐴𝑖)))
3837cbvmptv 4750 . . . . . . 7 (𝑗𝑋 ↦ if((𝐴𝑗) = -∞, ((𝑓𝑗) − 1), (𝐴𝑗))) = (𝑖𝑋 ↦ if((𝐴𝑖) = -∞, ((𝑓𝑖) − 1), (𝐴𝑖)))
39 fveq2 6191 . . . . . . . . . 10 (𝑗 = 𝑖 → (𝐵𝑗) = (𝐵𝑖))
4039eqeq1d 2624 . . . . . . . . 9 (𝑗 = 𝑖 → ((𝐵𝑗) = +∞ ↔ (𝐵𝑖) = +∞))
4135oveq1d 6665 . . . . . . . . 9 (𝑗 = 𝑖 → ((𝑓𝑗) + 1) = ((𝑓𝑖) + 1))
4240, 41, 39ifbieq12d 4113 . . . . . . . 8 (𝑗 = 𝑖 → if((𝐵𝑗) = +∞, ((𝑓𝑗) + 1), (𝐵𝑗)) = if((𝐵𝑖) = +∞, ((𝑓𝑖) + 1), (𝐵𝑖)))
4342cbvmptv 4750 . . . . . . 7 (𝑗𝑋 ↦ if((𝐵𝑗) = +∞, ((𝑓𝑗) + 1), (𝐵𝑗))) = (𝑖𝑋 ↦ if((𝐵𝑖) = +∞, ((𝑓𝑖) + 1), (𝐵𝑖)))
44 eqid 2622 . . . . . . 7 X𝑖𝑋 (((𝑗𝑋 ↦ if((𝐴𝑗) = -∞, ((𝑓𝑗) − 1), (𝐴𝑗)))‘𝑖)(,)((𝑗𝑋 ↦ if((𝐵𝑗) = +∞, ((𝑓𝑗) + 1), (𝐵𝑗)))‘𝑖)) = X𝑖𝑋 (((𝑗𝑋 ↦ if((𝐴𝑗) = -∞, ((𝑓𝑗) − 1), (𝐴𝑗)))‘𝑖)(,)((𝑗𝑋 ↦ if((𝐵𝑗) = +∞, ((𝑓𝑗) + 1), (𝐵𝑗)))‘𝑖))
4526, 28, 30, 32, 38, 43, 44ioorrnopnxrlem 40526 . . . . . 6 (((𝜑𝑋 ≠ ∅) ∧ 𝑓X𝑗𝑋 ((𝐴𝑗)(,)(𝐵𝑗))) → ∃𝑣 ∈ (TopOpen‘(ℝ^‘𝑋))(𝑓𝑣𝑣X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖))))
4624, 45syldan 487 . . . . 5 (((𝜑𝑋 ≠ ∅) ∧ 𝑓X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖))) → ∃𝑣 ∈ (TopOpen‘(ℝ^‘𝑋))(𝑓𝑣𝑣X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖))))
4746ralrimiva 2966 . . . 4 ((𝜑𝑋 ≠ ∅) → ∀𝑓X 𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖))∃𝑣 ∈ (TopOpen‘(ℝ^‘𝑋))(𝑓𝑣𝑣X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖))))
48 eqid 2622 . . . . . . . 8 (TopOpen‘(ℝ^‘𝑋)) = (TopOpen‘(ℝ^‘𝑋))
4948rrxtop 40509 . . . . . . 7 (𝑋 ∈ Fin → (TopOpen‘(ℝ^‘𝑋)) ∈ Top)
5025, 49syl 17 . . . . . 6 (𝜑 → (TopOpen‘(ℝ^‘𝑋)) ∈ Top)
5150adantr 481 . . . . 5 ((𝜑𝑋 ≠ ∅) → (TopOpen‘(ℝ^‘𝑋)) ∈ Top)
52 eltop2 20779 . . . . 5 ((TopOpen‘(ℝ^‘𝑋)) ∈ Top → (X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖)) ∈ (TopOpen‘(ℝ^‘𝑋)) ↔ ∀𝑓X 𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖))∃𝑣 ∈ (TopOpen‘(ℝ^‘𝑋))(𝑓𝑣𝑣X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖)))))
5351, 52syl 17 . . . 4 ((𝜑𝑋 ≠ ∅) → (X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖)) ∈ (TopOpen‘(ℝ^‘𝑋)) ↔ ∀𝑓X 𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖))∃𝑣 ∈ (TopOpen‘(ℝ^‘𝑋))(𝑓𝑣𝑣X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖)))))
5447, 53mpbird 247 . . 3 ((𝜑𝑋 ≠ ∅) → X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖)) ∈ (TopOpen‘(ℝ^‘𝑋)))
5517, 54syldan 487 . 2 ((𝜑 ∧ ¬ 𝑋 = ∅) → X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖)) ∈ (TopOpen‘(ℝ^‘𝑋)))
5615, 55pm2.61dan 832 1 (𝜑X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖)) ∈ (TopOpen‘(ℝ^‘𝑋)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384   = wceq 1483  wcel 1990  wne 2794  wral 2912  wrex 2913  wss 3574  c0 3915  ifcif 4086  {csn 4177  {cpr 4179  cmpt 4729  wf 5884  cfv 5888  (class class class)co 6650  Xcixp 7908  Fincfn 7955  1c1 9937   + caddc 9939  +∞cpnf 10071  -∞cmnf 10072  *cxr 10073  cmin 10266  (,)cioo 12175  TopOpenctopn 16082  Topctop 20698  ℝ^crrx 23171
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-tpos 7352  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ioo 12179  df-ico 12181  df-fz 12327  df-fzo 12466  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-sum 14417  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-hom 15966  df-cco 15967  df-rest 16083  df-topn 16084  df-0g 16102  df-gsum 16103  df-topgen 16104  df-prds 16108  df-pws 16110  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-mhm 17335  df-submnd 17336  df-grp 17425  df-minusg 17426  df-sbg 17427  df-subg 17591  df-ghm 17658  df-cntz 17750  df-cmn 18195  df-abl 18196  df-mgp 18490  df-ur 18502  df-ring 18549  df-cring 18550  df-oppr 18623  df-dvdsr 18641  df-unit 18642  df-invr 18672  df-dvr 18683  df-rnghom 18715  df-drng 18749  df-field 18750  df-subrg 18778  df-abv 18817  df-staf 18845  df-srng 18846  df-lmod 18865  df-lss 18933  df-lmhm 19022  df-lvec 19103  df-sra 19172  df-rgmod 19173  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-cnfld 19747  df-refld 19951  df-phl 19971  df-dsmm 20076  df-frlm 20091  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-xms 22125  df-ms 22126  df-nm 22387  df-ngp 22388  df-tng 22389  df-nrg 22390  df-nlm 22391  df-clm 22863  df-cph 22968  df-tch 22969  df-rrx 23173
This theorem is referenced by:  ioovonmbl  40891
  Copyright terms: Public domain W3C validator